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Abstract. Explicit segmentation is the partitioning of data into ho-
mogeneous regions by specifying cut-points. W. D. Fisher (1958) gave
an early example of explicit segmentation based on the minimisation of
squared error. Fisher called this the grouping problem and came up with
a polynomial time Dynamic Programming Algorithm (DPA). Oliver,
Baxter and colleagues (1996,1997,1998) have applied the information-
theoretic Minimum Message Length (MML) principle to explicit seg-
mentation. They have derived formulas for specifying cut-points impre-
cisely and have empirically shown their criterion to be superior to other
segmentation methods (AIC, MDL and BIC). We use a simple MML cri-
terion and Fisher's DPA to perform numerical Bayesian (summing and)
integration (using message lengths) over the cut-point location parame-
ters. This gives an estimate of the number of segments, which we then
use to estimate the cut-point positions and segment parameters by min-
imising the MML criterion. This is shown to have lower Kullback-Leibler
distances on generated data.

1 Introduction

Grouping is de�ned as the partitioning, or explicit segmentation, of a set of
data into homogeneous groups that can be explained by some stochastic model
[8]. Constraints can be imposed to allow only contiguous partitions over some
variable or on data-sets that are ordered a priori. For example, time series seg-
mentation consists of �nding homogeneous segments that are contiguous in time.

Grouping theory has applications in inference and statistical description
problems and there are many practical applications. For example, we wish to
infer when and how many changes in a patient's condition have occurred based
on some medical data. A second example is that we may wish to describe Cen-
tral Processor Unit (CPU) usage in terms of segments to allow automatic or
manager-based decisions to be made.

In this paper, we describe a Minimum Message Length (MML) [18, 22, 19] ap-
proach to explicit segmentation for data-sets that are ordered a priori. Fisher's
original Maximum Likelihood solution to this problem was based on the min-
imisation of squared error. The problem with Maximum Likelihood approaches
is that they have no stopping criterion, which means that unless the number of
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groups is known a priori, the optimal grouping would consist of one datum per
group. Maximum Likelihood estimates for the cut-point positions are also known
to be inaccurate [11] and have a tendency to place cut-points in close proximity
of each other. MML inference overcomes both these problems by encoding the
model and the data as a two-part message.

The MML solution we describe is based on Fisher's polynomial time Dynamic
Programming Algorithm (DPA), which has several advantages over commonly
used graph search algorithms. It is able to handle adjacent dependencies, where
the cost of segment i is dependent on the model for segment i�1. The algorithm
is exhaustive and can be made to consider all possible segmentations, allowing
for numerical (summing and) integration. Computing the optimal segmentation
of data into G groups results in the solution of all optimal partitions for 1::G
over 1::K, where K is the number of elements in the data-set.

Oliver, Baxter, Wallace and Forbes [3, 11, 10] have implemented and tested
a MML based solution to the segmentation of time series data and compared
it with some other techniques including Bayes Factors [9], AIC [1], BIC [15],
and MDL [12]. In their work, they specify the cut-point to a precision that
the data warrants. This creates dependencies between adjacent segments and
without knowledge of Fisher's DPA they have used heuristic search strategies.
They have empirically shown their criterion to be superior to AIC, BIC and MDL
over the data-sets tested. However, the testing was only performed on data with
�xed parameter values and equally spaced cut-points.

We use a simple MML criterion and Fisher's DPA to perform Bayesian (sum-
ming and) integration (using message lengths) over the cut-point parameter(s).
This gives an estimate of the number of segments, which we then use to esti-
mate the cut-point positions and segment parameters by minimising the MML
criterion. This unorthodox1 coding scheme has the advantage that because we
do not state the cut-point positions, we do not need to worry about the precision
to which they are stated and therefore reduce the number of assumptions and
approximations involved. We compare our criterion with Oliver and Baxter's
[11] MML, MDL and BIC criteria over a number of data-sets with and without
randomly placed cut-points and parameters.

This paper is structured as follows. Section 2 contains background infor-
mation on Fisher's grouping problem and his algorithm. It also contains an
overview of the MML segmentation work by Oliver, Baxter and others [3, 11, 10]
and an introduction to Minimum Message Length inference. Section 3 contains
a re-statement of the segmentation problem using our terminology. In Section
4, we describe the message length formula that we use to segment the data and
the approximate Bayesian integration technique we use to remove the cut-point
parameter. In Section 5, we perform some experiments and compare with the
previous work of Oliver, Baxter and others [10]. The concluding Sections, 6 and
7, summarize the results and suggest future work.

