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Abstract. Clustering, also known as mixture modelling or intrinsic clas-
sification, is the problem of identifying and modelling components (or
clusters, or classes) in a body of data. We consider here the application
of the Minimum Message Length (MML) principle to a clustering prob-
lem of Gaussian and ¢ distributions. Earlier work in the MML clustering
was conducted in regards to the multinomial and Gaussian distributions
(Wallace and Boulton, 1968) and in addition, the von Mises circular and
Poisson distributions (Wallace and Dowe, 1994, 2000). Our current work
extends this by applying the Gaussian distribution to the more general
t distribution. Point estimation of the ¢ distribution is performed using
the MML approximation proposed by Wallace and Freeman (1987). A
comparison of the MML estimations of the t distribution to those of the
Maximum Likelihood (ML) method in terms of their Kullback-Leibler
(KL) distances is also provided. Within each component, our application
also performs a model selection on whether a particular group of data is
best modelled as a Gaussian or a t distribution. The proposed modelling
method is then applied to several artificially generated datasets. The
modelling results are compared to the results obtained when using the
MML clustering of Gaussian distributions. Our modelling method com-
pares quite well to an alternative clustering program (EMMIX) which
uses various modelling criteria such as the Akaike Information Criterion
(AIC) and Schwarz’s Bayesian Information Criterion (BIC).

Keywords. Clustering, Machine Learning, Knowledge Discovery and
Data Mining, Unsupervised Learning, Minimum Message Length, MML,
Mixture Modelling, Classification, Intrinsic Classification, Numerical Ta-
xonomy, Information Theory, Statistical Inference.

1 Introduction

The Minimum Message Length (MML) principle [18][23][21] is an invariant
Bayesian point estimation and model selection technique based on information
theory. The basic idea of MML is to find an hypothesis (or theory) of a distribu-
tion or a model that minimises the total length of a two-part message encoding
the hypothesis, and the data in light of that hypothesis.

Letting D be the data and H be the hypothesis, with a prior probability
distribution P(H), based on Bayes’s theorem, the point estimation and model
selection problem can be regarded as a problem of maximising the posterior



probability P(H)- P(D|H). From the information-theoretic point of view, where
an event with probability p is encoded by a message of length [ = —log, p bits,
the problem is then equivalent to minimising

MessLen = —log, (P(H)) — log,(P(D|H)) (1)

where the first term states the message length of the hypothesis and the second
term states the message length of the data in light of the hypothesis.

This principle was first stated and then applied in a series of papers by
Wallace and Boulton dealing with model selections and parameter estimations
of multi-state and Gaussian distributions for a clustering problem [18]. A related
principle has also been stated independently by Solomonoff [15]. An important
special case of the MML principle observed by Chaitin [4] is that data can be
regarded as random if there is no hypothesis, H, that can encode the data in a
shorter message length than the null hypothesis.

Beginning with parameter estimation, this paper proposes an MML cluster-
ing which extends the clustering problem of Gaussian distributions [18][17][22]
by considering the ¢ distribution as the distribution of the continuous data in-
vestigated. Since the Gaussian distribution is a special case of the ¢ distribution,
the application also performs a more general model selection on whether the
data in a particular group fits a Gaussian or a ¢ distribution.

2 Parameter Estimation by MML

In order to apply MML to the clustering problem of Gaussian and ¢ distributions,
we need parameter estimations of the multi-state, Gaussian and ¢ distributions.
Given the data x and parameters 6, let h(@) be the prior probability distri-
bution on 6, f(z|@), the likelihood, L = —log f(x|8), the negative log-likelihood
and 0*L
F(6) = de{ B (55557) @
the Fisher information that is the determinant of the matrix of expected second
derivatives of the negative log-likelihood. Based on equation (1), and by expand-
ing the negative log-likelihood, L, as far as the second term of the Taylor series
about the parameter 6, the message length is then calculated by [23]:
MessLen = — log _hO) +L+ D = —log h(6)/(z10) + 2(1 +logkp) (3)
KD F(8) 2 Fe) 2
where D is the number of parameters to be estimated and kp is a D-dimensional
lattice constant [5] , with kp < 1/12. The MML estimate of @ can be obtained
by minimising equation (3).

