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Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is
also statistically consistent and efficient. We provide a brief overview of MML inductive inference
(Wallace C.S. and Boulton D.M. 1968. Computer Journal, 11: 185-194; Wallace C.S. and Freeman
P.R. 1987. J. Royal Statistical Society (Series B), 49: 240-252; Wallace C.S. and Dowe D.L. (1999).
Computer Journal), and how it has both an information-theoretic and a Bayesian interpretation. We then
outline how MML is used for statistical parameter estimation, and how the MML mixture modelling
program, Snob (Wallace C.S. and Boulton D.M. 1968. Computer Journal, 11: 185-194; Wallace
C.S. 1986. In: Proceedings of the Nineteenth Australian Computer Science Conference (ACSC-9),
Vol. 8, Monash University, Australia, pp. 357-366; Wallace C.S. and Dowe D.L. 1994b. In: Zhang C.
et al. (Eds.), Proc. 7th Australian Joint Conf. on Artif. Intelligence. World Scientific, Singapore, pp.
37-44. See http://www.csse.monash.edu.au/-dld/Snob.html) uses the message lengths from various
parameter estimates to enable it to combine parameter estimation with selection of the number of
components and estimation of the relative abundances of the components. The message length is (to
within a constant) the logarithm of the posterior probability (not a posterior density) of the theory.
So, the MML theory can also be regarded as the theory with the highest posterior probability. Snob
currently assumes that variables are uncorrelated within each component, and permits multi-variate
data from Gaussian, discrete multi-category (or multi-state or multinomial), Poisson and von Mises
circular distributions, as well as missing data. Additionally, Snob can do fully-parameterised mixture
modelling, estimating the latent class assignments in addition to estimating the number of components,
the relative abundances of the parameters and the component parameters. We also report on extensions
of Snob for data which has sequential or spatial correlations between observations, or correlations
between attributes.
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classification, unsupervised learning, numerical taxonomy

1. Introduction — about minimum message
length (MML)

The Minimum Message Length (MML) (Wallace and Boulton
1968, p. 185, Wallace and Freeman 1987) (and, e.g., Boulton
and Wallace (1970, pp. 63, 64), Wallace and Boulton (1975)
and Wallace and Dowe (1999)) principle of inductive inference,
machine learning and “data mining” is based on information
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theory, and hence lies on the interface of computer science and
statistics. A Bayesian interpretation of the MML principle is
that it variously states that the best conclusion to draw from data
is the theory with the highest posterior probability or, equiv-
alently, that theory which maximises the product of the prior
probability of the theory with the probability of the data oc-
curring in light of that theory. We quantify this immediately
below.
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Letting D be the data and H be an hypothesis (or theory) with
prior probability Pr(H), we can write the posterior probability
Pr(H| D) = Pr(H&D)/Pr(D) = Pr(H) - Pr(D| H)/Pr(D),
by repeated application of Bayes’s Theorem. Since D and Pr (D)
are given and we wish to infer H, we can regard the problem
of maximising the posterior probability, Pr(H | D), as one of
choosing H so as to maximise Pr(H) - Pr(D | H).

An information-theoretic interpretation of MML is that ele-
mentary coding theory tells us that an event of probability p
can be coded (e.g. by a Huffman code) by a message of length
| = —log, p bits. (Negligible or no harm is done by ignoring
effects of rounding up to the next positive integer.)

So, since —log,(Pr(H) - Pr(D|H)) = —log,(Pr(H)) —

log,(Pr(D| H)), maximising the posterior probability,
Pr(H | D), is equivalent to minimising
MessLen = —log,(Pr(H)) — log,(Pr (D | H)) (1)

the length of a two-part message conveying the theory, H, and
the data, D, in light of the theory, H. Hence the name “minimum
message length” (principle) for thus choosing a theory, H, to fit
observed data, D. A related principle seems to have first been
stated by Solomonoff (1964, p. 20) and was independently stated
and apparently first applied in a series of papers by Wallace
and Boulton (1968, p. 185) (Boulton and Wallace 1969, 1970
(pp. 63, 64), 1973a,b, 1975, Wallace and Boulton 1975, Boulton
1975) dealing with model selection and parameter estimation
(for Normal and multi-state variables) for problems of mixture
modelling (also known as clustering, numerical taxonomy or,
e.g. Boulton (1975), “intrinsic classification”).

An important special case of the Minimum Message Length
principle is an observation of Chaitin (1966) that data can be
regarded as “random” if there is no theory, H, describing the
data which results in a shorter total message length than the null
theory results in.

For an elaboration on the relation between MML, Chaitin’s
work (Chaitin 1966) and Kolmogorov complexity, see Wallace
and Dowe (1999). For a general justification by the authors of
the Bayesian paradigm, see Wallace (1996), Dowe ef al. (1998),
and Wallace and Dowe (1999). For a comparison with the related
Minimum Description Length (MDL) work of Rissanen (1978),
(1989), (1994), see, e.g., Solomonoff (1995) and Wallace and
Dowe (1999).

Beginning with MML parameter estimation, this paper both
describes and updates the status of the Snob program (Wallace
and Boulton 1968, Wallace 1986, Wallace and Dowe 1994b,
1997) for MML mixture modelling, largely updating and ex-
panding upon Wallace and Dowe (1997). We discuss later, in
Section 8, some applications of MML.

