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Chapter 1

Introduction

El Nino SST

These notes are an introduction to statistical analysis in climate dynamics. Statistical analysis is
essential in the discovery of new findings if based on observation data or experiments. However, in
school and university we start with learning about science or climate dynamics based on equations,
relationships and dynamical laws of physics, but statistical methods are not needed for that. Indeed
by learning about the laws of physics or climate dynamics as students in schools/university we have
very little or no contact with statistical analysis or inferences. We learn the laws of physics by logical
reasoning and by presentations of the observed values.

This however changes dramatically when you move from being a student that learns the textbooks
to becoming a researcher figuring out new science. In research we most often have to deal with
observational or experimental (simulation) data. First these data will present themselves with
apparently very little structure in it. They appear to be chaotic and seem to make no sense. Or
sometimes this data will have structure in it but no physical explanation can be given for it. Good
examples are El Nino and the Southern Oscillation, the Madden Julian Oscillation, the North
Atlantic Oscillation or some Hurricane statistics. These observations first of all them to make no
sense, but with the help of statistical analysis we gain more understanding and with our physical
understanding we can eventually make sense of the data. So in research statistical description of
the observation often comes long before the physical understanding comes. The statistical analysis
if therefore often our starting point for the physical understanding of the system.

The statistical methods introduced in these notes are the basis for many different aspects of sta-
tistical analysis. We can in principal put these into two categories: Measurement uncertainties
and stochastic variability. In measurements we need to deal with statistical analysis, because ur
measurement have errors. These may be instrumental errors, they can be errors resulting from
transformation of indirect measurements to the variables of interest (e.g. estimating heat transport
in the ocean on the basis of temperature and salinity profiles). Errors aslo result from interpolations
or proxy data or assimilation of observations into models. The statistical methods introduced in
these notes are a good basis to deal with all these measurement uncertainties.

9



10 CHAPTER 1. INTRODUCTION

However, these notes will not focus on measurement uncertainties, but will focus on stochastic
variability. The climate system is a chaotic system. The non-linear dynamics of the atmosphere
cause the system to vary on all time and spatial scales (e.g. The lorenz model). Describing this
stochastic variability with statistical methods is the focus of these notes.
The lectures notes are organised in five chapters. In the first chapter we will introduce some basic
probability theory, with introducing probability, probability density functions and some important
concepts such as independence, conditional probability and covariance/correlation.

• statistic is made by mathematicians. they have a different point of view than physicist.

• only a small fraction of the statistical method

• i will keep definitions/developments short and try to put the statistics onto examples and
relate them to physics

• it is next to impossible to understand statistical method without applying them

• it is important to view statistics for m different perspectives, textbooks, authors different
applications

1.1 Literature

Below is a short list of the literature that helped me to develop this lecture. Much of the chapters
I, II and IV have been developed on the basis of the textbook by Von Storch and Zwiers. Many
problems in climate research are somehow unique to the climate community and are only discussed
in articles of scientific journals, some helpful discussions of statistical methods can be found on
websites.
The following list is in order of relevance:

• ”Statistical Analysis in Climate Research” a lecture script by Dietmar Dommenget

• ”Statistical Analysis in Climate Research” by Hans von Storch and Francis W. Zwiers.

• ”Statistische Methoden der Datenanalyse” a lecture script by Juergen Willebrand

• ”Taschenbuch der Mathematik ”by Bronstein et al., 5. Edition.

• ”Principal Component Analysis” by Ian T. Jolliffe

• ”Zeitreihenanalyse” by Schlittgen and Streitberg

• ”Time Series Analysis” by George E.P. Box, Gwilym M. Jenkins and Gregory C. Reinsel
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µ=0.0

σ=0.89
γ
1
=0.97

γ
2
=1.74

Here we will have a short discussion of probability theory and we will define some of the most basic
parameters which are important for statistical analysis in general and are most important for of
the subsequent sections.
Statistical analysis is strongly related to probability theory, especially the statistical inference and
tests of hypothesis needs a strong background in probability theory and logics. Miss/understandings
of logics/probability theory is also very important for the interpretation of statistics, which we will
discuss in the final section.
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Chapter 2

Probability

The Probability Theory deals with uncertain events of stochastic processes, in contrast to events
that are deterministic (with well-defined initial values) and therefore certain in the outcome.

Examples of uncertain/stochastic events:
Coin tossing,
Lottery numbers,
Rainfall at certain time/place,
Any kind of physical quantity of a stochastic or thermodynamical process.

Examples of certain/deterministic events:
Length of a body (table, room or ship)
time of the sun rise,
wave propagation,
Any kind of physical quantity of a deterministic process (with well-defined initial values).

2.1 Probability of an Event

The space of all possible values that an uncertain event can take is the sample space ,S.

Examples:

• Tossing dices; S = [1, 2, 3, 4, 5, 6] with an event A = 1 or the event B = odd number =
[1, 3, 5].

• Temperature: S = R+,

• Wind direction: S ∈ [0, 2π]

Often the rules of probability a more easily understood, if we think of the theory of sets and how
the number of elements relate to different subsets.
Some basic rules for the probability:

• Probabilities are always ∈ [0, 1].

• When an experiment is conducted, one of all possible events in S must occur, so

P (S) = 1 (2.1)

15
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!"
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Figure 2.1: Sketch to illustrate the sample space and two events. The circled areas should represent
the set of values belonging to the sample space (S), event A and event B.

• Sometimes it is easier to compute the probability of the complement of an event than that of
an event itself. If A denotes an event, than ¬A denotes its complement, the collection of all
events in S that are not contained in A. Thus, S = A ∪ ¬A, and A ∩ ¬A = ∅. Therefore,

P (A) = 1− P (¬A) (2.2)

Example: The event A of tossing the number six at least once with three dices. The prob-
ability of complement event, not tossing the number six with three dices, is ¬A = (56)

3 ⇒
A = 1− (56)

3.

• It is often useful to divide an event into two mutually exclusive events. Two events A and
B are mutually exclusive if they do not contain any common sample space elements, that is
A ∩ B = ∅. An experiment can not produce two mutually exclusive event at the same time.
Hence,

P (A ∪ B) = P (A) + P (B) (2.3)

• In general, the expression for the probability of observing one of two events A and B is

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) (2.4)

or

P (A ∩ B) = P (A) + P (B)− P (A ∪ B) (2.5)

The common part of the two events, A∩ B, is included in both A and B and thus P (A ∩ B)
is included in the calculation of P (A) + P (B) twice.
Example with tossing a dice: Event A is tossing an even number and B is tossing a number
< 4. So, P (A) = 1

2 , P (B) = 1
2 and P (A ∪ B) = 5

6 , it follows that P (A ∩ B) = 1
2 + 1

2 − 5
6 = 1

6
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Figure 2.2: Sketchs to illustrate the sample space and two events. Left: mutually exclusive events.
Right: two events, general.

2.2 Conditional Probability

Often we are dealing with the evaluation of probability of some result/event, but we do not realize,
that we have some additional ’hidden’ condition for this result/event. In many cases these additional
condition will change probability outcome.

Example Storms over seasons: Consider the probability of a weather event A , such as a storm
(strong winds), and suppose that the climatology probability of such an event is P (A). Now
consider that beginning in one season of the year is an event B. If P (A) is different at different
seasons, the perception of likelihood of A will change. That is, the probability of A conditional
upon the season B, which is written P (A|B), will not be the same as the climatology probability
P (A).

Example ship measurements: Consider the climatology of temperature of the North Atlantic.
The climatological mean can be regarded (approx.) as the most likely value. If this climatology
of temperature of the North Atlantic is based on ship measurements the Probability of different
temperature events maybe skewed towards ’good’ weather, simply because ship do not measure in
bad weather and ship change routes due to bad weather, so that the region with bad weather is not
measured. Thus a climatological temperature of the North Atlantic based on ship measurements
is a Conditional Probability estimate. It is not the real Probability distribution.

The conditional probability of event A, given an event B for which P (B) 6= 0, is

P (A|B) = P (A ∩ B)/P (B) (2.6)

The interpretation is that only the part of A that is contained within B can take place and thus
the probability that this restricted version of A takes place must be scaled by P (B) to account for
the change of context. The sample space S, of all possible events, is replaced by B. Note that all
conditional probabilities are ∈ [0, 1].

Note: That both P (A|B) < P (A) and P (A|B) > P (A) are possible.

Note: P (A|B) 6= P (A∩B). The probability A and B is different from P (A|B), because in P (A|B)
we assume that B has happend: B = S ⇒ P (B) = 1
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Note: P (A|B) > P (A) ⇒ P (A|¬B) < P (A). If, for instance, the temperature, T at time interval of
a time series is large than average, than there most be a part of the time series where T is smaller
than average. It seems trivial to point this out, but often you find studies in which the statement
⇒ P (A|¬B) < P (A) is made as if unexpect, when P (A|B) > P (A) was already noted.

2.3 Independence

Two events A and B are said to be independent of each other if

P (A ∩ B) = P (A)P (B) (2.7)

It follows from (2.6) that if A and B are independent, then P (A|B) = P (A). That is, restriction
of the sample space to B gives no additional information about whether or not A will occur.

Examples:

1.) Two dices with the same number: A : tosing number six with die A.
B : tosing number six with die B.

Since we know that the result of die A is independent from the result of die B: P (A ∩ B) =
P (A)P (B) = 1/6 × 1/6 = 1/36. And we also know that P (A|B) = P (A). Thus the likelyhood of
A : (tosing number six with die A) is independent on the result of die B, B :.
2.) Weather events:
A : Rainfall in Melbourne
B : Rainfall in New York
B : Rainfall in Geelong

Are the events A and B independent? If so: P (A|B) = P (A). Thus the probability of Rainfall in
Melbourne does not depend on the Rainfall in New York.