Considering that both distributions used here are continuous, a finite coding
for the message can be obtained by acknowledging that all recorded continuous
data and measurements must only be stated to a finite precision, which is, in
practice, made to some precision, €. In this way, a constant of N log(1/¢) is added
to the message length expression above, where N is the number of data [22].



2.1 Multi-state Variables

For a multi-state distribution with M states (and sample size, N), the likelihood
of the distribution is given by:

f(ni,no, -+, numlp1,pa, - -+ pm) = Py ps* - Pt

where p1 +p2+---+py =1, for all m: p,, >0 and ny +ny+---+npy = N.
Using equation (2), it follows that the Fisher information is given by:

F(p17p2; o ;pM) = N(M_l)/p1p2 DM

The derivation is also shown elsewhere for M = 2 [22].

Assuming a uniform prior (M — 1)! over the (M — 1)-dimensional region of
hyper-volume 1/(M — 1)!, and minimising equation (3), the MML estimate Py,
is obtained by [23][22, p75][18, p187 (4), p194 (28), p186 (2)]:

Pm = (nm +1/2)/(N + M/2) (4)

Substituting equation (4) into the message length expression (3) provides the
following total two-part message length:

—log(M —1)! + (M —1)/2)(log(N&ar—1) +1) — ZL (nm +1/2) log pm (5)

2.2 Gaussian Variables

For the Gaussian distribution, with a likelihood function

1 _(=-m?
Tip,0) = e 202
f(z|p,0) Wor

the Fisher information is given by:
F(u,0) =2N?/o* orby [22]: F(pu,0°) = N?/2(0?%)3

Assuming a uniform prior of 1/R on u over a finite range of width, R, where
R = max{10, the difference between the maximum and the minimum value
of the data} and a 1/o prior on ¢ (which corresponds to a uniform prior on
logo and equivalently to a 1/0? prior on 0?) over the range [e™*, €], letting
52 = YN (#; — %)%, and minimising equation (3), the MML estimates fivrwr,
and dummMr, are then given by [22, p75]:

pan =3 = (3, @)/N, o, = /(N 1) ©)

2.3 t Variables

The ¢t distribution with mean, u, standard deviation, o, and degree of freedom, v,
is a continuous distribution which generalises some other distributions, such as
the Gaussian (v = co) and Cauchy (v = 1) distributions. For large v(> 100), the
t distribution is closely approximated by a Gaussian distribution. The smaller



the value of v, the longer the tail in the ¢ distribution. Using this property, the
t distribution is often used to model data with atypical observations, such as
outliers. The distribution has a likelihood function:

rh 1 h (x —u)z]*("zﬂ

f(z|p,0,v) = W; (7)

vo?

where I'(z) is the Gamma function, given by (for z > 0):

e d?I(z)
L) = [ t'e7tdt, with ¢ (z)=
@)= [ etetar, with v (@) = TG
For any positive integer z, I'(z) = (z — 1)!. For large z, the value of the Gamma
function can also be approximated using the following Stirling’s approxima-
tion [9]:
1

~ ez z—3 i - -3
I(z) ~e 2" 2V/27(1 + Tom + 98857 +O0lz|™7) (8)

Using equation (2), the Fisher information, F', is given by:

S vy v v
Fuo) = 5o (g (o0 (5) -0 (590} - srmo ) ©

Assuming the same priors on g and o as those used for Gaussian distribu-
tion, and 2/ (1 + v?) prior on v with v being an unknown continuous parameter
in (0, oo], the MML estimation of the ¢ distribution parameters are obtained
by minimising equation (3) with respect to each parameter. Since there are no
sufficient statistics to estimate the parameters and each parameter is depen-
dent on each other, the inference is performed using a binary search by setting
OMessLen/00 = 0 and iterating the search process until a certain precision of
estimation is obtained.

3 One-component Univariate Model

In this section, we consider the inference of only one univariate component. We
return in later sections to consider mixtures of several multivariate components.

The difference between the Maximum Likelihood (ML) and MML principles
in estimating multi-state variables and Gaussian variables has been elaborated
upon by Wallace and Dowe [22], and is quite pronounced for the von Mises [19]
and some other distributions [21, p282]. Here, we compare the MML estimation
of t variables to that of the ML method in terms of the resulting Kullback-
Leibler (KL) distances. The ML estimation of t variables has been proposed in
a paper by Liu and Rubin [10] in which the estimation is performed using the
EM algorithm and its extensions, the ECM and ECME algorithms.