2. Parameter estimation by MML

Before we move on to the problem of mixture modelling, we
deal with the special case of parameter estimation, which can
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be thought of as corresponding to mixture modelling with one
component. _ _

Given data x and parameters 6, let 4(6) be the prior proba-
bility distribution on 6, let p(x | ) be the likelihood, let L =
—log p(x | 5) be the negative log-likelihood and let

F= dt{E(£>} @
06000’

be the Fisher information, the determinant of the (Fisher in-
formation) matrix of expected second partial derivatives of the
negative log-likelihood. We now follow equation (1), where the
hypothesis, H, is to be a quantised statement of parameter esti-
mates. A Taylor expansion as far as the second-order term of the
log-likelihood function, L, gives that (Wallace and Dowe 1993,
pp. 1-3, Wallace and Freeman 1987, p. 245, Wallace and Dowe
1999 (Sec. 6.1.2)) the MML estimate of 6 (Wallace and Freeman
1987, p. 245) is that value of # minimising the message length,

—1og<{h(é) x %} x p(x |5)> +
> 12% - k
=—log({h(9)x /%}) +<—logp(x|9)+ 5)

=—logi7h(9)p(x|9)} +k(—% log 12 + l) 3)

where k is the number of parameters to be estimated.!

(If € is the measurement accuracy of the data and N is the num-
ber of data things,? then we add the constant term N log(1/€)
to the length of the message. This is elaborated upon elsewhere
(Wallace and Freeman 1987, p. 245, Wallace and Dowe 1993,
pp. 1-3).

The two-part message describing the data thus comprises first,
a theory, which is the MML parameter estimate(s), and, second,
the data given this theory.

It is reasonably clear to see that a finite coding can be given
when the data is discrete or multi-state. For continuous data, we
also acknowledge that it must only have been stated to finite
precision by virtue of the fact that it was able to be (finitely)
recorded. (In practice (Wallace and Dowe 1994b), as earlier in
this section, we assume that, for a given continuous or circular
attribute, all measurements are made to some accuracy, €.) Just
as all recorded data is finitely recorded and can be finitely rep-
resented, by acknowledging an uncertainty region in the MML
estimate of approximately (Wallace and Freeman 1987, Wallace
1996, Wallace and Dowe 1993) /12%/F(6), the MML estimate
is stated to a (non-zero) finite precision.

The MML estimate thus has a genuine, non-zero, prior prob-
ability (not a density) and can be encoded by a genuine finite
code. (Indeed, the object of MML is to choose a finitely stated
estimate or hypothesis, H, to make the two-part message of
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length —log,(Pr(H)) —log,(Pr (D | H)) stating H followed by
D given H as short as possible.) The MML theory is thus
different, in general, from the standard Bayesian maximum
a posteriori (MAP) theory. This last point seems to be mis-
understood by many. To re-iterate (Wallace and Dowe 1999),
MML optimises a posterior probability and is invariant under
1-to-1 re-parameterisation whereas MAP optimises a posterior
density and (see, e.g., Dowe, Oliver and Wallace (1996) and
Dowe et al. (1995)) is typically not invariant under 1-to-1 re-
parameterisation. To put it another way, the presence of the ~/F
term in equation (3) should more than highlight the difference
between MML and MAP.

In the remainder of this section, we give several examples of
the result of using the MML formula to obtain parameter es-
timates from “innocuous” priors. For the Gaussian, multi-state
and Poisson distributions, the MML estimator can be written
in a simple analytic form and closely approximates the Maxi-
mum Likelihood (ML) estimator. For the von Mises distribution,
the estimators take a messier form (Schou 1978, Fisher 1993,
Wallace and Dowe 1993, Dowe et al. 1995) and the MML es-
timator is less similar to the ML estimator (Wallace and Dowe
1993).

From here through Section 4, we define the mixture modelling
(or clustering) problem and then extend MML parameter estima-
tion to MML mixture modelling. Section 5 mentions desirable
statistical properties of MML. Sections 6 and 7 mention alterna-
tive approaches and mixture modelling programs, and the final
sections mention applications of, extensions to and availability
of the Snob program.

2.1. Gaussian variables

For a Normal distribution (with sample size, N), assuming a uni-
form prior on p and a scale-invariant, 1 /o prior on o (which cor-
responds to a uniform prior on log o and, equivalently, toa 1 /02
prior on o'2), we get that the Maximum Likelihood (ML) and
MML estimates of the mean concur, i.e., that fiyve = ML = X.
Letting s> = P EY: —X)%, we get that 6%, = s2/N. Also, either
from Wallace and Boulton (1968, p. 190) or instead by noting
(c.f. Dowe and Wallace (1997, Section 4.2.1)) that

N N?

N
F(u,0%) = — = 20

X — =
o2 " 2(o2)
and then minimising expression (3), it follows that
2

~2 N
=— 4
OMML N_1 “)

This corrects a minor but well-known small sample bias in the
Maximum Likelihood estimate, 6 .

2.2. Discrete, multi-state variables

Since multi-state (or multi-category, or multinomial) attributes
are discrete, the above issues of measurement accuracy do not
arise.
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For a multi-state distribution with M states, a (“colourless”)
uniform prior, A(p) = (M — 1)!, is assumed over the (M — 1)-
dimensional region of hyper-volume 1 /(M — 1)! given by p; +
pr+---+pu=1p >0.