Are the events A and C independent? Probably not, so: P (A|C) 6= P (A). Thus the probability of
Rainfall in Melbourne does depend on the Rainfall in Geelong.

3.) Suppose A represents a weather event and B its forecast by a weather forecast service. If A
and B are independent, then the forecasting system does not produce skillful weather forecasts: a
’bad’ weather forecast does not change out perception of the likelihood of this weather event. So a
skillful weather forecast depend on the weather, but of cause the weather does not depend on the
forecast. So dependence that imply a causality direction.
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Chapter 3

Probability Density and Distribution

3.1 Continuous Random Variables

A continuous random variable is a statistical variable, those value are continuously changing. The
dimension along which the random variable is changing can be different and depends on the problem
studied. The temperature, for example, is a continuous random variable, that can be studied either
along the time dimension or along a spatial dimension.

In general we will sample continuous random variable in discrete samples, which makes the continu-
ous random variable a discrete random variable. In most cases this simply changes most definitions
below by replacing the integrals against sums.

3.2 The Probability Density and Distribution Functions

Let X be a continuous random variable that takes values in the interval Ω. The probability density
function (pdf) for X is a continuous function fX(·) defined on R with the following properties:

1. fX(x) ≥ 0 for all x ǫ Ω,

2.
∫
Ω fX(x)dx = 1,

3. P (X ǫ (a, b)) =
∫ b
a fX(x)dx for all (a, b) ⊆ Ω

Thus the pdf has the unit 1/unit(x), since it is a density. Some pdfs of observed daily mean climate
variables are shown in Fig. 3.1.

The cumulative distribution function for X is a non-decreasing differentiable function FX(·) defined
on R with the following properties

lim
x→−∞

FX(x) = 0

,

lim
x→∞

FX(x) = 1

,

d

dx
FX(x) = fX(x)

.

21
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Figure 3.1: Some pdfs of observed daily mean climate variables.

Thus,

FX(x) =

∫ x

−∞
fX(r)dr (3.1)

The cumulative distribution function is non-dimensional and is often useful for computing proba-
bilities because

P (X ǫ (a, b)) = FX(b)− FX(a) (3.2)

3.3 Expectation

The expected value of a continuous random variable X is given by

E(X) =

∫

Ω
xfX(x)dx (3.3)

If g(·) is a function then the definition of the expected value of g(X) is

E(g(X)) =

∫

Ω
g(x)fX(x)dx (3.4)
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Further rules apply

E(g1(X) + g2(X)) = E(g1(X)) + E(g2(X)) (3.5)

E(ag(X) + b) = aE(g(X)) + b (3.6)

3.4 The Central Moments: Location, Scale, and Shape Parame-
ters

The kth moment µ(k) of a continuous random variable X is given by

µ(k) = E(xk) =
∫

Ω
xkfX(x)dx (3.7)

The kth central moment µ′(k) of a continuous random variable X is the expectation of (X − µ)k,
given by

µ′(k) =
∫

Ω
(x− µ)kfX(x)dx (3.8)

Note, that the central moments are the moments of the anomalies x′ = x − µ, where the mean µ
is often defined as a seasonal cycle, µ = µ(season) .

Most characteristics of a distribution can be summarized through the use of simple functions of
the first four moments. These slightly modified parameters are the mean, variance (standard
deviation), skewness and kurtosis. Note, observed continuous random variables will in general be
more complex, with non-zero moments µ(k>4).

Mean

The mean also known as the location parameter is given by the first moment

µ = µ(1) (3.9)

Thus it is the expectation as in eq. [3.3]. It can also be considered as the center of mass of the pdf ,
since the definition is similar.

Variance and Standard Deviation

The variance is given by the second central moment

V ar(X) =

∫

Ω
(x− µ)2fX(x)dx (3.10)

For a linear function of X the variance is

V ar(aX+ b) = a2V ar(X) (3.11)

Hence, if a random variable is shifted by a constant, its variance does not change. On the other
hand, multiplying a random variable with a constant does change the variance.

A more practical parameter for the scale of the variability of the random variable is the standard
deviation σX =

√
V ar(X), because this measure has the same unit length as X. The standard

deviation is a measure of the ’width’ of the pdf , see Fig. 3.1 for some examples.
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It can be very limited in its interpretation, if the pdfs is very different from a normal distribution.
The Chebyshev’s inequality gives, however, a upper limit for the probability of X to take values
far away from the mean:

P (|X− µ| ≥ λσ) ≤ 1

λ2
(3.12)

The probability P (|X− µ| ≥ λσ) is much smaller than 1
λ2

for normal pdfs, see section 3.7.

If a random variable, such as rainfall or wind speed, takes only positive values a scale parameter
called the coefficient of variation

CX = σX/µX (3.13)

is sometimes used. The standard deviation of such variables is often proportional to the mean
and it is therefore useful to describe the scale parameter relative to the mean. See the log-normal
distribution for instance, Section 3.9.

Skewness

The skewness is a scaled version of the third central moment that is given by

γ1 =

∫

Ω

(
x− µ

σ

)3

fX(x)dx (3.14)

The scaling of γ1 by σ makes the skewness on non-dimensional shape parameter; γ1 is independent
of the size of σ.

Symmetric distributions have γ1 = 0. Hence the skewness is a measure of the asymmetry of the pdf .
Distributions with γ1 > 0 are said to be skewed to the right, which means that positive extreme
values (x − µ) > 0 are more likely than negative extreme values and vice versa for γ1 < 0. Fig.
3.2 illustrates some pdfs which are positively skewed. We can see that a skewness of 0.8 is already
leading to quite different likelihoods for the extreme values and the skewness of 1.6 is very different
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distribution for near zero values (black solid
line).

form the normal, symmetric, distribution. For most practical problems we may consider the pdf as
skewed if the absolute values of the skewness are larger than 0.2.

Fig 3.1 shows that 24hrs mean 2m temperature in Germany is skewed negatively in winter and
positively in summer. The skewness is related to changes in winds, where no or north-east winds
in winter lead to extreme cold days and in summer no or southern winds lead to extreme hot days.

The best known skewed climate variability is the El Niño mode (Fig.3.3. Here the SST is positively
skewed, with strong warm events called ’El Niño’ and the weaker negative events are called ’La
Niñia’.

Kurtosis

The kurtosis, a scaled and shifted version of the fourth central moment, is given by

γ2 =

∫ ∞

−∞

(
x− µ

σ

)4

fX(x)dx− 3 (3.15)

The scaling makes the kurtosis a non-dimensional shape parameter. The kurtosis is also shifted by
3 for reference to the normal (gaussian) distribution, those unshifted kurtosis is 3. Note that some
statistical programs (e.g. MATLAB) does not shift the kurtosis, thus the kurtosis of the normal
pdf is 3.

The kurtosis γ2 is usually a measure of the peakedness of the distribution, see fig. 3.4. A γ2 < 0
refers to a distribution which is less peaked than the normal (gaussian) distribution and vice versa
for γ2 > 0. A uniform distribution is an example for γ2 < 0 and fX(x) = 1/|x−µ| for γ2 > 0. But,
note that the kurtosis parameter is more sensitve to the extrem values than to the near mean values,
which follows from its definition (∼ (x − µ)4). In some unusual cases the pdf will be less peaked
near the mean than the normal pdf, but the kurtosis will be positive, due to larger probabilities
for extrem values, see Fig. 3.5.

The skewness and kurtosis are shape parameter which are useful in the analysis of extreme values
where debate of the merits of various distributions is intense. However, skewness and kurtosis are
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Figure 3.6: pdf of daily Kieler Foerde gauge heights summer
month [in meter].

often difficult to estimate and the pdf of the extreme values is often not sufficiently determined by
skewness and kurtosis.
Fig. 3.6 shows that the sea level in at mouth of the Kiel Foerde has a large kurtosis, with much
more frequent extreme lows and high, than a normal pdf .

3.5 Median and Quantiles

For many physical quantities the mean and variance are effected by the tail ends (likelihood of
extreme values) of the pdf and are sometimes bad measures of the variability and the peak of the
pdf .
The median and quantiles are in general the more robust parameter of the pdf , because they are
insensitive to the tail ends of the pdf . The median ,m50, is the solution of

FX(m50) = 0.5 (3.16)

It presents the middle of the distribution in the sense that

P (x ≤ m50) = P (x ≥ m50) = 0.5 (3.17)

Exactly 50% of all random values will be below the median and Exactly 50% will be above. Note
that the median is different from the mean if µ(k≥3) 6= 0; for odd values of k. The median is, in
contrast to the mean, insensitive to the extreme value distributions and is therefore a much more
robust estimate of the pdf if the sample size is small.
The median is a special case of a p-quantile, the point xp for which

P (X ∈ (−∞, xp)) = p (3.18)

P (X ∈ (xp,∞)) = 1− p (3.19)

The p-quantile is the solution of

FX(xp) = p (3.20)

In Fig. 3.7 the median, 10%-quantile and the 90%-quantile are illustrated for the log-normal
distribution.
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3.6 The Uniform Distribution

A random variable that takes values in an interval [a, b] is said to be uniform if it has a pdf that is
constant inside the interval and 0 outside. Thus,

fX(x) =

{
1/(b− a) ∀ x ∈ [a, b]
0 elsewhere

(3.21)

and the cumulative distribution function is

FX(x) =





0 for x ≤ a
(x− a)/(b− a) ∀ x ∈ [a, b]
1 for x ≥ b

(3.22)

The uniform distribution is a function of a, b: X ∼ U(a, b). The central moments are:

µ(U(a, b)) = 1
2(a+ b)

V ar(U(a, b)) = 1
12(b− a)2

σ(U(a, b)) =
√

1
12(b− a)

γ1(U(a, b)) = 0
γ2(U(a, b)) = −1.2

(3.23)

The uniform distribution is symmetric (γ1 = 0) und less peaked than the normal distribution
(γ2 = −1.2).