1 Unorthodox in terms of the Minimum Message Length framework [18, 22, 19], where
parameters that are to be estimated should be stated in the �rst part of the message.
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2 Background

2.1 The Grouping Problem

An ordered set of K numbers fai : i = 0::K � 1g can be partitioned into G

contiguous groups in
�
K � 1

G� 1

�
ways. We only consider contiguous partitions since

we assume that the data has been ordered a priori2. For a given G, Fisher's
solution to the grouping problem was to search for the contiguous partition
determined by G� 1 cut-points that minimised the distance, D:

D =

K�1X
i=0

(ai � ai)
2 (1)

where ai represents the arithmetic mean of the a's assigned to the group in which
i is assigned. For a given G, the partition which minimises D is called an optimal
or least squares partition. Whilst Fisher was concerned with grouping normally
distributed data (�tting piecewise constants), his techniques, and the techniques
derived in this paper can be applied to other models.

The exhaustive search algorithm used to �nd the optimal partition is based
on the following \Sub-optimisation Lemma"[8, page 795]:

Lemma 1. If A1 : A2 denotes a partition of set A into two disjoint subsets A1

and A2, if P1� denotes a least squares partition of A1 into G1 subsets and if

P2� denotes a least squares partition of A2 into G2 subsets; then, of the class of

sub-partitions of A1 : A2 employing G1 subsets over A1 and G2 subsets over A2

a least squares sub-partition is P1� : P2�.

This lemma is possible due to the additive nature of the distance measure.
The algorithm based on this lemma is an example of a Dynamic Programming
Algorithm (DPA) and is computable in polynomial time. The DPA is a general
class of algorithm that is used in optimisation problems where the solution is the
sum of sub-solutions. Fisher's algorithm can easily be expressed in pseudo-code.
In Figure 1 the pseudo-code for a function D(G) which returns the distance, D,
for a number of groups, G, up to an upper bound Gmax is shown.

The time complexity of Fisher's DPA is:

8k=1::Gmax�18i=k::K�1min
i
j=kD[k � 1; j � 1] + sumsqr(j; i) = O(Gmax �K

2)

(2)

In practice, Gmax � K.

2.2 The Problem with the Maximum Likelihood Partition

How many segments? Given some data, where G is unknown, a practitioner
must view a range of least square partition solutions and then select one. For easy

2 This is what W. D. Fisher called the restricted problem.
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Lookup functions:

sum(i; j) = sum[j + 1]� sum[i]
sumsqr(i; j) = sumsqr[j + 1]� sum[i]

D(i; j) = sumsqr(i; j)� sum(i;j)2

j�i+1

D(G) = D[G � 1; K � 1]
Boundary conditions:

sum[0] := 0
sumsqr[0] := 0
Initial Step:

sum[i] := sum[i� 1] + ai�1; 8i=1::K
sumsqr[i] := sumsqr[i� 1] + a2i�1; 8i=1::K
D[0; i] := D(0; i); 8i=0::K�1
General Step:

D[k; i] := minij=kD[k � 1; j � 1] + sumsqr(j; i),
8k=1::Gmax�18i=k::K�1

Fig. 1. A Dynamic Programming Algorithm based on Fisher's Sub-optimisation
Lemma.

data this may be satisfactory. However, for diÆcult data a human cannot detect
subtle di�erences between the solutions. Consider the least square partitions for
G = f2; 3; 4; 5g of some generated data in Figures 3 to 6. From inspection of
these four hypotheses, it is diÆcult to determine the true number of segments.

Poor parameter estimates Even when we know the number of segments
in a data-set, the least squares partition may give poor estimates for the cut-
point positions, and segment parameters. Oliver and Forbes [11] found that
the Maximum Likelihood estimates for the cut-point position are unreliable. In
their experiments the Maximum Likelihood technique that was given the correct
number of segments had, on average, a higher Kullback-Leibler distance than a
MML based technique that did not know the correct number of segments. An
example of this can be seen in the least squares partitions in Figures 5 and 6.
The least squares and MDL methods tend to place cut-points in close proximity
of each other.

2.3 The Minimum Message Length Principle

The MML principle [18, 22, 19] is based on compact coding theory. It provides
a criterion for comparing competing hypotheses (models) by encoding both the
hypothesis and the data in a two-part message. For a hypothesis, H, and data,
D, Bayes's theorem gives the following relationship between the probabilities:

Pr(H&D) = Pr(H) � Pr(DjH) = Pr(D) � Pr(H jD); (3)

which can be rearranged as:

Pr(H jD) =
Pr(H) � Pr(DjH)

Pr(D)
(4)
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Fig. 2. Some generated data.