The KL distance between two continuous models P(X) and Q(X) is calcu-
lated by:
P(z)

Q(x)

D) = [ Pl)log o Das



where, in this calculation, P(X) is regarded as the true model and Q(X) is the
inferred model.

The datasets for the experiment are repeatedly generated from artificial mod-
els with N = {10,100}, g = 0.0, ¢ = {1.0, 5.0} and v= {1.0, 3.0, 10.0, 25.0,
50.0, 100.0}. Both estimators infer the datasets with v either taking the highest
value of v, which is, in this experiment, set to 100.0 or a certain value (< 100.0).
The calculation results are shown in Table 1.

0=1.0 & v= 1.0 3.0 10.0 25.0 50.0 100.0
N=10 ML [0.655+0.89|0.41940.70{0.170£0.21{0.169+0.25|0.1724+0.19|0.173+0.26
MML|0.292+0.48|0.205+0.45|0.118+0.17|0.140£0.20|0.131£0.12|0.134+£0.17
N=100ML {0.07840.04|0.020%0.03{0.018+0.02(0.011+0.01|0.0114+0.01|0.012£0.02
MML|0.076+0.04|0.0184+0.02(0.01740.02|0.0114+0.01|0.0114+0.01{0.0124+0.01

0=5.0 & v= 1.0 3.0 10.0 25.0 50.0 100.0
N=10 ML [0.684+1.00|0.42740.61{0.190+0.22(0.183+0.23|0.19940.28|0.191+0.22
MML|0.283+0.48(0.22240.35|0.14140.14|0.133£0.14|0.157+0.17|0.1454+0.15
N=100ML ]0.06440.03|0.0204+0.03|0.0144+0.01{0.0124+0.01{0.0114+0.01{0.0114+0.01
MML|0.063%£0.03|0.01940.03|0.01340.01{0.012+0.01{0.011£0.01{0.01140.01

Table 1. Average of KL distances of the ML and MML estimations of 100 datasets
with ¢=0.0, 0=1.0 or 5.0 and N=10 or 100 (with + standard errors).

As shown in Table 1, the MML estimators resulted in estimates which are
closer than ML to the true model, with smaller KL distances for all cases except
when N = 100 and v is large (> 25.0). It is possible that a different choice of
priors in subsection 2.3 will lead to MML outperforming ML in all cases. It is
also possible that Strict MML [23][21], Dowe’s MMLD or another refinement
of equation (3) [23] will do likewise. The MML method performed a robust
estimation with smaller standard errors of the resulting KL distances for all but
one estimation (namely, o = 5.0,v = 50.0, N = 100).

4 Clustering

Clustering, which is also known as mixture modelling [6][16][11][8][12], intrinsic
classification [3][20], and numerical taxonomy, models a statistical distribution
by a mixture (a weighted sum) of other distributions, as well as partitioning an
unknown number of components (or classes or clusters) of a dataset into a finite
number of components.

Such a cluster analysis will result in a description of the number of compo-
nents, the relative abundances (or mixing proportions) of each component, their
distribution parameters and the members that belong to them. In the latter,
an issue arises as to whether each datum is assigned totally to the component



or not. This issue affects the application of the MML principle to the cluster-
ing problem, and is explained further in the next section (see part 1d of the
message).

In the case of the clustering problem of the ¢ distributions, McLachlan, Peel,
Basford and Adams [13] have introduced the EMMIX software for the fitting of
a mixture of the Gaussian and ¢ components. This allows datasets to be fitted as
Gaussian distributions as well as ¢ distributions. A comparison of the proposed
clustering method to the application of the ¢ distribution in the EMMIX software
is provided in subsection 6.4.

5 MML Clustering

The application of MML to the problem of clustering was first introduced by
Wallace and Boulton [18]. This application involved discrete multinomial and
continuous Gaussian distributions. Wallace and Dowe [20][22] extended this work
by adding two other distributions - Poisson and von Mises circular. An alterna-
tive MML-based approach to mixture modelling was also given very recently by
Figueiredo and Jain [7].