3.7 The Normal (Gaussian) Distribution

The normal distribution is of fundamental importance in statistical analysis, because most physical
quantities are nearly normal distributed (see also the central limit theorem, section 3.8) and most
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statistical analysis assume a normal distribution of the operators. Some statistical analysis will fail
to produce useful results if the operators are not normal distributed.

The form of the normal distribution is defined by the mean and variance. Thus, we write X ∼
N (µ, σ2) to indicate that X has a normal distribution with parameters µ and σ.

The normal density function is given by

fN (x) =
1√
2π

1

σ
e

−(x−µ)2

2σ2 ∀ x ∈ R (3.24)

see Fig. 3.9. The skewness and kurtosis vanish for the normal distribution.

The cumulative density function FN cannot be given explicitly because the analytical form of FN
does not exist. FN which is usually tabulated in statistical text books (see Storch and Zwiers), can
also be evaluated by numerical integration or by using a simple approximation. For most purposes

FN (x) ≈
(
1 + sign(

x− µ

σ
)

√
1− e−2(x−µ

σ
)2/π

)
/2 (3.25)
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Figure 3.10: Illustration of the central limit theorem with a uniform distribution for n = 1, 2, 5.
The normal distribution is shown for comparison. (a) all pdfs are normalized (scaled) for better
comparison of the shape; illustrating eq. [3.26]. (b) pdfs are not normalized; illustrating eq. [3.27].

is a good approximation (compare red dashed line with the solid blue line Fig. 3.9).

Note that about 68% of normal distributed random values are within the interval [µ − σ, µ + σ].
The likelihood decreases fast with only 95% of the random values |x − µ| < 2σ and with 99.99%
random values |x−µ| < 4σ. Thus it is unlikely to have a value |x−µ| > 4σ if less than 104 samples
are taken. The 4σ limit is therefore often chosen to eliminate false data. It is also important to
note that a 4σ signal is not only unusual, it may in many physical system be in different regime
and could therefor follow different physical laws. That means if you do an experiment in which you
disturb the system by a 4σ signal, we are in a regime which is far away from normal, and it may in
many cases not give as any meaning full results about the nature of the normal system. So make
sure to test models if signals no larger than 4σ of the undisturbed/observed pdf .

3.8 Central Limit Theorem

The central limit theorem is of fundamental importance for statistics because it establishes the
dominant role of the normal distribution.

If Xk, k = 1, 2, ..., is an infinite series of independent and identically distributed random vari-
ables with E(Xk) = µ and V ar(Xk) = σ2 then the average 1

n

∑n
k=1Xk is asymptotically normal

distributed. That is,

lim
n→∞

1
n

∑n
k=1(Xk − µ)

1√
n
σ

∼ N (0, 1) (3.26)

Note that the central limit theorem holds regardless of the pdf of Xk According to the central limit
theorem, the distribution of a mean (or sum) of independent and identically distributed random
variables converges towards a normal distribution as the number, n of independent random variables
increases and the standard deviation of the mean decreases by 1/

√
n. That of the sum would

increase by
√
n.
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Figure 3.11: Illustration of the central limit theorem on the basis of 24hrs and monthly mean
surface temperatures at 56oN/10oE in July/August. The normal distributions with identical mean
and variance are shown for comparison (solid lines).

lim
n→∞

1

n

n∑

k=1

(Xk − µ) ∼ N (0,
σ2

n
) ⇒ σΣ =

σ√
n

(3.27)

However, nothing is known about when the convergence has made substantial progress. Fig. 3.10
illustrates how uniform distributed random variable converge to the normal distribution. We can
see that in this case the convergence is already very near the normal distribution with n = 5.

The central limit theorem has of cause some implication for physical climate variables. The temporal
or spatial average of physical climate variable can sometimes be considered as the average of
independent and identical distributed random variables, if, of cause the physical climate variable
are temporally or spatially independent and identical distributed. Fig. 3.11 illustrates this on the
basis of 24hrs surface temperatures and monthly mean surface temperatures. The 24hrs values are
significantly skewed, while the monthly mean values are nearly normal distributed with a smaller
standard deviation.

3.9 The Log-Normal Distribution

Some physical quantities are positive definite, such as rainfall or wind speed. Such quantities often
follow the Log-Normal Distribution.

A random variable X has a log-normal distribution with the median θ if ln(X) ∼ N (ln(θ), σ). The
density function is given by

fX(x) =
1

σ
√
2π

1

x
e

−(ln(x)−ln(θ))2

2σ2 for x > 0 (3.28)

The moments are given by

E(Xk) = θke(kσ)
2/2 (3.29)

Therefore
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Figure 3.12: The log-normal-distribution for ln(θ) = 0 and σ = 1.
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Figure 3.13: The χ2 distribution for different degrees of freedom k = 1, 2, 10.

E(X) = θeσ
2/2

V ar(X) = θ2eσ
2
(eσ

2 − 1)

γ1 =
√
eσ2 − 1(eσ

2 − 1)

(3.30)

3.10 Distribution Related to the Normal Distribution

It is often important to know the uncertainty of an estimate of the mean, variance or correlation.
For such significant tests the tail ends of the relevant pdfs are important to estimate the cumulative
distributions. In these cases the χ2, t-, F-distributions are often needed. See also section ??? for
significant tests.

3.11 The χ2 Distribution

The χ2 distribution is defined as the sum of k independent squared N (0, 1) random variables. The
most important purpose of the χ2 distribution is for the pdfs of estimates of the variance. The
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spectral variance estimates are χ2 distributed (see section 9). Squared wind speed with k = 2 is
another example. The form of this distribution depends only on one parameter, k, referred to as
the number degrees of freedom (dgf).

The probability of a χ2(k) random variable is given by

fX(x) =
x(k−2)/2e−x/2

Γ(k/2)2k/2
if x > 0 (3.31)

where Γ denotes the Gamma function. 1

We write X = χ2(k) to indicate that a random variable X is χ2 distributed with k degrees of
freedom. The distribution is tabulated in statistical text books (see Storch and Zwiers).

Some important characteristics of the χ2 distribution:

• The χ2 distribution is additive for independent X1 and X2 with dgf k1 and k2, than X1+X2

is a χ2(k1 + k2) distribution. Thus the χ2 distribution can be thought of as a sum of χ2(1)
distributions.

• The χ2 distribution is skewed, where distributions with smaller k are more skewed. This is
important to note, because χ2 distributions with small ks tend to underestimate the expected
value, as you can see from Fig. 15.7.

• It follow from the central limit theorem that the χ2 distribution converges to the normal
distribution; χ2(30) is very near the normal distribution.

• χ2(1) and χ2(2) have their modes (their most likely values; the peak in the pdf) at the origin.

• The spread of the distribution depends strongly on k. the moments are:

E(X) = k
V ar(X) = 2k

(3.32)

We see that both E(X) and V ar(X) are dimensionless. If we include the dimensions and
express V ar(X) as a function of E(X) we find:

E(X) = k · c
V ar(X) = 2k · c2 = 2E(X)2

k

(3.33)

So we see that σ, the spread of the pdf , decreases when k increases.

• In statistical tests we often need the p-quantiles, xp, for defining confidence intervals. The

dimensionless xp can be read from the cumulative χ2-distribution, by scaling it with E(X)
k we

can include the physical dimensions.

3.12 The Students t Distribution

The Students t distribution is of fundamental importance for testing the significance of the differ-
ences in the means or the significant of a correlation value (see sections ???). In both cases we need
to assume a normal distribution and a χ2 distribution.

1The Gamma function takes the factorial function onto the real space; Γ(x) =
∫

∞

0
e−ttx−1dt for x > 0.

Thus Γ(1) = 1 and Γ(x+ 1) = xΓ(x)
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Figure 3.14: The t-distribution for different degrees of freedom k = 1, 2, 10.

In particular we write for the Students t Distribution T = t(k) (T instead of X to indicate that it
is a test variable), if A and B are independent random variables such that

A ∼ N (0, 1) and B ∼ χ2(k)

then

A√
B/k

∼ t(k). (3.34)

This kind of relation between A and B is used in test of differences in the mean, for instance. With

the mean:A =∼ N (0, 1) and B = V ar(A) ∼ χ2(k). The test variable is µ1−µ2
σ = A√

B/k
.

The probability density function is given by

fT (t) =
Γ((k + 1)/2)(1 + t2/k)−(k+1)/2

√
kπΓ(k/2)

(3.35)

The distribution and especially the cumulative t-distribution is tabulated in statistical text books
(see Storch and Zwiers).

Some important characteristics of the t-distribution:

• E(T) = 0 for k ≥ 2

• V ar(T) = k
k−2 for k ≥ 3

• The t-distribution is symmetric.

• It follow from the central limit theorem that the t-distribution converges to the normal dis-
tribution; t(30) is very near the normal distribution.

3.13 The Fisher F -Distributions

The F Distributions is needed if X and Y are independent random variables such that X ∼ χ2(k)
and Y ∼ χ2(l), then
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X/k

Y/l
∼ F (k, l). (3.36)

The probability density function is given by

fF (f) =
(k/l)k/2Γ((k + l)/2)

Γ(k/2)Γ(l/2)
f (k−2)/2

(
1 +

k

l
f

)−(k+l)/2

(3.37)

The distribution and especially the cumulative F -distribution is tabulated in statistical text books
(see Storch and Zwiers). Some important characteristics of the F -distribution:

• It is positive definite.

• It is positively skewed.

• It converges to the χ2 distribution for l → ∞.

