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Abstract

The purely behavioural nature of the Turing Test leaves many with the view
that passing it is not sufficient for ‘intelligence’ or ‘understanding’. We propose
here an additional necessary computational requirement on intelligence that is non-
behavioural in nature and which we contend is necessary for a commonsense notion
of ‘inductive learning’ and, relatedly, of ‘intelligence’. Said roughly, our proposal is
that a key to these concepts is the notion of compression of data. Where the agent
under assessment is able to communicate, e.g. by a tele-type machine, our criterion
is that, in addition to requiring the agent’s being able to pass Turing’s original (be-
havioural) Turing Test, we also require that the agent have a somewhat compressed
representation of the test domain. Our reason for adding this requirement is that,
as we shall argue from both Bayesian and information-theoretic grounds, inductive
learning and compression are tantamount to the same thing. We can only compress
data when we learn a pattern or structure, and it seems quite reasonable to require
that an ‘intelligent’ agent can inductively learn (and record the result learnt from
the compression). We illustrate these ideas and our extension of the Turing Test
via Searle’s Chinese room example and the problem of other minds.

We also ask the following question: Given two programs H; and H, respectively
of lengths [y and I3, [1 < I3, if Hy and H; perform equally well (to date) on a Turing
Test, which, if either, should be preferred for the future?

We also set a challenge. If humans can presume intelligence in their ability to
set the Turing test, then we issue the additional challenge to researchers to get
machines to administer the Turing Test.

Keywords: Turing Test, Philosophy of AI, compression, Bayesian and Statistical
Learning Methods, Machine Learning, Cognitive Modelling.



1 Introduction - the Turing Test and Chinese Room

‘Intelligence’, ‘understanding’ and ‘learning’ are multifarious, vague notions, not every
aspect of which we can claim to catch in one fell swoop. Moreover, as Wittgenstein
taught us, giving putatively necessary and sufficient conditions for some concept of ours
can be a dangerous business. So, rather than courting such danger, we claim rather to
capture a central notion of these cognitive concepts. Set aside rote learning (as occurs,
for example, when one memorizes a list of the world’s capital cities) and many aspects of
deductive learning, and let us focus instead on inductive learning. We believe that this
form of learning consists in the ability to compress data.

Turing introduced his famous test, “the Turing Test”[16], of (artificial) intelligence by
proposing that the agent be tested for the ability to simulate by tele-type the conversa-
tional actions of a human. One possible way for a machine to carry out such a simulation
would be for it to be programmed with a list of possible remarks that the human tester
might make and corresponding recommended responses for the machine to generate in
each case. The conversation could be thought of as developing along the lines of a game
tree, with moves alternating between human and machine: the machine has to generate
a satisfactory response at every point in the game tree that the succession of remarks
leads it to, and the human tries to catch the machine out (or concedes that (s)he can’t
catch it out). Searle[13] gives a parallel example in which, instead of a machine trying
to simulate humanness, a human endeavours to simulate an operational understanding
of Chinese'. This involves a human operator with no knowledge of Chinese other than a
look-up table, replying to input strings of Chinese characters with chosen output strings
of Chinese characters. Among other things, Searle asks us to consider the case of an
operator who memorises the look-up table.

Behaviourally, the operator who has memorised the look-up table will pass the Turing
test for understanding Chinese. Our objection to the Turing test and our consequent
proposed non-behavioural enhancement are based on our belief that understanding a
subject domain has something to do with the compression of relevant data. This ob-
jection and enhancement are perhaps best highlighted by comparing the computational
resources available to an English-speaking? human who also speaks Chinese with the com-
putational resources required by an English-speaking human to store and access such a
look-up table. Whatever might constitute sufficient conditions for a commonsense notion
of “intelligence”, we contend that, as well as an ability to pass the Turing Test, it is
also necessary to have a compression of the relevant test subject matter. The greater the
compression, typically, the greater the understanding.

The paper now proceeds by arguing that inductive learning amounts to compression,
and that, without such compression, Searle’s Chinese Room becomes very limited for a
sufficiently long test. We then look at the issues of mindedness, a compression that one
learns oneself vs. a compression that one is told of, whether a shorter or a longer program
is to be preferred when both programs yield the same predictive accuracy to date, and

lwe follow Searle in not specifying which particular dialect of Chinese.
Zclearly, the language need not be English. Any language sufficiently different to “Chinese” would
suffice.



the issues of passing the Turing Test and administering the Turing Test.