Fig. 3. Two segment least squares partition of Fig. 2.

Fig. 4. Three segment least squares partition of Fig. 2.

Fig. 5. Four segment least squares partition of Fig. 2.

Fig. 6. Five segment least squares partition of Fig. 2.
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After observing some data D, it follows that Pr(H jD) is maximised when
Pr(H) � Pr(DjH) is maximised. We know from coding theory that an event
with probability P can be transmitted using an optimal code in a message of
� log2(P ) bits

3 in length. Therefore the length of a two-part message (MessLen)
conveying the parameter estimates (based on some prior) and the data encoded
based on these estimates can be calculated as:

MessLen(H&D) = � log2(Pr(H)) � log2(Pr(DjH)) bits (5)

The receiver of such a hypothetical message must be able to decode the data
without using any other knowledge. MinimisingMessLen(H&D) is equivalent to
maximising Pr(H jD), the latter being a probability and not a density [20, section
2] [21, section 2] [5]. The model with the shortest message length is considered to
give the best explanation of the data. This interpretation of inductive inference
problems as coding problems has many practical and theoretical advantages
over dealing with probabilities directly. A survey of MML theory and its many
successful applications is given by Wallace and Dowe [19].

2.4 MML Precision of Cut-point Speci�cation

We can encode the cut-point positions in log

�
K � 1

G� 1

�
nits. However, using this

coding scheme can be ineÆcient for small sample sizes and noisy data. Consider
two segments whose boundaries are not well-de�ned: the posterior distribution
will not have a well de�ned mode, but there may be a region around the boundary
with high probability. The MML principle states that we should use this region
to encode the data - we should only state the cut-point to an accuracy that the
data warrants, for otherwise we risk under-�tting.

Oliver, Baxter and others [3, 11, 10] studied the problem of specifying the cut-
point imprecisely. They derived equations to calculate the optimal precision with
which to specify the cut-point. Where the boundary between two segments is
not well-de�ned, it is cheaper to use less precision for the cut-point speci�cation.
This reduces the length of the �rst part of the message but may increase the
length of the second part. Where the boundary is well-de�ned, it pays to use a
higher precision to save in the second part of the message. Empirical results [3,
11, 10] have shown that specifying cut-points imprecisely gives better estimates
of the number of segments and lower Kullback-Leibler distances. Similar success
with MML imprecise cut-point speci�cation has been found by Viswanathan,
Wallace, Dowe and Korb [17] for binary sequences.

3 Problem Re-Statement

We consider a process which generates an ordered data-set. The process can
be approximated by, or is considered to consist of, an exhaustive concatena-
tion of contiguous sub-sets that were generated by sub-processes. We consider a

3 In the next sections of the paper we use the natural logarithm and the unit is nits.
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sub-process to be homogeneous and the data generated by a process to consist
entirely of one or more homogeneous sequences.

Let y be a univariate ordered data-set of K numbers generated by some
process:

y = (y0; y1; :::; yK�1) (6)

which consists of G contiguous, exhaustive and mutually exclusive sub-sets:

s = (s0; s1; :::; sG�1); (7)

where the members of each si were generated by sub-process i, which can be
modelled with parameters �i:

� = (�0; �1; :::; �G�1); (8)

and likelihood:

f(y 2 sij�i) (9)

In some cases, the number of distinct sub-processes may be less than G. This
is most likely to occur in processes that have discrete states. For example, a
process that alternates between two discrete states would be better modelled as
coming from two, rather than G, sub-processes since parameters would be esti-
mated over more data. This is a common approach with implicit segmentation,
where segments are modelled implicitly by a Markov Model [16, 7]. However,
the use of G sub-processes results in a more tractable problem and is what is
generally used for explicit segmentation. Moreover, in some cases we may wish
to model data which can be considered as coming from a drifting process rather
than a process with distinct states. In these cases, segmentation can be used to
identify approximately stationary regions and is best modelled as coming from
G distinct sub-processes.

The inference problem is to estimate some or all of : G, s, � and f(y 2 sij�i).