3.14 Summary of Theoretical Distributions

pdf parameters purpose example

Uniform U(a, b) X ∈ [a, b] wind direction, ice cover
interval boundaries

Normal(Gauss) N (µ, σ2) X ∈ R Temperature, Pressure
mean, variance

Log-normal N (ln(θ), σ2) X ∈ R+ Rain, wind speed
median, variance(ln(X)) or µ near boundary

χ2 χ2(k) X =
∑k

i=1X
2
i Variance, Spectral variance

Number degree of freedom Xi ∼ N (0, 1)

Students t t(k) A√
B/k

test of mean change

Number degree of freedom A ∼ N (0, 1) and B ∼ χ2(k)

Fisher F F (k, l) X/k

Y/l
test of variance change

Number degree of freedom X ∼ χ2(k) and Y ∼ χ2(l)

3.15 Continuous Random Vectors / Multi-Variate Data

Until now we discussed the pdf of single continuous random variables, such as physical scalar values
(e.g. temperature, wind speed or rainfall at one location). Often we need to evaluate the probability
density function of bivariate (e.g. such as temperature and sea level pressure at the same time) or
multivariate data, such as global temperature fields.

Multivariate data are continuous random vectors or fields for which we can carryover much of the
structures we defined for continuous random variables. Instead of the probability of a scalar event
we describe the probability to find a pair. e.g. the pdf of the co-variability of X and Y ∼ fX,Y (x, y)

(e.g. NAO-index and temperature in Kiel) or between fields/vectors ~X and ~Y ∼ f ~X,~Y (~x, ~y) (e.g.

such as temperature and sea level pressure at the same time).

For details on how to define the pdf of continuous random vector see Storch and Zwiers. The
calculation of the statistical parameters of the higher-dimensional pdfs is similar to those of the
scalar functions. For instance:
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e.g.:

~µ =

∫

RM

~xf ~X(~x)d~x

An example of a 2-dimensional pdf is shown in Fig. 4.1. It illustrates three different cases of
2-dimensional normal pdfs. In the uncorrelated case (left) the pdf is simply the product of the
two scalar normal pdfs and the likelyhoods of X2 does not depend on the values of X1. But in
the cases when X1 and X2 are correlated, the likelyhoods of X2 depend on the values of X1. For
this characteristic we need to define new parameters unique to multivariate data, which will be
discussed in this section.
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Chapter 4

The Covariance Matrix

covariance = 0.0
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Figure 4.1: Three examples of 2-dimensional normal distributions for uncorrelated variables(left)
and for correlated variables (middle and right). Note that the covariance is proportional to the
correlation.

The concept of variance can be carried over to define a covariance between two continuous random
variables. The covariance between a continuous random variable X and Y is

σ2XY =

∫ ∫

R2

(x− µx)(y − µy)fX,Y (x, y)dxdy (4.1)

The characteristics of this equation and the covariance as such may best be illustrated by the
examples of the 2-dimensional normal distribution in Fig. 4.1. The Integral becomes large when
the product of x′y′ is large where the pdf is large too. In the first case (left) the pdf is as large for
x′y′ being positive as it is for x′y′ being negative, so the integral/covariance becomes zero. In the
second case (middel) the pdf is larger when x′y′ is positive (upper right and lower left quarter of
the diagram), than when x′y′ is negative (upper left and lower right). So the integral/covariance
becomes positive. Similar but with opposite sign in the last (right) case. So the covariance between
X1 and X2 becomes large in amplitude if the pdf is ’focussed’ on the diagonals. Or in other words
the covariance between X1 and X2 becomes large in amplitude if the likelyhoods of X1 depend on
the values of X2 and vice versa. So incontrast to the variance, the covariance is not just a measure
of the spread of the distribution, but it is a measure of the syncronized spread.
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If the continuous random variables X and Y are elements of vectors/fields ~X and ~Y we may be
interested in the covariance between all possible pairs of Xi and Yj, namely the covariance matrix

Σ2
~X,~Y

=

∫

Rm

∫

Rn

(~x− ~µx)(~y − ~µy)
T f ~X,~Y (~x, ~y)d~xd~y (4.2)

The covariance matrix Σ2 of n,m-dimensional continuous random vector ~X, ~Y is a (m,n) matrix.
The (i, j)th element of Σ2 contains the covariance

σ2xi,yj =

∫ ∫

R2

(xi − µxi)(yj − µyj )fxi,yj (xi, yj)dxidyj (4.3)

Some important characteristics of the covariance matrix:

• The covariance describes the tendency of jointly continuous random variables to vary in
concert. If deviations of Xi and Xj from their respective means tend to be of the same sign,
the covariance between Xi and Xj will be positive, if the deviations tend to be of opposite
sign the covariance will be negative.

• Xi and Xj are said to be independent if the covariance is zero. Note that independence
is sometimes used in a more restrict sense, where two continuous random variables can be
dependent from each other even if the covariance is zero, see section ???.

• Note that the variance of a pdf is only a good measure of the spread of the distribution if
the pdf is a near normal distribution. In analogy, the covariance is only a good measure
of the joint variability of two continuous random variables if each of them is nearly normal
distributed, see also section ???.

If ~X = ~Y we have the covariance matrix Σ2
XX of the vector/field with itself, which is called the

auto-covariance matrix. Otherwise we call Σ2
XY the cross-covariance matrix.

Some important characteristics of the auto-covariance matrix:

• The auto-covariance matrix is symmetric.

• The diagonal elements are the variance of the continuous random variable Xi, such that
σ2ii = V ar(Xi). Thus the square root of the diagonal elements is the standard deviation
vector/field.

An example of the auto-covariance matrix is shown in Fig. 4.2. The figure shows the square
root of the diagonal elements of the auto-covariance matrix of global monthly mean sea surface
temperatures (SST), namely the standard deviation of global anomalous monthly mean SST.

Examples of single columns/rows will be discussed in the following section, on the basis of the
correlation matrix.

The analysis of the cross-covariance matrix plays an important role in the discussion of turbulence.
If we are interested in the mean value of a product of two physical quantitiesXY ; the heat transport
for instance (X = ~v, Y = T ):

XY = X · Y +X ′Y ′ (4.4)

The turbulent or transient part X ′Y ′ is often the dominating term and it is the covariance between
X and Y .
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Figure 4.2: The global standard deviation of the NCEP monthly mean 2m temperature field. An
Illustration of the square root of the diagonal elements of the covariance matrix. Units are in
Kelvin.

4.1 The Correlation

A problem with the covariance as a measure of the covariability is that it has a squared ([x]2 or
[x][y]) unit scale, for which it is sometimes difficult to get a felling for. The measure that is scale
invariant is the correlation.

The correlation between two random variables X and Y is given by

ρx,y =
Cov(X,Y )√
V ar(X)V ar(Y )

=
Cov(X,Y )

σ(X)σ(Y )
(4.5)

Some characteristics of the correlation ρxy:

• The correlation coefficient takes values in the interval [−1, 1]

• ρxiyj builds (i, j)th element of the correlation matrix between ~X and ~Y.

• As for the covariance, the correlation coefficients are an indication of the extent to which the
two variables X and Y are linearly related; that is , Y = a+ bX.

• ρ2xy can be interpreted as the explained variance. It is the proportion of the variance of one
of the variables that can be represented by a linear model of the other.

• Note, that two variables with zero correlation can still be related by a non-linear relation.

• Note, that two variables with non-zero correlation, are not necessarily directly related to each
other. Both can depend on a third variable.
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• As for the covariance, the correlation is only a good measure to covariability if both variables
are nearly normal distributed.

• ρXiXj refers to the auto-correlation if Xi and Xj are variables of the same quantity (e.g.
temperature). The cross-correlation otherwise.

• We refer to lag/lead correlations if the indices i, j refer to different points in time, see section
(???).

The best way to understand correlation values is to study some examples:

Example 1: The Fig. 4.3 illustrates some correlation values by a scatter and time-series plot.
We can see that the correlation value 0.9 refers to a very close agreement between the two random
variables. The linear relation between the two random variables is still clear with a correlation of
0.6. For the 0.3 and 0.0 correlation examples it is difficult to subjectively (be visual inspection of
the plots) decide if the two random variables are uncorrelated or not.

Example 2: The correlation is a measure of the linear relationship between two variables. Fig. 4.4
illustrates that two variables can have a strong non-linear relation, while the correlation coefficient
is zero.

Example 3: An example of a correlation matrix is shown in Fig. 4.5. The Figure shows the
diagonal elements of the correlation matrix between monthly mean surface temperature and the
1000hPa geopotential height. Such a plot is often called a ”point to point” correlation map, since
it represents the correlation between the two fields at identical spatial locations.

Example 4: The columns and rows of the covariance matrix are the correlation vectors/fields of
one location with the rest of the field, see Fig. 4.6. These correlation fields are often called ”box”
correlations.

Example 5: The Fig. 4.7 illustrates a correlation of a random variable (the NINO3 SST index)
with a random vector/field, which is a 1 ×m matrix, thus it is a vector or field. In this case the
complete correlation matrix is presented as a global field. The global correlation field is often called
the teleconnections of the index time-series.

Example 6: The Fig. 4.8 illustrates a correlation of the NAO-Index time series with the 1000hPa
geopotential height field. In this case the complete correlation matrix is presented as a global
field. Note that the NAO-index is constructed by Azores minus Iceland. So it is by construction
positively (negatively) correlated with Azores (Icland). We can estimate the correlation of Island
with the NAO-Index by: ρ(NAOvsIsland) = E().
... to be continued
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Figure 4.3: Illustration of correlation values by a scatter and time-series plot.
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Figure 4.4: Illustration of a non linear relation between x1 and x2 with zero correlation coeffient.

Figure 4.5: Correlation of monthly mean 2m-temperature with 1000hPa geopotential height. Data
from the NCEP period.
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Figure 4.6: Global auto-correlation fields of one point(box) with the global field of monthly mean
sea surface temperature (left) and NCEP 500hPa geopotential height (right).
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Figure 4.7: Correlation of monthly mean sea surface temperature with NINO3-index region. Data
from HADISST 1950 to 2010; linearly detrended.