2 Inductive Learning = compression

We wish to put forward the view that learning from some body of data is typically an act
of compression of that data. Such a theory has been explicitly stated elsewhere[23] for
learning languages, but we wish to propose it for all inductive learning. The idea of using
notions of compression to carry out statistical and inductive inference was suggested in
the 1960s[14, 2, 19] and has been successfully implemented in Minimum Message Length
(MML)[19, 22] and Minimum Description Length (MDI)[12] applications ever since, both
of which are related to Kolmogorov complexity[17, 4, 8].

For the reader possibly unfamiliar® with MML and MDL?*, consider firstly a set of data
involving two variables, z1 and x5 (as it might be, force and acceleration). We begin with
a long data string consisting of ordered pairs of the form (z1,z2). One way to summarize
the data is simply to record this string. However, suppose we notice that apparently
x9 A kxy — that is, the data points all lie on or near a straight line of slope k. Then the
data string can be compressed: the data can now be summarized by recording just the
x1 values, and this functional relationship, and some error terms. More than that, we
feel that we have increased our understanding of the data by (inductively) learning this
relationship. To be sure, there are other candidate functions for the relationship between
z1 and 5. What we want, however, is the function that gives the greatest amount of
compression, — the minimum message (or description) length (MML, or MDL) encoding
of the data °.

We believe that these points generalize. Understanding a body of data, be it the data
of coin-tossing, some natural process, or even Chinese sentences, requires the ability to
compress that data. Now, understanding admits of degree: since you are reading this
paper, you presumably understand English well; you may understand a certain foreign
language moderately well, though not as well; and there are perhaps many foreign lan-
guages that you do not understand much at all. Correspondingly, you have implicitly or

3References[22, 15, 12] are suggested.

*MML is a Bayesian method of inductive and statistical inference and machine learning. MDL
and MML are universally applicable to inference problems, such as problems of statistical parameter
estimation[19, 22, 20, 18, 21] and problems of intrinsic classification[19, 21], also known as unsupervised
concept learning or mixture modelling. MML is also invariant under parameter transformation[22, 21, 4],
and MDL and MML are guaranteed to converge with probability unity [22, p241][18, 1] to the correct
inference. These methods are also efficient, converging as quickly as possible.

>Put another way, consider a variety of hypothesis, H, for explaining some data, D. By repeated appli-
cation of Bayes’s theorem, we have that Pr(H|D) = Pr(H&D)/Pr(D) = (1/Pr(D))x Pr(H)x Pr(D|H).
Since D and 1/Pr(D) can be assumed constant, maximising the posterior probability, Pr(H|D), is equiv-
alent to maximising Pr(H)Pr(D|H), and to minimising the corresponding length of a two-part message,
—log, Pr(H) — log, Pr(D|H), for conveying an hypothesis, H, followed by D given H. This, the min-
imum message length (MML) principle, is an operational form of Ockham’s razor since —log, Pr(H)
concerns the (a priori) simplicity of the theory and —log, Pr(D|H) concerns how well the model fits the
data, so minimising the message length gives us a simple hypothesis which fits the data well. The best
compression gives the best theory and, indeed, the better the compression, the better the theory. In this
sense, inductive learning equals (two-part) compression.



explicitly compressed the ‘data’ of English (its vocabulary and grammar) a great deal, and
that certain foreign language somewhat (though less so). And you have not compressed
the data of the foreign languages that you do not understand at all: indeed, they appear
essentially ‘random’, (almost) unpatterned to you. Ultimate understanding, then, would
appear to involve the ability to compress such data to the ultimate extent: that is, to
know a minimum message length description of the data.

2.1 MML, compression, “laws” of nature and understanding

We can generalize the above still further. The universe apparently contains certain pat-
terns; if these patterns are pervasive enough, they are good candidates for being “laws”
of nature. Let us follow in the spirit of Mill[9], Ramsey[11] and Lewis[7], and regard the
“laws” of nature as those (inferred, hypothesised) regularities that figure in the minimum
message length® description of the universe. It is plausible that understanding the uni-
verse involves knowing its laws (much as understanding a language involves knowing its
‘laws’, that is, its rules); and that, given the data available about the universe, the best
understanding of the universe would consist in the optimal (MML) inference learnt from
this data.