4 Calculating the Message Length with Gaussian

Segments

In this section we describe the message length formula used to calculate the
expected length of a message which transmits the model and the data. Assume
that the size, K, of the data-set is known and given. In order for a hypothetical
receiver to decode the message and retrieve the original data, we must encode the
following: G, the number of segments; the cut-point positions, cjs; the parameter
estimates, �i, for each segment si; and �nally the data for each segment using
the parameter estimates stated. We specify G using the universal log� code [13,
2], although we re-normalise the probabilities because we know that G � K.
This simpli�es the problem to the speci�cation of:
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{ the cut-point positions cjs,
{ the parameter estimates �i and data for each segment.

From Wallace and Freeman [22], the formula for calculating the length of a
message where the model consists of several continuous parameters � = (�1; : : : ; �n)
is:

MessLen(H&D) = � log

 
h(�)f(yj�)p

F (�)

!
+
n

2
(1 + log�n) nits (10)

where h(�) is a prior distribution over the n parameter values, f(yj�) is the
likelihood function for the model, F (�) is the determinant of the Fisher Infor-
mation matrix and �n is a lattice constant which represents the saving over the
quantised n-dimensional space.

In this paper we consider Gaussian segments with two continuous parameters
� and �: y 2 sj s N [�j ; �j ] so, �j = (�j ; �j). The lattice constant �2 = 5

36
p
3

[4], the Fisher Information, F (�), for the Normal distribution [10] is:

F (�; �) =
2n2

�4
(11)

and the negative log-likelihood is:

� log f(yj�; �) =
n

2
log 2� + n log� +

1

2�2

nX
i=1

(xi � �x)2 (12)

The prior distribution we use is non-informative based on the population
variance, �2pop =

1
K�1

PK�1
i=0 (yi � �pop)

2 where �pop =
1
K

PK�1
i=0 yi:

8j h(�j ; �j) =
1

2�2pop
(13)

This is the prior used by Oliver, Baxter and others [11, section 3.1.3] [3, 10],
although the prior 8j h(�j ; �j) = 1

4�2pop
from [18, section 4.2] or other priors

could also be considered. We use this prior, from Equation 13, to allow for a fair
comparison with their criterion [3, 11, 10].

We use Equation 10 to send the parameters �j = (�j ; �j) and data for each
segment. To encode the cut-point positions we use a simple coding scheme as-
suming that each combination is equally likely:

MessLen(cjK;G) = log

�
K � 1

G� 1

�
nits (14)

Based on Equation 10, the expected total length of the message is:

MessLen(H&D) = log�(G) +MessLen(cjK;G) (15)

+
GX
j=1

 
� log

 
h(�j)f(y 2 sj j�j)p

F (�j)

!
+
n

2
(1 + log�n)

!
nits
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If we were to optimise the values of G, s and � to minimise Equation 15,
we would under-estimate G since c is being stated to maximum precision (see
Section 2.4). We avoid this problem by summing the probabilities of the various
MML estimates of �j = (�j ; �j)j=0;::;G�1 over all possible sub-partitions:

Prob0(G) =

�
K � 1

G� 1

�
X
i=1

e�MessLen(H&D)i (16)

where MessLen(H&D)i is the message length associated with the ith sub-

partition from the
�
K � 1

G� 1

�
possible sub-partitions and the values of the �̂j asso-

ciated with each such ith sub-partition. Prob0 gives unnormalised probabilities
for the number of segments. The `probabilities' are unnormalised because, for
each ith sub-partition, the `probabilities' consider only that part of the posterior
density of the �j contained in the MML coding block4.

We optimise Equation 16 to estimate G. This can be implemented by mod-
ifying Fisher's DPA given in Figure 1 by replacing the distance function with
Equation 10 and changing the general step to sum over all sub-partitions:

D[k; i] :=LOGPLUS(D[k � 1; j � 1]; sumsqr(j; i))

8k=1::Gmax�18i=k::K�18j=k::i
(17)

where the LOGPLUS function is used to sum the log-probabilities:

LOGPLUS(x; y) = � loge(e
�x + e�y) (18)

Using Equation 16 to estimate G we then optimise Equation 15 to estimate
the remaining parameters.

5 Experimental Evaluation

5.1 Generated Data

We now use Fisher's DPA to infer the number of segments G, the cut-point
positions cjs and segment parameters �i of some generated Gaussian data. The
criteria to be compared are:

{ MML-I, Equations 15 and 16 from the previous section.
{ MMLOB, MML Equation (6) from the paper Oliver and Baxter [10].
{ BIC, using � log f(xj�) + numberparams

2 logK.

{ MDL, using � log f(xj�) + continuousparams
2 logn+ log

�
K

G

�
.