Figure 4.8: Correlation of monthly mean 1000hPa geopotential height field with the NAO-index
(Azores - Island).
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4.1.1 The interpretation of Correlation

The correlation seem to be a fairly straight forward concept, which may not be considered a com-
plex idea or problem. But if you think about some of the implications in more details you will
realize, most likely, that it indeed does have some potentials for confusion. We will now discuss a
bit more in detail how you can interprete the correlation values and what potential pitfalls there are.

Consider the following statement:

Highly intelligent women tend to marry men who are less intelligent than they are.

You may first of all doubt this, but it actually is true (in statistical average). You would then,
possibly, think about the character of highly intelligent women and may not have too many nice
things to say about them. Maybe you would argue that they like to dominate their husbands?
When you do this you start to interprete the statistical finding. You interprete this as something
like:

Ihusband = ρ ∗ Iwife (4.6)

With 0 < ρ < 1. Thus the husbands are not as intelligent as the wives. So you build a linear
model as discussed in the previous section, when we introduced the correlation ρ. But this model
is neglecting something. First, consider now the following, also, true (observed) statement:

Highly intelligent men tend to marry women who are less intelligent than they are.

So we also would have:

Iwife = ρ ∗ Ihusband (4.7)

Now the eqs. [4.6 and 4.8] cant be true both at the same time. And they are both missing some-
thing: Randomness. We have neglected the stochastic nature of the problem in eqs. [4.6 and 4.8].
We can first of all note a few more observations:

Highly stupid women tend to marry men who are more intelligent than they are.

Highly stupid men tend to marry women who are more intelligent than they are.

The intelligence of husband and wife has a positive correlation .

Lets assume the correlation is 0.7. This is illustrated in Fig. 4.9. Lets assume X1 = Iwife and
X2 = Ihusband. We can take the objective point of view and say:

Iwife + ξw = Ihusband + ξh (4.8)

So Husband and wife have (in average) the same intelligence, but some additional noise (random-
ness) spreads out the one-to-one relationship (see Fig. 4.9). Now if you take the point of view for
a highly intelligent woman:

Ihusband = ρ ∗ Iwife + ξhw (4.9)

Now the intelligence of the husband is (in average) smaller than that of the wife due to the noise
(see Fig. 4.9 upper right). It is 0.7 in mean. This is because we cut through the distribution
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along a diagonal relative to the main axis of the distribution (one-to-one relation). This effect can
be understand by the fact we start out from assuming a very intelligent woman, which is already
unusual. Finding an equally intelligent man is challenged by the randomness, which simply makes
it much more likely to be closer to the mean. This effect is called Regression to the Mean.
So the important conclusion that we have to take here is that: Correlations is not just a deterministic
linear model, but it also models the mean effect of randomness. So when the correlation between
A and B is 0.7, then that means that A and B may have a linear relation larger than 0.7, assuming
you could get rid of the stochastic noise.
reducing the noise ... correlation increases ...spread reduced.
Lets look at two more examples to better understand this:
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Figure 4.9: (a) Two dimensional normal distribution (pdf) for a correlation of 0.7. The dashed
diagonal line marks the linear one-to-one relation (X2=X1); the two solid black lines mark the
linear models X2 = 0.7X1 and X1 = 0.7X2, respectively. (b) cutout of the 2-dimensional pdf in
(a) along the red line (X1 = 1.0) in (a) .(c) cutout along the blue line (X2 = 1.0) in (a). The solid
black lines in (a) and (b) mark the means of the pdfs.
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4.1.2 The Uncentered (spatial) Correlation

If consider to evaluate the similarity in spatial patterns, an uncentered correlation may often be
used. Consider the following example: We try to estimate the global warming pattern or the
teleconnections of ENSO. If we have two warming or teleconnection patterns we may like to know
how similar the two patterns are. For this we would compute the correlation between the two
patterns. Using the normal definition of the correlation (eq. [4.5]) would require to subtract the
mean of the pattern first. However, the mean warming or teleconnection may actually be the main
part of the pattern. The normal definition of the correlation (eq. [4.5]) would only evaluate the
similarity in the pattern that are different from the overal mean.
An uncentered correlation may be more useful for defining the spatial correlation. In the uncentered
correlation the mean of the two random variables X and Y is not subtracted. Thus eq. [4.5] is not
evaluated based on anomalies, but on the whole values of X and Y . Whether such an uncentered
spatial correlation is more meaningful depends on the problem addressed.
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Estimation of Statistical Parameters

We assume in this section that the result of a sampling process can be represented by a sample of n
independent and identically distributed (iid) random variables {X1, X2, ..., Xn}. In general, we use
X to represent any of iid random variables in the sample and assume that the common probability
density function of X is fX(·). Furthermore, we do not yet assume a specific form for fX .

5.1 Discrete Conditional Samples of Continuous Random Vari-
ables

Continuous Random Variables are usually sampled in discrete intervals.
Note that the above estimate of the pdf assumes that the samples are taken randomly or in fixed
intervals. The decision to take a sample or not, must not depend on the state of the system itself,
which is for observation often not the case.

Examples:

• Ship-measurements: Assume we want to determine the mean state and variance of the
wind field over the North Atlantic based on Ship-measurements. Ship-measurements often
depend on the weather. Sometimes the measurements are not carried out if the weather
is bad or the measurements are taken at a different location (ship tracks are depending on
the weather). The resulting pdf or parameters of the pdf are biased or conditioned by the
weather. It is likely, for instance, that the wind speed will be under estimated and the pdf of
temperatures may be shifted towards warmer in high-latitudes.

• Satellite-measurements: The same as in the previous example holds for Satellite-measurements.
Satellites can not always measure due to weather conditions (e.g. Clouds, day light, no day
ligth).

• Post-processing of data: Often data are post-processed to eliminate false measurements.
This is often done by some simple statistical considerations. Large deviations from the mean
are, for instance, often considered to false measurements. This of cause will reduce the
probability to find extreme events in post-process observed data and can change the shape of
the pdf .

• The broken cloud effect (BCE): One may want to know under which cloudiness the bro-
ken cloud effect (more than 100% incoming sun light due to additional cloud reflections) is
strongest. For this one may plot the pdf of the BCE as a function of cloudiness. However,

49
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this histogram does not say if the effect is related to cloudiness, because the samples may be
taken under specific cloudy conditions. If we have only measured a certain type of cloudiness,
than we will have most BCE for this cloudiness. We have to fold the pdf with the pdf of the
cloudiness itself. A small probability of BCE may be due to only few measurements for this
cloudiness. See also section 17.5.2.

5.2 Histograms: An Estimator for the Probability Density Func-
tion

The frequency histogram is a crude estimator for the probability density function, fX of X. To
obtain a frequency histogram the phase space (e.g. R) is divided into K subsets Θk such that

K⋃

k=1

Θk = R and (5.1)

Θk ∩Θj = ∅ for k 6= j (5.2)

The number of observation that fall into each Θk is counted and divided be the total number of
observations so we obtain

H(Θk) =
| {Xk : Xk ∈ Θk} |

n
(5.3)

where |S| denotes the number of elements in set S. H(Θk) is an estimator of

P (Xk ∈ Θk) =

∫

Θk

fX(x)dx (5.4)

Consequently, the random step function

f̂X(x) =
H(Θk)∫
Θk
dx

if x ∈ Θk (5.5)

is a crude estimator of the true density function, with
∫
Θk
dx being the length of the interval H(Θk).

The empirical cumulative distribution function can be estimated by

F̂X(x) = H([−∞, x]) (5.6)

Note that empirical estimations of the higher order moments or the tails of the pdf usually require
many observations, while the mean and variance (unless time scale dependent) are often well
estimated with small numbers of observations (e.g. 10). Thus the analysis of extreme values
requires large data sets.

5.3 Estimating the Mean

The best estimate of the mean µ is

µ̂ = X̄ =
1

n

n∑

k=1

Xk (5.7)

It may not be straight forward to see that this is the best estimate of eq. [3.3], that is
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µ =

∫ ∞

−∞
xfX(x)dx, (5.8)

but it may easier to comprehend if we sort the sum in eq. [5.7] into a histogram, which is an
estimate of fX(x).

5.4 Estimating the Central Moments

In general the moments based on integrals of a continuous functions fX(·) transform into sums of
discrete samples as given by

̂
∫

Ω
g(x)fX(x)dx =

1

n

n∑

k=1

g(Xk) (5.9)

However, if the central moments are estimated relative to the mean, µ̂, which is estimated by the
same data, then the estimate changes slightly. The best estimate of the variance is

σ̂2 =
1

n− 1

n∑

k=1

(Xk − µ̂)2 (5.10)

Note that he sum is divided by n− 1 instead of n, as for the mean. This reduced degree of freedom
in the estimate of the variance is related to the fact that the same samples are used to estimate
the mean value (note that the mean value in eq. 5.10] is also an estimate. Consider, for instance,
that the exact mean is known a priori: It is easy to see that the sum in eq. [5.10] would be larger
compared to the one that uses the estimated mean, µ̂i. The version with the a priori known mean
is often used in forecast skills and is called the ”root mean squared error” (RMS-error or RMSE):

εRMS =

√√√√ 1

n

n∑

k=1

(Xk − µ)2 (5.11)

5.5 Estimating the Covariance and Correlation

The estimate of the covariance is slightly different from the estimate of the mean. The covariance
is given by

σ̂2ij =
1

n− 1

n∑

k=1

(Xk;i − µ̂i)(Xk;j − µ̂j) (5.12)

and the related estimate of the correlation is

ρ̂ij =
Ĉov(Xi, Xj)√
V̂ ar(Xi)V̂ ar(Xj)

(5.13)

5.6 The Rank Transformation (Spearman Rank Correlation)

In the discussion of the parameters of a pdf we have seen that the variance is only a good measure
for the scale of the distribution, if the pdf is nearly normal distributed. The same is true for
the covariance and correlation. A non-parametric approach based on ranks can be used when the
observations are thought not to be normal.
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The sample {(Xi ,Yi) : i = 1, . . . ,n} is replaced by the corresponding sample of ranks {(RXi
,RYi

) :
i = 1, . . . ,n}, where RXi

is the rank of Xi amongst the XS and RYi
is defined similarly.