Letting n,, be the number of things in state m and N = n| +
-+ -+ nys, minimising the message length formula (3) gives that
the MML estimate p,, of p,, is given by Wallace and Boulton
(1968, p. 187(4), pp. 191-194) and Wallace and Dowe (1994b).

ny +1/2
N+ M2

The slight difference between the MML and the Maximum
Likelihood estimates is due to the Fisher information term, a
term given for M =2 by F = N/(p1(1 — p1)).

Substituting equation (5) immediately above into the message
length equation (3) nominally gives rise to a (minimum) message
length (Wallace and Boulton 1968, p. 187(4), p. 194(28)) of

M -1
2

1
= 3 (1 + 5 Jroe ©

for both stating the parameter estimates and then encoding the
things in light of these parameter estimates.

P ®)

N
log (E + 1) —log (M — 1)!

2.3. Poisson variables

Earlier versions of Snob originally (Wallace and Boulton 1968,
Wallace 1986, 1990) permitted models of classes whose vari-
ables were assumed to come from a combination of either (dis-
crete) multi-state or (continuous) Normal distributions. Snob
has since been augmented (Wallace and Dowe 1994b, 1997) by
permitting Poisson distributions and von Mises circular distri-
butions (Wallace and Dowe 1993, 1994a, Dowe ef al. 1995).

With r (or 1) the Poisson rate parameter to be inferred, ¢ the
total count and ¢ the total time, we have that

F(r) = ;

With « the population rate and a prior on the rate, r, of
h(r) = (1/a)-e "%, minimising the message length expres-
sion (3) gives us (Wallace and Dowe 1994b, 1996, 1997) an
MML estimate of

N c+1/2

=cr-/e 7
TMML = T e )

2.4. von Mises circular variables

The von Mises distribution, M;(u, k), with mean direction pu,
and concentration parameter, «, is a circular analogue of the Nor-
mal distribution (Fisher 1993, Mardia 1972, Wallace and Dowe
1993) — both being maximum entropy distributions. Letting
Iy(x) be the relevant normalisation constant, it has probability
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density function (p.d.f.)

Sl )= e ety ®)

2 Iy(k)

and corresponds to the distribution of the angle, x, of a circular
pendulum in a uniform field (at angle ©) subjected to thermal
fluctuations, with « representing the ratio of field strength to
temperature. For small «, it tends to a uniform distribution and
for large «, it tends to a Normal distribution with variance 1/«.
Circular data arises commonly in many fields (Fisher 1993,
Dowe ef al. 1996, Edgoose, Allison and Dowe 1998).

MML estimation of the von Mises concentration parameter, «,
is obtained by minimising the earlier formula (3) for the message
length, using (Wallace and Dowe 1993) a uniform prior on y in
[0, 277), the prior As(k) = k/(1 + K2)3/2 on x and the Fisher
information calculated in equation (9) below. Letting /;(x) =
dly(k)/dk and letting A(k) = d log(ly(k))/dx = 11(k)/Ip(k),
the Fisher information is given (Wallace and Dowe 1993, 1994b,
1997) by

A(x)
K

F(u,«) = NKA(K)XN(] — —(A(K))2>

A(x)

= N2KA(K)<1 - - (A(K))2> )

The contrast between MML and ML estimation is sharper
for the von Mises distribution than it is for the Normal, multi-
state and Poisson distributions, with Monte Carlo simulations
(Wallace and Dowe 1993, pp. 12-18) showing a very impres-
sive performance by the MML estimator against ML and other
classical rivals (e.g. marginalised Maximum Likelihood) (Schou
1978, Fisher 1993). We have also obtained encouraging results
against rival Bayesian methods (Dowe et al. 1995).

Being able to associate a message length both with the number
of components and, in turn, with each component enables us to
use (the minimisation of) the message length as a natural metric
for model selection.

2.5. Missing data (and corrections)

Additionally, in calculating the length of the second part of the
message, D given H, appropriate corrections are made (e.g.
Shepherd’s approximation for the Normal distribution, or when
M > N for the multinomial distribution) to account for expected
effects on this length of rounding-off parameter values to limited
precision.

We further note that, in principle, a separate code-word of
some length can be set aside for missing data. The transmission
of the missing data will thus be of constant length regardless
of the hypothesised classification, and as such will affect nei-
ther the minimisation of the message length nor the (statistical)
inference.
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2.6. A note on higher dimensions

A slight saving can be made in the length of the statement of
a message of two or more parameters by generalising the 1-
dimensional case at the start of this section to permit (e.g.) in 2
dimensions, the uncertainty region to be a hexagon rather than
a rectangle since (in short) both hexagons and rectangles tile
the Euclidean plane but a hexagon has a smaller (average or)
expected squared distance from its centre than a rectangle or
any other tiling shape. This is quantified elsewhere (Wallace
and Freeman 1987, Wallace and Dowe 1993) in terms of lattice
constants (Conway and Sloane 1988) for optimally® tesselating
Voronoi regions.

3. Mixture modelling

Mixture modelling (Everitt and Hand 1981, Titterington, Smith
and Makov 1985, McLachlan and Basford 1988), otherwise
known as clustering, intrinsic classification (Boulton 1975,
Wallace and Dowe 1994b, Wallace 1998) or numerical taxon-
omy, involves modelling data as coming from several classes (or
components, or clusters).

In mixture modelling problems, we want to estimate the num-
ber of components, the relative abundances of the components,
and the distributional parameters for each component. The prob-
lem changes in a slight but subtly important way when we con-
sider the distinction regarding whether or not we also wish to
estimate the latent class assignments, i.e., the assignment of all
data things to components.