4 However, normalising these `probabilities' will give a reasonable approximation [5,
sections 4 and 4.1] [19, sections 2 and 8] to the marginal/posterior probability of G
which would be obtained by integrating out over all the �j = (�j ; �j).
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The BIC and MDL criteria5 were included since these were investigated and
compared by Oliver and Baxter [10, page 8], but not over the range of data that
we consider. AIC was omitted due to its poor performance in previous papers
[3, 11, 10]. We expect our criterion, MML-I, to perform better where the data
is noisy, the sample size is small or where the approximations break down in
MMLOB.

We have generated three di�erent data-sets S0, S1 and S2:

{ S0 has �xed �'s and �'s and evenly-spaced cut-points; similar to Oliver and
Baxter [10].

{ S1 has �xed �'s and �'s and (uniformly) randomly chosen cut-points (mini-
mum segment size of 3).

{ S2 has random �'s and �'s drawn uniformly from [0::1], and (uniformly)
randomly chosen cut-points (minimum segment size of 3).

For each data-set, 100 samples were generated of sizes 20, 40, 80, 160 and 320
and with each of 1..7 segments. For S0 and S1, the variance of each segment is
1.0, and the means of the segments are monotonically increasing by 1.0.

5.2 Experimental Results

We have collated the data collected during the experiments to report: a count
of the number of times the correct number of cut-points were inferred (score
test); the average number of cut-points inferred; and the Kullback-Leibler (KL)
distance between the true and inferred distribution. The KL distance gives an
indication of how well the parameters for each segment are being estimated. This
will be a�ected by the inferred number of cut-points and their placement.

MDL and BIC were generally out-performed by the two MML methods
(MML-I and MMLOB) in all measures. The interesting comparison is between
MML-I and MMLOB.

Not all of the results could be included due to space limitations. The KL
distance and average number of cut-points for S0 and S1 were omitted. For these
two data-sets, the average number of inferred cut-points was slightly better for
MML-I, and the KL distances for MML-I and MMLOB were both very similar.

The score test results have been included for all data-sets and can be seen in
Tables 1 to 2. Each table shows the number of times the correct number of cuts
k was inferred from the 100 trials for each of the sample sizes under investigation
(20,40,80,160 and 320). MML-I is more accurate than the other criteria for both
S0 and S1 on the score test. The strange exception is for S2, where MMLOB is
not only more accurate than the other criteria, but has improved a seemingly
disproportionate amount over its results for S0 and S1.

Table 3 shows the average number of inferred cuts for data-set S2. None of
the criteria appear to be excessively over-�tting.

5 We also note that MDL has been re�ned [14] since the 1978 MDL paper [12]. For a
general comparison between MDL and MML, see, e.g., [14, 19, 20] and other articles
in that special issue of the Computer Journal.

65Minimum Message Length Grouping of Ordered Data      



Table 4 shows the average Kullback-Leibler (KL) distances and standard
deviations for data-set S2. The KL distance means and standard deviations
for MML-I are consistent for all sample sizes and are overall best, performing
exceptionally well on sample sizes K � 40. MMLOB, MDL and BIC appear to
break down for small samples in terms of both the mean and standard deviation.

MML-I has consistently low KL distances over all data-sets and is generally
able to more accurately infer the number of cut-points for S0 and S1 than the
other criteria. MMLOB is more accurate at inferring the number of cuts for
data-set S2 but has substantially higher KL distances than MML-I, but slightly
better KL distances than BIC and MDL.

5.3 Application to Lake Michigan-Huron Data

We have used the MML-I criterion developed in this paper to segment the lake
Michigan-Huron data that was posed as a problem in W. D. Fisher's original
1958 paper [8]. The DPA using our criterion was implemented in Java 2 (JIT)
and was able to consider the over 1012 possible segmentations (for G � 10) of the
lake data, with K = 96 in 2.1 seconds on a Pentium running at 200 mega-hertz.
It inferred that there are �ve segments; G = 5. A graph of the segmentation can
be seen in Figure 7. In Figure 8 we have segmented the lake data up to the year
1999. We can see that the segmentation identi�ed in Figure 7 has been naturally
extended in Figure 8.

Fisher's original least squares program was written for the \Illiac" digital
computer at the University of Illinois and could handle data-sets with K � 200
and G � 10 with running time up to approximately 14 minutes.