An Example: X = 1, 9, 5, 8, 3, 7 und Y = 5, 9, 2, 8, 78, 0 ⇒ R(X) = 1, 6, 3, 5, 2, 4 und (Y) =
3, 5, 2, 4, 6, 1.
The dependence between X and Y is then estimated with the Spearman rank correlation coefficient
ρ̂SXY

ρ̂SXY =

∑n
i=1RXi

RYi
−N√

(
∑n

i=1R
2
Xi

−N)(
∑n

i=1R
2
Yi

−N)
(5.14)

where N = n(n+1
2 )2. This is just the ordinary sample correlation coefficient1 in eq.[5.12] of the

ranks. Thus the Spearman ranks are a transformation of a variable that is non-normal distributed
into a variable that is uniformly distributed. Note that the interpretation of this correlation coeffi-
cient may still be problematic, because a non-normal pdf indicates some non-linear behavior of the
variable which can probably not be compared with another variable by a measure of linear relation.

5.7 Sample Vectors

Much of the algebra for the series of samples of continuous random variables can be interpreted
better if we write the series of samples as a sample vector:

X̂ = {x1, x2, ..., xn} = ~X (5.15)

Each sample is independent of the other. Therefore each can be interpreted as a component of
n-dimensional vector. The variance can then be written as

σ̂2 =
1

n− 1

n∑

k=1

(Xk − µ̂)2 =
1

n− 1
< ~X − µ̂| ~XT − µ̂ > (5.16)

or with µ̂ = 0

σ̂2 =
1

n− 1
< ~X| ~XT > (5.17)

The covariance:

σ̂2xy =
1

n− 1
< ~X|~Y T > (5.18)

The correlation:

ρ̂xy =
< ~X|~Y T >√

< ~X| ~XT >< ~Y |~Y T >
(5.19)

1Also known as Pearson’s r
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Unlike in other research areas, where we could do experiments and study the results of many
realizations, in climate research we have only one world (one realization) and therefore have to
relay on the analysis of the time series of events.
In time series analysis we are interested in the characteristics of the time evolution of a physical
quantity, which is a central aspect of climate variability analysis. By studying the characteristics of
the time series of a physical quantity we learn something about the dynamical system that drives
the physical quantity.
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Chapter 6

Basic Definitions and Examples

The time series analysis is often central to statistical analysis in climate research. The following
examples illustrate some of the methods discussed in the following subsections.

Figure 6.1: A time series (blue line) deconstructed into a desterministic cycle (green line), a dester-
ministic non-linear trend (red line) and into the residual red-noise variability (black line).

In general a time series of a climate variable will be a combination of a deterministic part, like a
cycle (e.g. seasonal, diurnal) or trend, and a stochastic part. Fig. 6.2 illustrates the decomposition
of a time series. In the following sections we will focus on the stochastic part, assuming that the
deterministic cycle or trend has been removed prior to the analysis of the time series.
Fig. 6.2 shows 50 years long time series of monthly mean temperatures at different locations. We
can see that the time scale in which the temperature values change are different in the three time
series. In the atmosphere we find rapid changes will in the SST we find both rapid and long time
changes, and in the ocean the time evolution of the variability is the slowest. The following sections
will define parameters, such as the auto-correlation, decorrelation time and spectra, which will help
to quantify these differences in the time scale behavior.
In Fig. 6.3 we see the El Niño SST time series and an estimate of the spectra together with a
theoretical spectra. The theoretical spectra is that of an auto regressive process of the first order,
where the parameters of the process has been fitted to those of the El Niño SST time series. It is
for the understanding of climate variability of interested to know what kind of stochastic process
is driving the variable presented in the time series. In the following section we will give some
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Figure 6.2: 50 years long time series of monthly mean temperatures of the atmosphere in 2meter
height at location in central northern Asia (upper), of the sea surface in the North Atlantic (middle)
and in 180meters depth in the North Atlantic Ocean (lower).
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Figure 6.3: El Niño SST time series (left) and an estimate of the spectra together with a theoretical
spectra (rigth). The theoretical spectra is that of an auto regressive process of the first order, where
the parameters of the process has been fitted to those of the El Niño SST time series.

discussion of stochastic processes in general and of auto regressive process in particular. We will
also discuss how these processes are compared with time series.
Often we want to compare the variability of two time seriess with each other, in doing so we are
interested in the time scales on which the two time series correlate well with each other, see Fig.
6.4 for instance. We will discuss the cross correlation function and the cross-spectrum of two time
series.
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Figure 6.4: Two time series (upper lines) that are uncorrrelated, but are correlated on longer time
scales (lower lines).
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6.1 Stationary Processes

A stochastic process Xt : t ∈ Z is said to be stationary if all stochastic properties (e.g. mean,
variance, correlation) are independent of the index t, which can be an index of time or a spatial
dimension.
It follows that if Xt is stationary then:

1. Xt has the same distribution function F for all t, and

2. for all t and s the parameters of the joint distribution function of Xt and Xs depend only on
|t− s|.

Most climate variables are not stationary in this restrict definition, mostly due to externally forced
deterministic cycles such as the diurnal or annual; e.g. the mean temperature in Kiel at midnight
in January is different from the mean at noon in August.
However, many climate variables can be considered as cyclo-stationary processes. If a stochastic
process Xt is cyclo-stationary then:

1. E(Xt) = µt|m. The mean is a function of the time within the external cycle, where t|m refers
to the phase in the external cycle

2. ∀t, s is fXtXs = fXtXs(|t − s|, t|m). For all t and s the parameters of the joint distribution
function, fXtXs of Xt and Xs depend only on |t− s| and the phase t|m in the external cycle.

Unfortunately, even this less restricted version of stationarity often does not apply to climate
variables due to long term trends in the boundary conditions (e.g. CO2 increase). However, we
usually assume that these trends are negligible or we remove an estimate of the trend and analysis
the residual under the assumption of cyclo-stationarity.

6.2 Ergodicity

Definition: Physical systems are ergodic, if the estimate of the statistical parameters based on
averages in time,

µ̂t =
1

n

n∑

t=1

g(Xt)

are identical to the estimate of the statistical parameters based on ensemble means,

µ̂i =
1

n

n∑

i=1

g(Xi)

Thus µ̂t = µ̂i.

Which is usually the case in climate research. We can observe time series of climate variables, but
we cannot observe ensembles of the climate system. We therefore study time series to estimate the
statistical parameters.



Chapter 7

Stochastic Climate Models

A physical system is usually described by the dynamical equation that govers the time evolution
of the system:

dX(t)

dt
= A(X(t), Yi(t)) (7.1)

Here X(t) is a function of many other physical variables Yi, which themselves depend in time and
from each other. In princple the time evolution is given by the initial state of all variables and by
the formulation of eq. [7.1].

In practice, however this is an impossible endeavor, due to three significant limitations:

i.) The initial state, X(t0), Yi(t0), is not exactly known.
ii.) The time derivative, d

dt , is not exactly known.
iii.) The operator, A(·), is not exactly known.

The problem with points i.) and ii.) is nicely demonstrated by the Lorenz model. The Lorenz
model is a low dimensional problem of convection cells, with only three variables interacting. The
time evolution of the system can not be predicted beyond a certain time period if the initial state
has a finite error. Further the time derivative has to be estimated by discrete time steps, which
contributes to the uncertainty in predicting the time evolution.

The climate system is a much more complicated thermodynamical system with a very high dimen-
sional state space. In practice the dynamical system of the climate cannot be simulated by pure
dynamical equations, although general circulation models are trying to do so.

A concept that helps to understand the most important dynamics of the system and therefore the
main statistical characteristics of the system is the use of stochastic climate models. In general we
may assume that any climate variable X is a result of a stochastic process:

dX(t)

dt
= fm(t) ∗A(X(t), Yi(t)) + fa(t) (7.2)

A(·) = slow dynamics relative to ∆t
fm, Fa = fast dynamics relative to ∆t
fm = multiplicative noise (mulitplikatives Rauschen)
fa = additive noise (Additives Rauschen)

Here A(X,Yi) denotes any kind of function depending on the climate variable X, other climate
variables Yi and some fast changing variable fm = multiplicative noise and fa =additive noise.
The basic concept of a stochastic climate model is the introduction of the fast changing variable
f , which represents physical process that happen so fast and may be on smaller spatial scales that
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the climate model can not resolve the physical processes for f . Thus f represents some white noise
for the climate system which is independent of the system. The most important effect of the noise
f is that it can generate variability in X that are much larger than the variability of f . Prior to
the introduction of the stochastic climate models by Klaus Hasselmann (1976) the general believe
was that low-frequency variability in X must be introduced by some kind of external forcing, such
as fluctuation of the solar radiation or vulcanos.

7.1 Example: Slab ocean model

A simple example of the stochastic climate model is the heat balance of the oceans surface layer
(the mixed layer). If we only consider the atmospheric heat flux as source of heat for the ocean
mixed layer, than the sea surface temperature (SST) follows the equation:

dSST

dt
=

1

cph
Fatmos, cp = 4 ∗ 106J/Km3 (7.3)

The depth of the mixed layer h is in average about 50 meter (therefore ’slab’). The atmospheric
heat flux is in this model given by

Fatmos = cA(Tatmos − SST ), cA =
40W

m2K
(7.4)

Thus,

dSST

dt
= −cSST + cTatmos (7.5)

The SST is an AR(1)-process if the Tatmos is white noise and the constant c is indeed constant.