We deal below with this problem of fully parameterised mix-
ture modelling, part of which includes the latent class assignment
of data things to components. The section immediately following
will address the problem of mixture modelling by using MML.
Mention of and comparison with some alternative approaches
(Everitt and Hand 1981, Titterington, Smith and Makov 1985,
Fisher 1987, McLachlan and Basford 1988, McLachlan 1992,
McLachlan et al. 1999, Roeder 1994, Cheeseman et al. 1988,
Stutz and Cheeseman 1994, Dellaportas, Karlis and Xekalaki
1997, Neal 1998, Fraley and Raftery 1998, Jorgensen and Hunt
1996, Hunt and Jorgensen 1999) will be given in Sections 7
and 6.

4. Applying MML to mixture modelling — the
Snob program

The MML mixture modelling program, Snob, uses MML for
both the model selection (number of components and assign-
ment of data things to components) and parameter estimation
(estimating means and standard deviations, etc.). Snob will pre-
fer to hypothesise the existence of an additional component in the
data precisely when the information cost of stating the parameter
estimates for this additional component is more than offset by
the information gain in stating the things assigned to this new
component in terms of the newer, more appropriate, parameter
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estimates. Recall throughout the equivalence (Wallace and
Boulton 1975, Wallace and Dowe 1999 (Section 4)) between
the probability paradigm and the message length paradigm, with
an event of probability p corresponding to a message of length
| = —log, p bits, and a message of length / bits corresponding
to a probability of p = 27/, That stated and understood, it seems
conceptually simpler to continue below in the message length
paradigm.

4.1. Stating the message — a first draft

Following earlier work (Wallace and Boulton 1968, Wallace
1986, 1990, Wallace and Dowe 1994b), we suppose the data
(for mixture modelling) to be given as a matrix of D attribute
values for each of N “things”, with some attribute values pos-
sibly missing (see Section 2.5). We assume the variables to be
independent of one another.

The first part of the message, stating the hypothesis, H, com-
prises several concatenated message fragments, stating in turn:

la. The number of components. (All numbers are considered
equally likely a priori up to some constant (Wallace and
Boulton 1968) such as 100, although both the choice of
constant and the general choice of prior could easily be
modified.)

1b. The relative abundance of each component. (Creating
names or labels for each component of length —log, of
the relative abundance, via a Huffman code, gives us a way
of referring to components later when, e.g., we wish to say
which component a particular data thing belongs to.) With
the number of components, M, stated in part 1(a) of the
message, the relative abundances are encoded as coming
from a multinomial distribution, as in Section 2.2.

lc. For each component, the distribution parameters of the
component (as discussed for the various distributions in
Section 2). Each parameter is considered to be specified to
a precision of the order of its expected estimation error or
uncertainty (see Section 2 or, e.g., Wallace and Dowe (1993,
pp- 3, 4)). For a larger component, the parameters will be
encoded to greater precision and hence by longer fragments
than for a less abundant component.

1d. For each thing, the component to which it is estimated to
belong.* (This can be done using the Huffman code referred
to in 1(b) above.)

Having stated in part 1 of the message above, our hypothesis,
H, about how many components there are and what the distri-
bution parameters (u, o, etc.) are for each attribute for each
component, in part 2 of the message we need to state the data,
D, in light of this hypothesised model, H.

The details of the encoding and of the calculation of the length
of part 1 of the message may be found in Section 2 and elsewhere
(Wallace and Boulton 1968, Wallace and Dowe 1993). It is per-
haps worth noting here that since our objective is to minimise
the message length (and maximise the posterior probability), we
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never need to construct a message — we only need to be able to
calculate its length.

Given that part 1(d) of the message told us which compo-
nent each thing was estimated to belong to and that, for each
component, part 1(c) gives us the (MML) estimates of the dis-
tribution parameters for each attribute, part 2 of the message
now encodes each attribute value of each thing in turn in terms
of the distribution parameters (for each attribute) for the thing’s
component.

The encoding scheme above is the coding scheme from the
original MML mixture modelling paper (Wallace and Boulton
1968), and it certainly does encode both an hypothesis H, and
the data, D, given H, or D | H. However, this coding scheme
above is inefficient (Wallace 1986, 1990, Wallace and Dowe
1994b, 1997), as we demonstrate below.

4.2. Stating the message more concisely
using partial assignment

Part 1(d) of the message described in the previous section (Sec-
tion 4.1) implicitly restricts us to hypotheses, H, which assert
with 100% definiteness which component each thing belongs
to. Given that the population that we might encounter could
consist of two different but highly over-lapping distributions,
forcing us to state definitely which component each thing be-
longs to by choosing the most probable component is bound to
cause us to mis-classify outliers from one distribution as be-
longing to another. In the case of two over-lapping (but distin-
guishable) 1-dimensional Normal distributions, this would cause
us to over-estimate the difference in the component means and
under-estimate the component standard deviations.

Since what we seek is a message which enables us to en-
code the attribute values of each thing as concisely as possi-
ble, we note that a shorter message than that of Section 4.1
can be obtained by a probabilistic (or partial) assignment of
things to components. The reason for this is that (Wallace 1986
(Section 3), Wallace 1990, p. 77) if p(j,x),j = 1,...,J, s
the probability of component j generating datum x, then the
total assignment of x to its best component results in a mes-
sage length of —log(max; p(j, x)) to encode x whereas, letting
P(x)=)Y ; p(j, x), a partial assignment of x having probabil-
ity p(j, x)/P(x) of being in component j results in a shorter
message length of — log(P(x)) to encode x, a saving on datum
x oflog,(P(x)/ max; p(j, x)) bits. As shown by Wallace (1986,
Section 3), Wallace (1990, p. 77) and Wallace and Dowe (1994b),
this shorter length is achievable by a message which asserts def-
inite membership of each thing by use of a special coding trick.