6 Conclusion

We have applied numerical Bayesian (summing and) integration for cut-point pa-
rameters in the grouping or segmentation problem. Using W. D. Fisher's polyno-
mial time DPA, we were able to perform approximations to numerical Bayesian
integration using a Minimum Message Length criterion (MML-I) to estimate the
number of segments. Having done that, we then minimize the MML-I criterion
(Equation 15) to estimate the segment boundaries and within-segment param-
eter values. This technique, MML-I, was compared with three other criteria:
MMLOB [11], MDL and BIC. The comparison was based on generated data
with �xed and random parameter values. Using the Fisher DPA, we were able to
experiment over a larger range of data than previous work [3, 11, 10]. The MM-
LOB and MML-I criteria performed well and were shown to be superior to MDL
and BIC. The MML-I criterion, using Bayesian integration, was shown to have
overall lower Kullback-Leibler distances and was generally better at inferring the
number of cut-points than the other criteria.
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Fig. 7. Lake Michigan-Huron monthly mean water levels from 1860 to 1955 segmented
by MML-I. This is the data that W. D. Fisher originally considered in 1958.

Fig. 8. Lake Michigan-Huron monthly mean water levels from 1860 to 1999 segmented
by MML-I.

Table 1. Positive inference counts for data-set S0.

k̂ Criterion 20 40 80 160 320 Total

0 MML-I 86 93 93 100 95 467
MMLOB 93 94 93 100 84 464
MDL 89 96 99 100 99 483
BIC 76 88 95 98 96 453

1 MML-I 43 69 76 83 89 360
MMLOB 28 57 86 89 77 337
MDL 24 35 62 96 98 315
BIC 42 55 83 89 96 365

2 MML-I 3 21 63 74 91 252
MMLOB 6 12 46 84 81 229
MDL 4 10 13 52 98 177
BIC 11 23 35 68 92 229

3 MML-I 0 3 17 51 79 150
MMLOB 1 3 10 61 68 143
MDL 2 5 5 14 76 102
BIC 2 9 9 34 88 142

4 MML-I 0 0 6 44 77 127
MMLOB 0 0 2 22 65 89
MDL 0 1 1 2 45 49
BIC 0 4 7 11 58 80

5 MML-I 0 0 0 19 66 85
MMLOB 0 0 0 7 64 71
MDL 0 0 0 2 9 11
BIC 0 1 0 9 21 31

6 MML-I 0 0 0 5 49 54
MMLOB 0 0 0 0 56 56
MDL 0 0 0 0 3 3
BIC 0 0 0 1 8 9
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Table 2. Positive inference counts for data-sets S1 and S2 respectively.

k̂ Criterion 20 40 80 160 320 Total

1 MML-I 32 45 64 74 77 292
MMLOB 22 40 62 72 78 274
MDL 19 23 38 67 79 226
BIC 35 38 57 78 81 289

2 MML-I 5 18 34 50 65 172
MMLOB 5 6 27 43 58 139
MDL 4 2 12 27 48 93
BIC 14 9 23 37 54 137

3 MML-I 0 1 8 29 48 86
MMLOB 0 1 9 16 50 76
MDL 2 4 3 4 20 33
BIC 3 8 13 14 32 70

4 MML-I 0 0 4 14 32 50
MMLOB 0 0 3 12 30 45
MDL 0 0 0 1 2 3
BIC 0 2 2 6 12 22

5 MML-I 0 0 0 5 17 22
MMLOB 0 0 0 1 24 25
MDL 0 1 1 0 2 4
BIC 0 1 1 1 9 12

6 MML-I 0 0 0 0 7 7
MMLOB 0 0 0 0 9 9
MDL 0 1 0 0 0 1
BIC 0 1 0 0 2 3

k̂ Criterion 20 40 80 160 320 Total

1 MML-I 37 46 55 60 79 277
MMLOB 44 56 65 68 82 315
MDL 42 49 54 68 82 295
BIC 49 51 59 69 85 313

2 MML-I 11 26 27 50 43 157
MMLOB 16 33 35 57 57 198
MDL 19 27 28 41 45 160
BIC 30 37 37 52 53 209

3 MML-I 0 9 19 38 41 107
MMLOB 2 12 30 37 51 132
MDL 3 7 16 24 33 83
BIC 5 11 27 30 40 113

4 MML-I 0 0 11 23 24 58
MMLOB 0 5 10 24 27 66
MDL 0 4 7 10 20 41
BIC 0 6 14 15 25 60

5 MML-I 0 0 8 14 19 41
MMLOB 0 1 9 13 28 51
MDL 0 1 4 8 7 20
BIC 0 1 4 12 12 29

6 MML-I 0 0 4 9 18 31
MMLOB 0 0 3 9 20 32
MDL 0 1 0 2 4 7
BIC 0 1 1 5 9 16

Table 3. Average inferred number of cuts for data-set S2.