7.2 The Probability Distribution Function of some Stochastic Pro-
cesses

In the following we will discuss the probability distribution function of some simple stochastic
processes to illustrate that the parameters of the pdf are a reflection of the physical processes
driving the system.

A linear damping model / A normal pdf : One of the simplest stochastic processes is linear
damping, so that

dX

dt
= −c ∗X + f (7.6)

with c a positive contant and f a random noise forcing. The pdf of this process is a normal
distribution, with σ only depending on the strength of c and f , see Fig. 7.1.

A asymetric feedback model / A skewed pdf : A physical process that leads to a skewed dis-
tribution is a process that responses asymmetrically (non-linear) to deviations from its equilibrium
state. If, for instance, the damping is stronger for deviations to the lower side of the equilibrium
state than for deviations to the larger side, than the pdf will be positively skewed and deviations
to larger values are more likely than deviations to smaller. Such as,

dX

dt
= c0 − c1X − c2X

2 + f (7.7)
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Figure 7.1: The potential functions(upper row) and pdf(lower) of the processes discussed in section
7.2.

for ci > 0 . A simple way to illustrate the skewness of this physical process is to evaluate the poten-
tial function of the forces that drive the physical variable. If the potential function is asymmetric,
than the pdf of this process will be skewed towards the less stepper slope. An examples is shown
in Fig. 3.1.
A well known example is the El Niño index of the east equatorial SST in the tropical Pacific, which
is skewed to positive values. Thus extreme El Niño events (positive deviations) are more likely as
equally strong La Niña events (negative deviations), see Fig. 3.3.

A non-linear damping model / A pdf with kurtosis: A stochastic process with a non-linear
but symmetrical damping is an example of a pdf with kurtosis. Such as

dX

dt
= −cX3 + f (7.8)

Here the damping is very small for small deviations, but it increases much faster for large deviations
from the equilibrium than a linear damping the resulting pdf has negative kurtosis. The system is
therefore nearly free to evolve within a certain interval, but fell is strong boundary at the limits of
this interval. See the potential function in Fig. 3.1.

A non-linear model / A bimodal pdf : A stochastic process that has two equilibria is an
example of a bimodal process. Such as

dX

dt
= c1X − c3X

3 + f (7.9)

However, bimodality can result from many different processes. In the climate system the determin-
istic cycles (daily,annual) are the main source for bimodality, because the pdf of a sine function is
bimodal.



64 CHAPTER 7. STOCHASTIC CLIMATE MODELS

Note that neither the mean state nor the median of the pdf of a stochastic processes must fall
together with the equilibrium of the unforced system.

7.3 Autoregressive (Markov) Processes

The dynamics of many physical processes can be approximated by first-, second or sometimes
higher-order ordinary linear differential equations, for example,

a2
d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = z(t)

where z is some external (independent of x) forcing function. Time discretization yields

xt = α1xt−1 + α2xt−2 + ξt (7.10)

where

α1 =
a1 + 2a2

a0 + a1 + a2

α2 =
−a2

a0 + a1 + a2

ξt =
1

a0 + a1 + a2
zt

If zt is a white noise process (an uncorrelated time series of normally distributed random values),
then eq. [7.10] defines an auto-regressive process of the second order or AR(2) process.
An auto-regressive process pf order p, or an AR(p) process, is generally defined as follows:
Xt : t ∈ Z is an auto-regressive process p of order p if there exist real constants αk, k = 0, 1, ..., p,
with αk 6= 0 and a white noise process Zt : t ∈ Z such that

Xt = α0 +

p∑

k=1

αkXt−k + Zt (7.11)

AR(p) Processes are also called Markov Processes. Note that Xt is dependent of the present and
all pasted Zt, while it is independent of Zt in the future. The AR(p) processes are part of a larger
class of auto-regressive and moving-average (ARMA) processes. The moving-average processes are,
however, of little relevance in climate research.
The above description of an auto-regressive process is based on a discrete time series. We can also
formulate the auto-regressive processes as a continuous differential equation:

a0x(t) +

p∑

k=1

ak
d

dtk
x(t) = z(t) (7.12)

Note that the relation between the ak of the continuous differential equation and the αk of the
discrete eq. [7.11] is somewhat complex for higher order AR(p) processes.

7.3.1 Variance of AR(p) Processes

We will in general assume that the mean µ = 0 and therefore α0 = 0 , thus discuss only anomalies.
The variance is given by

V ar(Xt) =
V ar(Zt)

1−
p∑

k=1

αkρk

(7.13)
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Figure 7.2: Different realization of AR(1) processes with different α = 0.5, 0.9, 0.99 but with iden-
tical unit variance normal white noise processes Zt. Note the different y-axis scaling.

where

ρk =
Covar(Xt−kXt)

V ar(Xt)
(7.14)

is the auto-correlation function of Xt.

7.3.2 Examples of AR(1) Processes

A discrete AR(1)-process follows the equation:

Xt = α1Xt−1 + Zt (7.15)

Fig. 7.2 illustrates some AR(1) Processes with α1 ∈]0, 1[. Note that α1 can take all real values,
but only α1 ∈ [0, 1[ are of physical relevance. For α1 < 0 the time series flips sign in every time
step, while for |α1| ≥ 1 the process becomes non-stationary.
Note that the different AR(1) Processes are integrated with identical white noise processes, we can
see that all AR(1) Processes exhibit the same fluctuation, but that the AR(1) Process acts as a
low-frequency amplifier of the white noise time series. Following eq.[7.13] we find that the variance
is given by

V ar(Xt) =
σ2z

1− α2
1

(7.16)

which uses the fact that the lag(1) auto-correlation ρ1 = α1. See Fig.7.2 for increase in variance
with increase in α1. The auto correlation of an AR(1) process is decreasing exponentially with
ρt−k = αk1 , but is never zero (theoretically). Note, that in this discrete AR(1)-process the variance
of Xt is larger than that of Zt, which is somewhat misleading if we think of continuous physical
processes.
Physical model are usually written as differential equations. The differential equation for an AR(1)
process is
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dx(t)

dt
= a1x(t) + z(t) (7.17)

with

a1 =
α1 − 1

α1
(7.18)

The parameter a1 is the damping of x. The physical interpretation of an AR(1) process with
α1 ∈]0, 1[ is a damped system that responses to every disturbance from its mean value by a linear
negative feedback, acting to rebuild the equilibrium state, where the damping is proportional to
the amplitude of the disturbance. Note that in this notation the physical units of x(t) and z(t) are
different.
We can rewritten this equation to find a form in which the amplitudes (variances) of the forcing,
z(t), and x(t) can be directly be compared. A linear damped system may be presented with a
newtonian damping:

c
dx(t)

dt
= γ(z(t)− x(t)) = −γx(t) + γz(t) (7.19)

c = the inertia of the x(t) (e.g. for temperature it is the heat capacity)
γ = a damping.

In this formulation we can compare the variance of the forcing z(t) with x(t).
to be continued . . .

The AR(1)-process dX
dt = cX + f is the simplest case of a stochastic climate model, which is a

good approximation for many physical processes as, for instance, the glacier grows, lake or river
water levels, grows of plants or the heat balance of the upper ocean. It is therefore often chosen as
the null hypothesis for climate variability. The most important effect of the noise f is that it can
generate variability in X on longer time scales.

7.3.3 Examples of AR(2) Processes

A discrete AR(2)-process follows the equation:

Xt = α1Xt−1 + α2Xt−2 + Zt (7.20)

The AR(2) Process has a second additional parameter, which can, but does not have to, be an
indication of oscillating behavior. Note that not all combinations of α1, α2 are stationary only if

α2 + α1 < 1

α2 − α1 < 1

|α2| < 1

and not all are AR(2) Processes, only if

α2 6= α2
1

and AR(2) Process can only show oscillating behavior if α2 < 0, but do not necessarily show
oscillating behavior, see Storch and Zwiers 10.3.5 for details.
Fig. 7.3 illustrates some AR(2)-Processes with different values for α1 and α2. We can clearly see
that the three examples have very different characteristics in the time scale behavior. The first
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Figure 7.3: Different realization of AR(2) processes with different α1 and α2, but with identical
unit variance normal white noise processes Zt. Note the different y-axis scaling.

example with α1 = 0.4 and α2 = 0.4 is dominated by large random high-frequency variability, but
has also a low-frequency part of variability. The second example with α1 = 1.9988 and α2 = −0.9989
has a relative regular oscillation on longer time scales, whose amplitude is variable of time. The
third is example with α1 = 1.97 and α2 = −0.971 is similar to the second, but the oscillation is on
shorter time scales and less dominant.
The differential equation for an AR(2) process is:

a0x(t) + a1
dx(t)

dt
+ a2

dx(t)

dt2
= z(t) (7.21)

Note that fluctuations of x(t) can grow in the absence of any driving forcing z(t), due to the term

a2
dx(t)
dt2

. The physical interpretation of an AR(2)-process is a damped oscillation system, which can,
unlike the AR(1)-process, have a preferred time scale at which the system oscillates if driven with
noise z(t).
An example of a damped oscillation in climate is the El Niño / Southern Oscillation, which was
shown by Jin (1997) and Burgers et al. (2005) to behavior much like a damped oscillation.



68 CHAPTER 7. STOCHASTIC CLIMATE MODELS



Chapter 8

The Auto-Covariance Function

The autocovariance or correlation function is the statistical parameter that describes the time scale
behavior of a time series. It presents the covariance or correlation of the time series relative to the
time series in a lag or lead of a time interval. The Fourier transform of the auto-covariance is the
spectra of the time series, which is an alternative statistical parameter (presentation) of the time
series which is more appropriate if one is interested in the variance as a function of frequencies or
periods. The spectra will be discussed in the next section.