In order to apply the MML principle to a clustering problem, a two-part
message conveying the mixture model needs to be constructed. The first part of
the message encodes the hypothesis, H, and the second part encodes the data in
light of the hypothesis. The hypothesis comprises several concatenated message
fragments, stating in turn:

la The number of components: Assuming that all numbers are considered as
equally likely up to some constant, (say, 100), this part can be encoded using
a uniform distribution over the range.

1b The relative abundances (or mixing proportions) of each component: Consid-
ering the relative abundances of an M-component mixture, this is the same
as the condition for an M -state multinomial distribution. The parameter es-
timation and the message length calculation of the multi-state distribution
have been elaborated upon in subsection 2.1.

1c For each component, the distribution parameters of its attributes: In this
case, an attribute of a component is inferred both as a Gaussian and a ¢
distribution as in subsections 2.2 and 2.3, respectively. The model which
results in a shorter message length is chosen.

1d For each thing, the component to which the thing is estimated to belong.

The method of assignment of things to components has changed since the
MML clustering was first introduced by Wallace and Boulton [18]. The original
coding scheme [18] utilised a total assignment of things to components. That
scheme was inefficient because of the possible savings that can be made when two
components overlap substantially [17]. The original - total assignment - scheme
can also lead to inconsistent estimates, where the difference between the means
of components is over-estimated and the standard deviation of components are
under-estimated, as shown in Fig. 1.
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Fig. 1. Inferring two substantially overlapping components using a total assignment.

Instead of assigning things totally to a component, a partial assignment was
proposed [17][22]. In a partial assignment, data things are partially assigned to
each component with a certain probability. Below, we compare the total assign-
ment with the partial assignment in terms of their message length.

In a total assignment, let p(j,z),j = 1,..., M, be the probability of compo-
nent j generating datum z. The message length to encode x which is assigned
to its best component is equal to —log(max; p(j,z)). On the other hand, for
a partial assignment, let P(x) = Z]Ail p(j,z), be the total probability of any
component generating datum z. The datum z will then be assigned to a com-
ponent j with probability p(j,z)/P(z). The message length of this assignment
is equal to —log(P(z)), which is shorter than that of a total assignment by
log, (P(z)/max; p(j,z)) on each datum z.

In the case where a datum z has an equal probability of being assigned to
more than one component, e.g. p(1,z) = p(2,z) = P(z)/2, a saving of 1 bit of
information can be gained by assigning x to either component 1 or component
2 at random.

Once the first part of the message is stated, the second part of the message
will encode the data in light of the hypothesis stated in the first part of the
message. Since the objective of the MML principle is to find the hypothesis that
minimises the message length, we do not need to actually encode the message.
In other words, we only need to calculate the length of the message and find the
hypothesis that gives the shortest/minimum message length.

6 Experimental Evaluations

In testing the MML clustering of Gaussian and ¢ distributions, three examples
of bivariate mixture datasets were generated artificially. The data points were
generated from Gaussian as well as ¢ distributions. The procedure in generating
these artificial mixture datasets is similar to that used by Baxter and Oliver [2].

Below, we compare the modelling results of our method to those obtained
using the MML clustering of Gaussian distributions only. The comparison of the
latter clustering method to other criteria such as AIC, BIC, PC and ICOMP
can be found in [2].



At the end of this section, we also compare the modelling results of 20 datasets
generated using the same parameters as the datasets mentioned above. The
comparison is performed in terms of the resulting number of components and
includes two other criteria such as the Akaike Information Criterion (AIC) [1]
and Schwarz’s Bayesian Information Criterion (BIC) [14].

6.1 One-Component Bivariate Mixture

2 T T o T T T
o ol Xx-y points ¢
151 o © °:<> 7
L P00 °® o B
1 R 50 go .
05 ¢o ¢ 0§<§><><> 4 ° o
R o 5y P
or R F S - 7
y o PN @ (f o
057, s o 8 i
° og o o
-1 e 0 ¢ ol ¢ M B
o © o%o o
-151 ¢ %o g
.0
o te S, 4
2 %
-25 1 1 1 | 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8 u

Fig. 2. One-component mixture of 100 bivariate data points generated from a combi-
nation of ¢t and Gaussian distributions: t,,—1(pe = 0,02 =1) x N(uy = 0,07 = 1).