k̂ Criterion 20 40 80 160 320

0 MML-I 0.150 � 0.39 0.100 � 0.39 0.090 � 0.38 0.000 � 0.00 0.130 � 0.77
MMLOB 0.080 � 0.31 0.100 � 0.41 0.100 � 0.41 0.000 � 0.00 0.450 � 1.50
MDL 0.130 � 0.39 0.040 � 0.20 0.010 � 0.10 0.000 � 0.00 0.010 � 0.10
BIC 0.340 � 0.67 0.210 � 0.64 0.070 � 0.33 0.030 � 0.22 0.060 � 0.34

1 MML-I 0.490 � 0.61 0.640 � 0.64 0.890 � 0.82 0.960 � 0.78 1.040 � 0.85
MMLOB 0.480 � 0.54 0.660 � 0.57 0.800 � 0.65 0.880 � 0.61 1.020 � 0.67
MDL 0.560 � 0.62 0.570 � 0.57 0.630 � 0.60 0.720 � 0.49 0.840 � 0.39
BIC 0.730 � 0.66 0.830 � 0.68 0.800 � 0.64 0.820 � 0.56 0.870 � 0.37

2 MML-I 0.530 � 0.69 0.980 � 0.89 1.360 � 1.04 1.640 � 0.94 1.870 � 1.28
MMLOB 0.730 � 0.76 1.100 � 0.86 1.170 � 0.79 1.580 � 0.77 1.760 � 0.91
MDL 0.750 � 0.80 1.010 � 0.88 1.020 � 0.82 1.220 � 0.75 1.380 � 0.71
BIC 1.110 � 0.82 1.270 � 0.87 1.270 � 0.87 1.440 � 0.73 1.490 � 0.72

3 MML-I 0.460 � 0.64 1.060 � 0.97 1.880 � 1.26 2.510 � 1.27 2.830 � 1.43
MMLOB 0.790 � 0.87 1.260 � 1.04 1.950 � 1.10 2.170 � 0.89 2.750 � 0.99
MDL 0.890 � 0.91 1.100 � 0.96 1.620 � 1.06 1.780 � 0.95 2.090 � 0.84
BIC 1.220 � 0.91 1.440 � 1.09 2.010 � 1.11 2.000 � 0.92 2.320 � 0.85

4 MML-I 0.400 � 0.60 1.010 � 0.94 2.180 � 1.27 3.050 � 1.79 3.590 � 1.54
MMLOB 0.750 � 0.86 1.360 � 1.24 2.410 � 1.16 2.750 � 1.39 3.600 � 1.38
MDL 0.860 � 0.96 1.130 � 1.12 1.980 � 1.08 2.080 � 1.18 2.620 � 1.03
BIC 1.120 � 0.97 1.540 � 1.10 2.350 � 1.03 2.370 � 1.12 2.900 � 1.08

5 MML-I 0.330 � 0.62 1.080 � 1.17 2.260 � 1.46 3.500 � 1.85 3.970 � 1.62
MMLOB 0.640 � 0.92 1.690 � 1.33 2.510 � 1.49 3.210 � 1.37 4.310 � 1.53
MDL 0.880 � 1.02 1.510 � 1.34 1.970 � 1.37 2.490 � 1.38 2.980 � 1.14
BIC 1.170 � 1.02 1.910 � 1.31 2.310 � 1.33 2.870 � 1.30 3.300 � 1.14

6 MML-I 0.340 � 0.61 1.200 � 1.30 2.530 � 1.69 3.660 � 1.75 5.420 � 1.96
MMLOB 0.640 � 0.86 1.810 � 1.46 2.910 � 1.56 3.610 � 1.46 5.010 � 1.56
MDL 0.730 � 0.90 1.550 � 1.48 2.060 � 1.26 2.820 � 1.43 3.530 � 1.23
BIC 1.100 � 0.96 1.930 � 1.39 2.680 � 1.28 3.280 � 1.36 3.900 � 1.21
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Table 4. Kullback-Leibler distances for data-set S2.