The essence of this special coding trick which enables us
to encode more cheaply using partial assignment than using
(as in Section 4.1) total assignment to the most probable com-
ponent is given in the simple case when we have two equally
abundant components with datum x sitting in the middle so
that p(1,x) = p(2,x) = P(x)/2. Recall that at the relevant
point of the message, parts 1(a), 1(b) and 1(c) have already
been transmitted, so our job now is to encode parts 1(d) and 2,
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the choice of component followed by the data given the choice
of component, as concisely as possible. In this case, with
p(l,x) = p(2,x) = P(x)/2, nothing is to be gained by choos-
ing component 1 over component 2 for x, or vice versa. We can
save log,(P(x)/ max; p(j, x)) = 1 bit of information from our
message by assigning x to either component 1 or component 2
at random, since either choice would give rise to the same cost,
—log p(1,x) = —log p(2, x), in part 2 of the message.

4.3. Fully-parameterised mixture modelling
(using strict MML)

For fully-parameterised mixture modelling, part 1(d) of the mes-
sage in Section 4, in which data things are assigned to classes,
is essential. This simplifies parameter estimation and message
length calculations, since the off-diagonal elements of the Fisher
information matrix in equation (2) corresponding to distribu-
tional parameters from different components can be assumed to
be 0.

The message length expression (3) in MML arises from a
quadratic Taylor series approximation to what is known as Strict
MML (Wallace and Boulton 1975, Wallace and Freeman 1987,
Wallace 1996, Wallace and Dowe 1999 (Sec. 6.1.1)). The partial
assignments of data things to classes in Section 4.2 is a good
approximation to the total assignments that Strict MML will do.
However, unlike Section 4.1 where the total assignments were
always to the more likely class, Strict MML (Wallace 1996)
will do the total assignments in such a way that for all intents
and purposes, data things will appear to have been randomly
assigned to classes with a probability given by p(j, x)/P(x) in
Section 4.2.

The approximation to this given in Section 4.2 is what is
currently used by the Snob program.

5. Consistency, invariance and efficiency
of MML estimates

If the outcomes of any random process are encoded using a
code that is optimal for that process, the resulting binary string
forms a completely random process (Wallace and Freeman
1987, p. 241, Wallace 1996). This fact and the fact that gen-
eral (Strict) MML codes are (by definition) optimal implicitly
suggest that, given sufficient data, (Strict) MML will converge
as closely as possible to any underlying model. (Recall that
MML arises from a quadratic Taylor series approximation to
Strict MML (Wallace and Boulton 1975, Wallace and Freeman
1987, Wallace 1996, Wallace and Dowe 1999 (Sec. 6.1.1.)). In-
deed, MML can be thought of as extending Chaitin’s idea of
randomness (Chaitin 1966) to always trying to fit given data
with the shortest possible computer program (plus noise) for
generating it (Wallace and Dowe 1999). This general conver-
gence result for MML has been explicitly re-stated elsewhere
(Barron and Cover 1991, Wallace 1996, Wallace and Freeman
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1987). Similar arguments show that MML estimates are not
only consistent, but that they are also efficient, i.e., that they
converge to any true underlying parameter value as quickly as
possible.

The fact that /F transforms like a prior is a basis used by
some to choose «/F as a Jeffreys “prior”. Although we do not
wish to advocate the use of a Jeffreys prior, we do note that 4 //F
is invariant under 1-to-1 parameter transformations. Since the
likelihood function is also invariant under parameter transfor-
mation, we see from expression (3) that MML is also invariant
under 1-to-1 parameter transformation (Wallace and Freeman
1987, Wallace and Boulton 1975).

The problem of model selection and parameter estimation in
mixture modelling can, at its worst,? be thought of as a prob-
lem for which the number of parameters to be estimated grows
with the data. It is well known that Maximum Likelihood can
become inconsistent (or very inefficient) with such problems,
e.g. single and multiple factor analysis (Wallace and Freeman
1992, Wallace 1995) and the Neyman-Scott problem (Neyman
and Scott 1948, Dowe and Wallace 1997); and the second au-
thor has conjectured (Dowe ef al. 1998, p. 93, Wallace and Dowe
1999) that Maximum Likelihood and many other non-Bayesian
techniques are doomed to inconsistency on many problems of
this nature.

For this and other reasons, we now consider in Section 6 some
alternative approaches (both Bayesian and non-Bayesian) to in-
ference and, in Section 7, some alternative approaches to mixture
modelling.

6. Alternative methods

In doing inductive inference of mixture models from data, there
are several levels of inference that we might conceivably wish
to make. We might wish simply to infer the most likely num-
ber of components. Or, alternatively, we might wish to infer the
number of components, their relative abundances and the param-
eter values associated with each component. Or, as discussed in
Sections 3 and 4.3, we might further wish to infer the above and a
probabilistic assignment of things to components. It is these last
two variations which are variously understood by the term “mix-
ture modelling”. Finally, one might wish to infer the number of
components and the identities of their members without regard
to parameter estimation. This form is often termed “clustering”.
Elsewhere throughout this paper, we have tended to use the terms
“mixture modelling” and “clustering” interchangeably.