Appealing to Bayesian, information-theoretic and MML notions, we argue above that
inductive learning and (two-part)” compression are identical (or, at worst, very similar).
Turing’s original test does not require that the agent have a compressed representation
of its knowledge, something which we argue in Section 3 can lead to problems. We also
note that, other than by Turing’s Test, intelligence is also measured by 1.Q. (intelligence
quotient), yet such tests (see, e.g., [5]) are very much concerned with problems of (optimal)
pattern recognition and (optimal) inductive inference.

As further concepts are developed and inter-relations made between them, so the area
of study is further compressed and so the agent comes to learn and better understand.

3 Physical limitations to Searle’s Chinese Room

In practice, the Turing test will be carried out only over a finite number of steps, con-
servatively bounded above by a maximal human life span (e.g. 200 years) divided by
(e.g.) a minimum acknowledged time period for humans to generate or recognise a syl-
lable. For a conversation of fixed finite length, it seems plausible that a suitably large
computer program could, in principle, be designed to pass this test by first exhaustively
enumerating all of the finitely many nodes in this finite game tree and then prescribing a
response in each case. Although this might initially seem plausible, consider the Chinese
Room[13]. With an estimate of approximately 10* Chinese Mandarin characters with at
least 10% in common usage, we conservatively estimate at least (10°)° = 10'® sentences of
five characters or more which could possibly be exchanged in Chinese conversation after

Sor most economical

“The differences between two-part compression (H and then D given H) and one-part compression
amount to the differences between MML[19, 22] and MDL[12], and are very small. Inductive learning is
equivalent to two-part compression; and (see, e.g., [3]) prediction and one-part compression are equivalent.



initial social pleasantries®. Our look-up table would thus need at least 10'® entries so that
a response could be made to the first non-trivial part of the conversation. Moreover, being
able to continue making sensible responses in a conversation of reasonable length will cer-
tainly require a look-up table with more entries than the currently estimated® number of
elementary particles in the universe (approximately 10%%) if the universe is finite'®. This
contrasts rather starkly with the ability of humans to speak at least one language and to
do much more using only an estimated 10'? or so neural processors''. And it means that
we would be literally unable to write the look-up table in this universe (based on current
theory, if the universe is finite) — even in principle.

Consider also the task of passing the Turing Test in the Chinese Room with an uncom-
pressed look-up table in an infinite universe. We could conceivably store an arbitrarily
large look-up table — one that could be used to simulate an hour or more or so, say, of con-
versation, even if this required the table to extend to distant galaxies. Assuming a fixed
finite limit to the speed of transmission of information'?, if the Turing Test conversation
is required to continue for long enough relative to (the cube of) this limiting speed, then
the look-up table will need to be so large that, eventually, the response from the table’s
more distant entries will take a suspiciously long time to be given.

4 Other minds, Intelligence, I1.Q. and learning

So far, we have argued that inductive learning is compression and have pointed out that,
without sufficient compression, Searle’s Chinese Room eventually becomes very limited.
In acknowledging the necessity of Turing’s conditions for intelligence[16], it seems evident
from 1.Q. tests (e.g. [5]) that humans regard pattern recognition and inductive learning
(to the best'?) explanation as also being at least indicative of intelligence. (Some tests
for intelligence also test for memory - or rote learning, and some for deductive learning.
Rote learning is, of course, necessary to both store data and store the inference after
compression. Deductive learning is, of course, necessary to combine inferences.) So, we
would like to extend the test for intelligence ot require not just Turing’s conditions, but
also to require the ability to inductively learn (and hence to compress). We do not claim
that our new criteria are sufficient for intelligence, but rather that they extend Turing’s
criteria while remaining necessary for intelligence.

One way of imposing our additional requirement on Turing’s Test is to insist that the

8The fact that many sequences of characters will not form sensible sentences suggests that one should
lower the estimate; on the other hand, the fact that sensible sentences can have many more than five
characters more than compensates.

9we are grateful to Kurt Liffman for showing us calculations of how to use the critical particle density[6]
threshold to derive a figure closely approximating this oft-stated result.

10Note firstly that (101%)5 = 10°° > 1083. So if all sequences of input sentences were possible, only six
consecutive inputs into the conversation would be needed. Perhaps certain sequences are ruled out (for
example, if they contain gross non-sequiturs); but again, this is more than compensated for by the fact
that conversations can last far longer than six exchanges.

1We are grateful to Joanne Luciano for directing us to a relevant reference[10].

2such as ¢, the speed of light from Einstein’s theory of special relativity.