MML Gaussian or {|{MML All Gaussian

MessLen 754.310 nits 771.976 nits
Attribute 1 |(assume measurement accuracy € = 1.0)
Mean () 0.101 -0.372
SD(o) 1.199 2.609
DegOfF (v) 1.612 00
Attribute 2 |(assume measurement accuracy € = 1.0)
Mean () -0.134 -0.134
SD(o) 0.968 0.968
DegOfF (v) 00 00

Table 2. Comparison of two different MML modelling methods: (i) using Gaussian
and ¢ distributions, and (ii) Gaussian distributions only. (Recall that a Gaussian dis-
tribution is a special case of the ¢ distribution with v = c0.) 1 nit = log, e bits.

Here, we extend the inference results from Section 3. The dataset used in this
example (see Fig. 2) consists of 100 bivariate data points which are generated
from a t distribution with three parameters: u, = 0.0, o, = 1.0 and v, = 1.0,
and a Gaussian distribution with two parameters: pu, = 0.0 and oy = 1.0.

The modelling result (see Table 2) shows that the message length in modelling
the dataset using the MML clustering of Gaussian and ¢ distributions was shorter
by roughly 18 nits than that when using Gaussian distributions only. This is
an effect of the inference of the first attribute of the dataset, whereby using a
combination of Gaussian and ¢ distributions, the attribute was inferred as a ¢



distribution with degrees of freedom, v = 1.612. The result also shows that data
from a t distribution can be inferred as coming from a Gaussian distribution
with a larger standard deviation. However, since the latter inference resulted in
a longer message length, the method automatically chose the ¢ distribution as
the inferred distribution.

6.2 Two-Component Bivariate Mixture

The dataset in this example, as shown in Fig. 3, is generated from a bivariate
mixture with two components. The first component is a combination of a ¢
distribution with three parameters: p,; = 0.0, 0,17 = 1.0 and v;; = 1.0 and a
Gaussian distribution with two parameters: p,; = 0.0 and oy; = 1.0. The data
points in the second component are generated from two Gaussian distributions
with two parameters, p;2 = 2.0 and 0,2 = 1.0 for the first attribute and pyo =
3.5 and oy = 1.0 for the second attribute. Both components have 50 data points.
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Fig. 3. Two-component mixture of 100 bivariate data points generated from a combi-
nation of ¢ and Gaussian distributions: 0.5(tv,;=1(pta1 = 0,021 = 1) X N(py1 = 0,0,1 =
1)) + 0.5(N (fta2 = 2,02 = 1)  N(jy2 = 3.5, 0% = 1))

Modelling the artificially generated dataset from Fig. 3, the first attribute
of the first component was fitted as a t distribution with degrees of freedom,
v = 2.008, instead of as a Gaussian distribution. Inferring the attribute as a ¢
distribution resulted in a shorter message length by roughly 11 nits compared to
when the attribute was inferred as Gaussian. In this result, the mixing propor-
tions of the components for both clustering methods were almost the same with
0.527:0.473 for our MML Gaussian and ¢ method and 0.524:0476 for the MML
modelling using Gaussian distributions only.

6.3 Three-Component Bivariate Mixture

The example here (see Fig. 4) is generated from a bivariate mixture with three
components. The first component is generated from two Gaussian distributions
with two parameters each, yy1 = —2.0 and 0,1 = 1.0 and py1 = —3.5 and o1 =
1.0, respectively. The second component is a combination of a ¢ distribution with
three parameters: ;2 = 0.0, 0,2 = 1.0 and v,» = 1.0 and a Gaussian distribution



with two parameters: py2 = 0.0 and oy2 = 1.0. The third component is from two
Gaussian distributions with two parameters each: u,3 = 2.0 and 0,3 = 1.0 and
ty3 = 3.5 and oy3 = 1.0, respectively. Each component has 50 data points.
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Fig. 4. Three-component mixture of 150 bivariate data points generated from a com-

bination of t and Gaussians: 1/3(N(pe1 = —2,05; =1) X N(py1 = =3.5,05, = 1)) +
1/3(t"m2=1(uw2 = 070-3,2 = 1) X N(p'?l2 = 07052 = 1)) +
1/3(N(Hft3 =2 023 = 1) X N(l‘yS =3.5, 053 = 1))

Modelling the dataset illustrated in Fig. 4, the first attribute of the second
component, which was generated from a ¢ distribution, was inferred as a t distri-
bution with degrees of freedom, v = 2.225. This inference resulted in a shorter
message length by about 3 nits compared to that when the attribute was in-
ferred as a Gaussian distribution. In this result, the mixing proportions of the
components when using Gaussian and ¢ distributions were mostly the same as
those when using Gaussian distributions only.