6.1. Alternative Bayesian methods

MAP (maximum a posteriori) operates on a density and must
marginalise over (or integrate out) parameters to estimate mem-
berships, and must likewise marginalise over memberships to
estimate parameters. MAP (like penalised likelihood methods)
is unable consistently to estimate both parameter values and class
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memberships. Let us see why this is: consider some estimate of
the number of components followed by parameter estimates for
each of these components. (We could, for example, have two
equally abundant and substantially overlapping 1-dimensional
Normal distributions with the same standard deviation, o, as in
the discussion in Section 4.2.) If we assign each thing to its most
probable class, there will be a neat division of things to classes, a
division which will not be consistent with the original estimates
of means and o.

Rather than obtain probabilities from densities of real-valued
parameters by integrating (as MAP does), MML obtains such
probabilities by rounding-off (or quantising)® the possible para-
meter estimates into coding blocks (or uncertainty regions) as
discussed in Section 2. By shortening the length of the message
to a minimum, MML arrives at the (quantised) theory of the
highest probability (see Sections 1 and 2) whose resulting binary
string forms (Wallace and Freeman 1987, p. 241, Wallace 1996,
Wallace and Dowe 1994b, p. 41) a completely random process.
The fact that the first part of the message string’ and the second
part of the message are completely random (and “noise”) means
that the coding trick® causes the assignment of data things to
components to be done (pseudo-)randomly in a way which is
consistent with the parameter estimates. If we do not minimise
the message length (by taking advantage of the coding trick), as
with MAP estimation, inconsistencies (as discussed in Section 5)
will arise.

Results of Barron and Cover (1991) show MML to be con-
sistent for any i.i.d. problem, and other results (Wallace 1989,
Wallace and Freeman 1987, p. 241) show (MML and) Strict
MML (Wallace and Boulton 1975, Wallace and Freeman 1987,
Wallace 1996, Wallace and Dowe 1999 (Sec. 6.1.1)) to be con-
sistent and efficient for problems of arbitrary generality.

Furthermore, whereas MML is known to be invariant (Wallace
and Boulton 1975, Wallace and Freeman 1987) under 1-to-1
transformations, the MAP (posterior mode) estimate is known
generally not to be invariant under 1-to-1 transformations —e.g.,
von Mises circular parameter estimation (Dowe ef al. 1995) in
polar and Cartesian co-ordinates. See Section 2 for further stark
contrast between MML and MAP.

While the authors do not advocate MAP, another Bayesian
method which the authors do advocate as a point estimation
technique is estimation by minimising the Expected Kullback-
Leibler distance (min EKL). Like the MML and Strict MML es-
timators, min EKL is invariant under 1-to-1 re-parameterisation.
It also has much in common with MML and Strict MML (Dowe
et al. 1998). An alternative Bayesian approach is not to do point
estimation at all, but rather to sample from the posterior (Neal
1998). It is perhaps interesting to note that results from Wallace
(1996) suggest that, as the amount of data increases, a method
closely related to Strict MML (such as described in Section 4.3)
will resemble more and more closely a single Gibbs sampling
from the posterior.
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6.2. Other alternative methods

With regard to the general problem of inductive inference rather
than just the specific inductive problem of mixture modelling,
the method of Generalised Cross-Validation (GCV) (Wahba
1990) and the Vapnik-Chervonenkis method of Support Vector
Machines (SVMs) (Vapnik 1995) are non-Bayesian, whereas
MML is Bayesian. Regarding specific comparisons between
GCV, SVM and MML, the authors are aware of a comparison
between MML and Vapnik-Chervonenkis (V-C) dimension for
the problem of polynomial regression (Viswanathan and Wallace
1999), a problem for which V-C was typically more error-prone
than MML and for which V-C was likewise more inclined to
over-estimate the degree of the polynomial than MML. In ear-
lier work (see references in Viswanathan and Wallace (1999))
on this same problem of polynomial regression, MML and V-C
both considerably outperformed GCV.

Some preliminary investigations (M. Viswanathan et al.,
1999) have been carried out comparing MML, GCV and other
methods for the problem (due to Kearns ef al. (1997)) of in-
ferring the model underlying a switching binomial process. Our
work to date suggests that MML substantially outperforms GCV
and the other methods proposed by Kearns et al. (1997) for this
problem. These are the only comparisons between MML, SVM
and GCV of which the authors are currently aware at the time
of writing.

For a general comparison of MML with the related Minimum
Description Length (MDL) work of Rissanen (1978), (1989) and
Rissanen and Ristad (1994), work which some would argue is
Bayesian, see, ¢.g., Solomonoff (1995) and Wallace and Dowe
(1999).