13or, as we would argue from Bayesian and information-theoretic grounds, MML.



agent being subjected to the Turing Test not only pass the test but also have a concise,
compressed representation of the subject domain. We do this because the Turing Test is
a finite statistical test: we believe that a compressed method obtained by learning will
be more likely to deal with likely with future questions in a reasonable amount of time
than (e.g.) the brute-force rote-learnt Chinese room of Section 1 and we also suspect
that a compressed method will be more reliable on future questions than (e.g.) the brute-
force rote-learnt Chinese room of Section 1. A third reason that we desire compression
(where possible) is that it is evidence of learning - if the agent is “intelligent” (and able
to inductively learn), we would like it compress (where possible) the subject domain.
And, regarding minds, why do we believe of each other that we have minds? On one
(rather bad and unreasonable) extreme, I can hypothesise you to have rote-learnt a Searle-
style look-up table of English conversation; and on the other (rather good and reasonable)
extreme, I can hypothesise you to have compressed and learnt much about English so that
your 10'? or so neural processors (made up from your less than 10%* atoms) are sufficient
for you to carry out a conversation. My belief that you can learn and compress and have
done so in the past is part of why I attribute mindedness to you. If such considerations
are legitimate when attributing intelligence to humans, then they presumably ought to
apply equally well when attributing intelligence to machines — whatever “intelligence” is.

5 Further questions

5.1 A statistical test, and predictive reliability

The Turing Test is a finite statistical hypothesis test in that the test administrator collects
finitely much (conversational or other) data from the agent and then hypothesises as to
the intelligence or otherwise of the agent and, implicitly, how well the agent will perform
on future inputs. Related to this, statistics and machine learning have notions of “right”
/ “wrong” predictions (which are rewarded as correct and incorrect) and probabilistic
predictions (where probabilities are rewarded by their logarithms)[3]. Although the MML
theory gives the best two-part compression and is the most probable theory and also gives
both good “right” / “wrong” and probabilistic predictions, it is not necessarily the optimal
“right” / “wrong” or probabilistic predictor. We therefore ask the following question:
Given two programs Hy and H; respectively of lengths [; and I, I} < Iy, if H; and H;
perform equally well on a Turing Test (or if Pr(Data|H;) = Pr(Data|H,)),

which, if either, should be predictively preferred for the future?

It is possible that a theorem [8, p340, Theorem 5.4.1] about PAC learning is relevant here.

5.2 Administration of the Turing Test

We have mentioned many human traits which seem to be hallmarks of “intelligence”:
passing the Turing Test, inductive learning (and compression), rote learning (and mem-
ory) and deductive learning. But another things humans use their “intelligence” to do
is to test others for intelligence, by Turing Tests, 1.Q. tests or whatever. So, it seems
reasonable to require that a sufficiently intelligent agent be able to administer the Turing



Test (or, for that matter, an 1.Q). test). Indeed, this can be iterated recursively, with
sufficiently intelligent agents being required to administer the administration of the Tur-
ing test. A rather loose analogy can be made along the lines that writing a paper (well)
requires intelligence, so reviewing a paper well (administering the test well) requires intel-
ligence and fulfilling editorial or Program Committee responsibilities (administering the
test administration) well also requires intelligence.

6 Discussion and Conclusion

Inductive learning is tantamount to compression, 1.Q. tests tend to be full of questions re-
quiring such compression and pattern recognition, and our intuitive notions of intelligence,
understanding and mindedness suggest that someone understands who has recognised and
stored patterns (compressions) in some subject domain. And, just because an agent has
passed a finite test, if they do not have an adequate compression, as with the limited
capacity Chinese Room, the agent will not pass the test indefinitely in the future. We
therefore argue that Turing’s original test and our compression requirement constitute
necessary conditions for intelligence. Intelligence requires the ability to compress; induc-
tive learning is an act of such compression; and the state arrived at after such an act is
one of increased understanding. Rote learning and deductive learning are also needed to
store data and inferences and to combine inferences.

Let us now return to Searle’s Chinese room not with rote-learnt responses, but rather
with a rote-learning of someone else’s compression (or algorithm). Let us also imagine
a very mathematically adept human with a very good memory who is told to search a
game tree and seek the path which will maximise a given mathematical function, closely
mimicking the style of a human chess grandmaster. Each of these is a case of an agent who
has a compression that she has not learnt (via compression) herself, an agent who possibly
knows little or nothing about the rules of Chinese grammar and nothing about the rules
of chess, and, indeed, to whom the strings “Qb6” and “Q-QN3” might be meaningless. In
this sense, our enhanced test seems necessary but possibly not sufficient for intelligence.
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