6.4 Alternative Clustering of ¢ Distributions: EMMIX

In 1999, McLachlan, Peel, Basford and Adams [13] introduced the EMMIX soft-
ware, which allows a dataset to be modelled as either a mixture of only (corre-
lated) Gaussian distributions or a mixture of only (correlated) ¢ distributions.
The software, which is mainly used to model datasets as a mixture of Gaussian
distributions, is extended by providing an option to change the distribution of
the components from Gaussian to ¢ distributions. The parameter estimations are
performed using the ML method by utilising the EM algorithm and its exten-
sions, the ECM and ECME algorithms. The value of v can be fixed in advance
or estimated from the data for each component using the ECM algorithm.

Our MML clustering of uncorrelated Gaussian and uncorrelated ¢ distribu-
tions allows all attributes in all components to be ¢t or Gaussian. On the other
hand, the EMMIX software permits attributes to be correlated within compo-
nents (or clusters or classes) but it currently restricts either all attributes in all
classes to be Gaussian or all to be ¢t. Bearing this in mind, the empirical com-
parisons to follow - where all attributes are uncorrelated and some can be ¢t and
some can be Gaussian - are probably somewhat unfair in favour of our method.



6.5 Empirical Comparison: Number of Components

We consider here modelling the datasets, which are generated artificially from
the same parameters as those used in subsections 6.1, 6.2 and 6.3, repeatedly
20 times. We also fed the datasets to the EMMIX software in order to see how
the modelling criteria used in the software (AIC and BIC) behave toward the
datasets.

As shown in Table 3, our proposed MML method showed good performance
in determining the number of components in the datasets. AIC and BIC, on
the other hand, rarely underfitted the datasets by inferring a smaller number of
components. However, BIC showed better modelling than AIC, where for most
modellings, AIC chose different numbers of components and tended to highly
overfit the true number of these components. Compared to our method, BIC
overfitted nearly half of the datasets investigated, especially when modelling
one-component mixture datasets. See subsection 6.4 regarding the fairness of
these comparisons.

Mixture One-Component Two-Component Three-Component
Component Number| 1| 2| 3| 4| 5| 1| 2| 3| 4| 5| 1| 2| 3| 4| 5

MML Gaussian & ¢ | 20| 0| 0| 0| 0| 0[20f 0| 0/ 0] 0O 2/18/ 0| 0

AIC Gaussian Only*| 0| 0| 5/ 7| 8 0/ Of 0 713 0 0/ 0f 6/ 14
BIC Gaussian Only*| 0| 18| 2| 0/ 0| 0| 13| 6/ 1| 0 0| 2| 12| 6| 0
AIC ¢ Only” 0| 0] 2| 3/ 15| 0| 0 2| 2|16/ 0f 0 o0 3|17
BIC ¢ Only* 7 12| 1) 0/ 0| 0| 15| 5/ 0| Of Of 3|15 2| O

*Modelled using the EMMIX software [13]

Table 3. Comparison of the modelling results in terms of the resulting number of
components using MML and other criteria such as AIC and BIC, based on 20 trials.

7 Conclusion

In conclusion, we draw the attention of the reader to the following results from
Sections 3 and 6:

1. The proposed method shows a better performance in estimating parameters
of a single ¢ distribution compared to the ML method for all settings but for
large v and large numbers of data. Smaller standard errors of the estimations
proved that the proposed MML estimation is a robust method in performing
parameter estimation (see Section 3).

2. The proposed method provides the flexibility for fitting an attribute of a
component either as a Gaussian or a ¢ distribution (see subsections 6.1, 6.2
and 6.3), although our attributes are currently uncorrelated.

3. The proposed method shows a good performance in determining the number
of components in a dataset. MML rarely had more components than the true
model (see subsection 6.5).
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