7. Alternative mixture modelling programs

The first Snob program (since out-dated) (Wallace and Boulton
1968) was possibly one of the first programs for Gaussian
mixture modelling, although many statistical and machine
learning approaches to this problem have been developed
since (e.g., McLachlan et al. (McLachlan and Basford
1988, McLachlan 1992, McLachlan et al. 1999), D. Fisher’s
CobWeb (Fisher 1987), Everitt and Hand 1981, Titterington,
Smith and Makov 1985, AutoClass (Cheeseman et al. 1988,
Stutz and Cheeseman 1994), MULTIMIX (Jorgensen and Hunt
1996, Hunt and Jorgensen 1999), MCLUST (Fraley and Raftery
1998) and others (Roeder 1994, Neal 1998, Dellaportas, Karlis
and Xekalaki 1997)). Discussions of early alternative algorithms
for Gaussian mixture modelling have been given by Boulton
(1975). An excellent survey of AutoClass (Stutz and Cheeseman
1994), Snob (Wallace and Dowe 1997) and MCLUST (Fraley
and Raftery 1998) is given in an article on MULTIMIX by Hunt
and Jorgensen (1999).
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7.1. Comparisons with AutoClass

7.1.1. Comparison with AutoClass I1

Like Snob, AutoClass IT (Cheeseman et al. 1988) assumes’ a
prior distribution over the number of classes and independent
prior densities over the distribution parameters of the sample
class densities. However (Wallace 1990), AutoClass II is not
based on a message length criterion, but instead makes a more
direct inference of the number of classes, J (cf. Section 6.1).
Let V' be the vector of abundance and distribution parameters
needed to specify a model with J components. Let P(J) be the
prior probability of having J components, and let #(}") be the
prior probability of the parameters, V. Let X denote the data, i.e.
the set of attribute values for all things, and let P(X | V') be the
probability of obtaining data X given the J-component model
specified by V. The joint probability P(J, X) of J and X is then

P(J,X) = /h(V)P(X| Vydv (10)

and the posterior probability, P(J | X), of J given the data, X,
is

P(J, X)
>, PU.X)

The calculation of the posterior, P(J | X), requires the cal-
culation of an integral for each possible number of classes, J,
in order to obtain the joint probability, P(J, X). The integrand
is proportional to the posterior density of the parameters of a
J-class model, 2(V') x P(X | V).

AutoClass IT approximates the integral by making the assump-
tion that most of the contribution to the integral will come from
the neighbourhood of the highest peak value of the integrand. It
effectively fits a Gaussian function to the integrand at this peak
and uses the integral of the Gaussian as its estimate of the true
integral. Letting F' be the Fisher information (from Section 2),
the estimate is very similar, both analytically and numerically, to
the quantity 2(V )x P(X | V')/+/F, which is what MML (in gen-
eral, recall expression (3)) and Snob (in particular) endeavour to
maximise. Thus, although AutoClass II is differently motivated
from Snob, in practice it gives almost identical results.

P(J|X)= (11)

7.1.2. More Recent Comparisons with AutoClass

As well as referring the reader to the discussion of AutoClass
(Stutz and Cheeseman 1994) in the survey in Hunt and Jorgensen
(1999), the authors are also led to believe that more recent ver-
sions of AutoClass are likely to use MML, and thus presumably
bear a greater resemblance to Snob.

7.2. Comparison with other methods

Oliver, Baxter and Wallace (1996) re-wrote the Gaussian mix-
ture modelling part of Snob (Wallace and Dowe 1994b, 1996)
by modifying the Bayesian priors and introducing lattice con-
stants (Wallace and Freeman 1987, Wallace and Dowe 1993)
(see Section 2.6) and then empirically showed a successful
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performance of (this slightly modified) Snob against AIC
(Akaike’s Information Criterion), BIC (Rissanen 1978) and other
methods.

The literature (Everitt and Hand 1981, Titterington, Smith
and Makov 1985, McLachlan and Basford 1988, Jorgensen and
Hunt 1996, Hunt and Jorgensen 1999)'? does contain at least one
alternative algorithm (Dellaportas, Karlis and Xekalaki 1997)
for mixture modelling of Poisson (Wallace and Dowe 1994b,
1997) distributions. For mixture modelling of von Mises circular
(Wallace and Dowe 1994, 1997, Edgoose and Allison 1998)
distributions, the idea is at least discussed for AutoClass by
Stutz and Cheeseman (1994).

It is not clear to the authors whether the non-parametric
method of Roeder (1994) will be able to distinguish two or more
multi-dimensional components all having identical means but
not having identical standard deviations. Given sufficient data,
Snob can identify such a mixture.

As surveyed by Hunt and Jorgensen (1999) and touched upon
here in Section 4.2, for substantially overlapping distributions,
MCLUST (Fraley and Raftery 1998) would appear likely from
our understanding to under-estimate the class variances and to
over-estimate the difference in the class means.

In general, with problems such as mixture modelling or mul-
tiple factor analysis where the number of parameters to be es-
timated increases with (and is potentially proportional to) the
amount of data, recalling Sections 4.2, 5 and 6.1, one must be-
ware Maximum Likelihood and MAP methods, which are both
liable (Neyman and Scott 1948, Dowe and Wallace 1997) to give
inconsistent results.

8. Snob (and MML) applications

Earlier applications of Snob include several to medical, psycho-
logical, biological and exploratory geological data, with a survey
by Wallace and Dowe (1994b). The Poisson module seems to be
accurately able to discriminate between pseudo-randomly gener-
ated classes from different Poisson distributions. It has also been
used to analyse word-counts from a data-set of 17th Century
texts. On this data-set, a shorter message length was obtained by
using a Normal model than a Poisson model, and hence MML
advocated the Normal model. The von Mises module has found
clusters in data of several thousand sets of protein dihedral an-
gles (Dowe et al. 1996, Edgoose, Allison and Dowe 1998). The
Poisson module is currently being used to model run lengths
of helices and other protein conformations as being a mixture
of Poisson distributions. Recently developed theory (Dowe and
Wallace 1998) suggests that this work should indirectly lead to
a better way of predicting protein conformations.