k̂ Criterion 20 40 80 160 320

0 MML-I 0.218 � 0.65 0.056 � 0.13 0.023 � 0.05 0.007 � 0.01 0.013 � 0.07
MMLOB 0.422 � 1.69 0.283 � 2.08 0.034 � 0.11 0.007 � 0.01 0.049 � 0.28
MDL 0.716 � 2.40 0.288 � 2.10 0.016 � 0.03 0.007 � 0.01 0.007 � 0.04
BIC 1.159 � 3.08 0.820 � 3.24 0.132 � 1.05 0.064 � 0.52 0.046 � 0.27

1 MML-I 0.588 � 2.14 0.261 � 0.29 0.154 � 0.23 0.173 � 0.55 0.072 � 0.48
MMLOB 4.650 � 39.11 0.312 � 0.90 0.389 � 2.41 0.234 � 1.56 0.070 � 0.48
MDL 5.633 � 39.70 0.410 � 1.36 0.538 � 2.94 0.076 � 0.24 0.137 � 0.84
BIC 5.841 � 39.69 0.698 � 2.04 0.725 � 3.21 1.133 � 9.52 0.136 � 0.84

2 MML-I 0.542 � 0.55 0.334 � 0.30 0.244 � 0.36 0.159 � 0.30 0.227 � 1.13
MMLOB 0.835 � 1.62 0.447 � 1.22 0.248 � 0.74 0.119 � 0.21 0.145 � 1.05
MDL 1.590 � 4.13 1.255 � 7.05 0.260 � 0.70 0.086 � 0.14 0.035 � 0.05
BIC 1.625 � 3.45 0.759 � 1.70 1.022 � 4.76 0.196 � 0.59 0.045 � 0.07

3 MML-I 0.620 � 0.45 0.444 � 0.40 0.266 � 0.23 0.186 � 0.22 0.116 � 0.25
MMLOB 1.181 � 3.24 0.761 � 2.61 0.322 � 0.57 0.122 � 0.22 0.097 � 0.31
MDL 1.323 � 3.27 0.455 � 0.61 0.470 � 0.99 0.132 � 0.27 0.085 � 0.31
BIC 1.650 � 3.62 0.754 � 1.18 0.909 � 1.93 0.154 � 0.32 0.169 � 0.67

4 MML-I 0.670 � 0.48 0.507 � 0.48 0.361 � 0.28 0.274 � 0.43 0.176 � 0.28
MMLOB 5.499 � 40.13 1.141 � 4.70 0.454 � 1.30 0.854 � 6.52 0.542 � 3.08
MDL 6.013 � 40.21 1.077 � 4.64 0.518 � 1.29 0.873 � 6.51 0.279 � 1.91
BIC 3.710 � 13.51 1.188 � 3.30 0.760 � 1.72 0.753 � 4.09 1.255 � 7.69

5 MML-I 0.671 � 0.38 0.562 � 0.33 0.441 � 0.41 0.231 � 0.20 0.202 � 0.27
MMLOB 3.826 � 25.00 1.424 � 6.27 0.572 � 1.18 1.181 � 9.36 0.133 � 0.15
MDL 2.096 � 4.69 4.298 � 25.49 0.755 � 3.86 1.173 � 9.36 0.118 � 0.15
BIC 2.476 � 4.78 4.554 � 25.49 0.803 � 3.89 0.722 � 3.49 0.240 � 0.87

6 MML-I 0.722 � 0.36 0.618 � 0.48 0.386 � 0.24 0.247 � 0.19 0.299 � 0.43
MMLOB 5.688 � 41.22 3.733 � 24.12 0.674 � 1.57 0.383 � 1.03 0.259 � 0.62
MDL 5.756 � 41.21 4.930 � 28.90 0.816 � 1.81 0.994 � 4.87 0.169 � 0.42
BIC 4.375 � 22.72 3.160 � 10.83 1.206 � 2.49 1.223 � 4.92 0.294 � 1.23

7 Further Work and Acknowledgments

We have not directly investigated how well the various criteria are placing the
cut-points. The Kullback-Leibler distance gives an indirect measure since it is
a�ected by the cut-point positions. We intend to perform a more explicit inves-
tigation into the placement of cut-points.

As well as the Gaussian distribution, MML formulas have been derived for
discrete multi-state [17], Poisson, von Mises circular, and spherical Fisher distri-
butions [21, 6]. Some of these distributions and other models will be incorporated
in the future.

We thank Dean McKenzie for introducing us to the W. D. Fisher (1958)
paper and Rohan Baxter and Jonathan Oliver for providing access to the C
code used in Baxter, Oliver and Wallace [10].
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