Extensive surveys of Snob applications are given by Patrick
(1991) and Wallace and Dowe (1994b), with an application of
Gaussian mixture modelling to data on members of grieving
families being given by Kissane ef al. (1996) and an application
to data on autistic children being given by Prior ef al. (1998).

In applying Snob, a difference of more than 5 to 6 bits (Wallace
and Freeman 1987, p. 251) or of more than 10 bits (Wallace



MML clustering

1986) might be deemed to be statistically significant under cer-
tain modelling conditions.

As well as having been applied to mixture models (discussed
here), MML has also been successfully applied to a variety of
problems of parameter estimation (Wallace and Boulton 1968,
1975, Wallace and Freeman 1987, Wallace 1996, Wallace and
Dowe 1993, 1994a, Dowe et al. 1995, Dowe and Wallace 1997,
Viswanathan and Wallace 1999), hypothesis testing (Wallace
and Freeman 1987, Wallace and Dowe 1993), Hidden Markov
Models (Georgeffand Wallace 1984, Edgoose and Allison 1998)
and other multi-variate models (Wallace and Freeman 1987,
Wallace 1996, Wallace and Freeman 1992, Wallace 1995, Dowe
and Wallace 1997). Further references are given in Dowe and
Korb (1996) and Wallace and Dowe (1999).

9. Algorithmic issues and further work

9.1. Algorithmic issues in Snob

The default of Snob is the “adjust” command (see Wallace and
Dowe (1994b) and snob.doc in Section 10 for further and related
details) to iteratively adjust the parameter estimates and the as-
signment of things to classes using an EM algorithm (Wallace
and Boulton 1968, McLachlan and Krishnan 1996). Classes can
be forcibly combined and can be split either randomly or with
some structure. Batch jobs can be run with a “control” file. With
the message length as the objective function, Snob proceeds
greedily, although, as in Section 9.2, the current Snob search
heuristic could be modified to include simulated annealing.

9.2. Notes on further work and Snob program extensions

The Snob program currently implicitly assumes that variables
are independent and uncorrelated. This could be modified to
permit single linear (Gaussian) factor analysis (Wallace and
Freeman 1992) or multiple linear (Gaussian) factor analysis
(Wallace 1995), or to model correlations via an inverse Wishart
or some other such prior. Work has been done to deal with
sequential correlations (Edgoose and Allison 1998) and spa-
tial correlations (Wallace 1998) in mixture modelling data, and
preliminary investigations have been carried out (Edwards and
Dowe 1998) in incorporating single factor analysis into MML
mixture modelling.

It would be desirable to re-introduce hierarchical clustering
(Boulton and Wallace 1973) to Snob, and the current Snob search
heuristic could be modified to include simulated annealing.

It would not be too difficult to permit the user to modify the
colourless priors (see Section 2) used by Snob to better represent
the user’s prior beliefs (or knowledge, or bias).

MML estimators have been obtained for the spherical Fisher
distribution (Dowe, Oliver and Wallace 1996) and work has been
done (Oliver and Dowe 1996) to deal with the mixture modelling
of these.

When there are two or more overlapping components, a slight
inefficiency will arise in the message length calculations since

81

parameters will be stated to a slightly higher than necessary de-
gree of precision. The correction for this can be computationally
very slow and has been inspected in the Gaussian case by Baxter
and Oliver (1997).

Finally, recently developed theory (Dowe and Wallace 1998,
Wallace and Dowe 1999) shows how, in addition to the unsuper-
vised clustering for which it was originally developed, Snob can
also be developed and used for supervised learning.

10. Availability and use of the Snob program

The current version of the Snob program (written in
Fortran 77) is freely available for not-for-profit, academic
research, and not for re-distribution, from http://www.csse.
monash.edu.au/~dld/Snob.html (or from C.S. Wallace). Pub-
lished or otherwise recorded work using Snob should cite the
current paper. Detailed user guidelines are given by Wallace
and Dowe (1994b) and in the documentation file, snob.doc .
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Notes

1. For refinements to the quadratic Taylor expansion leading to equa-
tion (3), see the discussion of lattice constants (Conway and Sloane
1988) in Section 2.6, and similarly see Wallace and Dowe (1999,
Sec. 6.1.2). It is perhaps important to note that the quadratic Taylor
expansion (Wallace and Dowe 1993, pp. 1-3, Wallace 1987, pp.
245) leading to all these similar expressions essentially assumes
that the value of the prior density remains reasonably constant over
the uncertainty region of size (Wallace and Freeman 1987, Wallace
1996, Wallace and Dowe 1993) approximately /12¢/F(9). Al-
though such an assumption will not always be valid, it is certainly
more than reasonable for the Gaussian, multinomial, Poisson and
von Mises circular distributions being considered here.

2. The terminology “data thing” dates back to (Wallace and Boulton
1968) where “thing” was preferred to other words such as, e.g.,
‘item”, on the grounds that, in that particular case, “item” is merely
the Latin word for “thing”.

3. Interms of minimum average squared distance from the centre for
a region of unit hyper-volume.

4. Since we are doing fully-parameterised mixture modelling, which
includes these latent class assignments.

5. Forthe fully-parameterised mixture modelling problem (with latent
class assignments) in Section 4.3.

6. Hence, Peter Cheeseman (private communication) refers to MML
as “quantised Bayes”.

7. And part 1d in particular.

8. See Section 4.2.
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9. This sub-section is very much a re-writing of Wallace (1990, pp.
78-80).
10. See also http://www.csse.monash.edu.au/~dld/cluster.html.
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