8.1 Estimating the Auto-correlation/-covariance Function

A non-parametric estimator of the auto-correlation function ρ(τ) is given by

ρ(τ) = γ(τ)/γ(0) (8.1)

where γ(τ) is the sample auto-covariance function

γ(τ) =
1

T

T∑

t=|τ |+1

X′
t−|τ |X

′
t. (8.2)

The sample auto-covariance(correlation) function γ(τ) is simply the covariance(correlation) of X
with itself at a time lag of τ . It is set to zero for |τ | ≥ T . As a repetition of the fundamentals
section:

• γ ist symetrisch

• γ(0) = V ar(X)

• γ(τ) <= γ(0)

• |ρ(τ)| <= 1

• ρ(τ) < 0 ⇒ oscillation.

A statistical interpretation: ρ(τ) illustrates the mean time evolution a unit 1 signal. Small
absolute values indicate little (in average) relation of X to past/future value.

A physical interpretation: ρ(τ) illustrates how the dynamical system responses to a disturbance
from the equilibrium.

The auto-correlation function of the time series can be interpreted as the persistence forecast skill.
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Figure 8.2: The auto correlation function of
the observed time series of El Niño monthly
mean SST, as shown in Fig. 6.3.

8.2 Examples of the auto-correlation function

Example 1: The auto correlation function of observed time series of monthly mean Temperatures
at different locations are shown in Fig.8.1. We see that all auto-correlation functions decrease more
or less monotonically to zero, without any significant crossing of the zero line, which indicates that
no oscillations are present in all three time series. Further we see that the atmospheric temperature
decreases very fast, within month, the SST decreases fast in the first year, but after the first year
it decreases more slowly to zero. The ocean temp decreases relatively slowly to zero, in which it
reaches near zero correlation after about 10 years.

Example 2: The observed time series of El Niño shows a significantly different auto correlation
function, if compared to those of the first example, see Fig.8.2. Here find a significant oscillation of
the auto correlation function around zero, indicating an oscillation of the El Niño time series with
a period of about 4 years (indicated by the first minima by about 2years, half a period, and the
second local maxima in the auto correlation function at about 4years the full period).

Example 3: The auto correlation function of Observed time series of 24hrs 500hpa together with
the time series themselves are shown in Fig.8.3. We can see that auto correlation function of 500hpa
in the higher latitudes (Northern Germany) decreases fast to zero, with near zero correlation after
10 days. In the tropics we find an initial fast decrease of the auto correlation function, but it
remains on a level of about 0.3 after 20 days. It indicates that the variability in the tropics has
some significant low-frequency variability. This is already visible in the time series where we can
see that the 500hpa anomalies have one sign for over one year (positive over most of 1983, negative
for most of 1984), a characteristic we can not find in the higher latitudes. This is related to the
Ocean-Atmosphere interaction in the tropics that also cause the El Niño / Southern Oscillation
mode.

Example 4 : Forecast skill of Models. The forecast skills of models are often quantified by using
the correlation with the observed values at different lead times as a skill value, see Fig.8.4. The
simplest assumption for the time evolution of a climate variable is the auto correlation function,
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which reflects the mean time evolution. It is often simplified to damped persistence (an AR(1)-
process). A dynamical model should be able to ’beat’ the damped persistence (auto-correlation)
skill values. Thus the correlations of the models forecast with the observed values should be large
for dynamical models than the auto-correlation.
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Figure 8.3: Left: Time series of 24hrs mean geopotential heights in Northern Germany (upper)
and at the equatorial east Pacific. right: The auto-correlation functions corresponding to the time
series in the left panels.

Figure 8.4: The black line is the auto-correlation function of EQ2-region of the equatorial Pa-
cific SST. The colored lines are different model forecast correlations with the EQ2-region SST for
different lead times. From Dommenget and Stammer (2004).
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8.3 11.1.6 The Yule-Walker Equations for an AR(p) process.

If we multiply a zero mean AR(p) process Xt, eq.[7.11], by Xt−τ , for τ = 1, . . . , p,

XtXt−τ =
p∑

i=1

αiXt−iXt−τ + ZtXt−τ , (8.3)

and take expectations, we obtain a system of equations

~γp = Σp~αp (8.4)

that are known as the Yule-Walker equations. The equations relates the auto-covariances

~γp =
(
γ(1), γ(2), . . . , γ(p)

)T

at lags τ = 1, . . . , p to the process parameters

~αp = (α1, α2, . . . , αp)
T

and the auto-covariances γ(τ) at lags τ = 0, . . . , p− 1 through the p× p matrix

Σp =




γ(0) γ(1) . . . γ(p− 1)
γ(1) γ(0) . . . γ(p− 2)
...

...
. . .

...
γ(p− 1) γ(p− 2) . . . γ(0)




This system of equations has two applications. First, if γ(0), . . . , γ(p) are known (or have been es-
timated from a time series), the parameters of the AR(p) process can be determined (or estimated)
by solving eq.[8.4] for ~αp. Once the parameters have been estimated, both the auto-covariance
function for lags τ > p and the spectrum of the unknown process can be estimated by the corre-
sponding characterizations of the fitted AR(p) process. Second, if ~αp is known, then (11) can be
recast as a linear equation with unknowns γ(1), . . . , γ(p), given the variance of the process γ(0).
Thus the Yule-Walker equations can be used to derive the first p + 1 elements 1, ρ(1), . . . , ρ(p) of
the auto-correlation function. The full auto-covariance or auto-correlation function can now be
derived by recursively extending equations (11). This is done by evaluating equation (10) for τ ≥ p
and taking expectations to obtain

γ(τ) =

p∑

k=1

αkγ(k − τ) (8.5)

and

ρ(τ) =

p∑

k=1

αkρ(k − τ) (8.6)
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Figure 8.5: The auto-correlation function of different AR(1)-processes. They correspond to the
time series shown in Fig. 7.2.

8.4 The Auto-correlation Functions of AR(1)- and AR(2)-Processes

AR(1)-process: The Yule-Walker equation (8.4) for an AR(1) process is

γ(1) = α1γ(0)

Hence ρ(1) = α1. Applying (8.6) recursively we see that

ρ(τ) = α
|τ |
1 . (8.7)

The Fig. 8.5 illustrates the auto-correlation function of different AR(1)-processes. They correspond
to the time series shown in Fig. 7.2.
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Figure 8.6: The auto-correlation function of different AR(2)-processes. They correspond to the
time series shown in Fig. 7.3
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AR(2)-process: The Yule-Walker equations (8.4) for an AR(2) process are

α1γ(0) + α2γ(1) = γ(1)

α1γ(1) + α2γ(0) = γ(2)

Using the first equation, we see that

ρ(1) =
α1

1− α2
. (8.8)

Recursion (8.6) can be used to extend the auto-correlation function to higher lags. For example,
the auto-correlation at lag-2 is

ρ(2) =
α2
1 − α2

2 + α2

1− α2

The Fig. 8.6 illustrates the auto-correlation function of different AR(2)-processes. They correspond
to the time series shown in Fig. 7.3.

8.5 The Characteristic Time Scales of Stochastic Processes (The
Decorrelation Time)

In many statistical analysis we need to know the number degree of freedom, nX , of the time series.
e.g. the χ2-pdf or the tests of mean,variance, correlation. Initially we had the definition for nX ,
that Xi and Xj have to be independent, meaning uncorrelated. This definition is for stochastic
processes not helpful, because the auto-correlation of an AR(1) process, for instance, does not go
to zero at all.

However, nX of X can be estimated by using the statistical relation between the statistical param-
eter of interest and nX . For the mean we know from the central limit theorem that:

V ar(X̄) =
σ2X
nX

(8.9)

If we know σX and V ar(X̄) we can get nX . The relation between the true number of time steps
used and nX is the decorrelation time :

τD =
n

nX
(8.10)

For the mean we find:

τD = 1 + 2
∞∑

k=1

ρ(k) (8.11)

For the variance we find:

τD = 1 + 2

∞∑

k=1

ρ(k)2 (8.12)

So why do we have different characteristic time scales for the mean and variance? Examples of
AR(1) and AR(2) process can illustrate why the characteristic time scales must be different.

To be continued ldots
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8.6 The Auto-Correlation Function of a Cyclo-Stationary Process

The auto-covariance function of a cyclo stationary process relative to a phase of the cycle is not
symmetric. In order to illustrate the cyclo stationary behavior of the time series, it is helpful to
present the auto-correlation function as a function of the time lag relative to a phase of the cycle,
ρ(t/m− τ), with t/m being a phase of the cycle.
Fig. 8.7 illustrates an example: The auto-correlation of the monthly mean SST in the North
Pacific as a function of the lag τ has no unusual features (ignoring the fact that is does not go
zero, which is due to long time variations), but the auto-correlation as a function calendar month
shows an asymmetry and it has a significant ’oscillation’. The oscillation of the auto correlation is
not indicating an oscillation of the time series, which would have been an oscillation of the auto
correlation around. This oscillation of the auto-correlation as a function calendar month is an
indication of the reemergence of SST anomalies.
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Figure 8.7: The auto-correlation of the monthly mean SST in the North Pacific as a function of the
lag τ (left) for all month and the auto-correlation of march as a function calendar month relative
to march (right). Positive lags indicate correlations to the future.



Chapter 9

The Spectrum

Power spectra of physical quantities are used in many different fields of research, e.q. light-, sound-
waves. The spectra of a time series is the Fourier analysis of the time series, and it is the Fourier
transform of the auto-covariance function of the time series. It presents the variance per frequency
of the time series as a function of frequencies and therefore distributes the variance onto different
frequencies. Studying the power-laws by which the variance is distributed over the frequencies is
often one of the best ways to understand the underlaying physical processes. The analysis of the
spectrum is therefore a central part of statistical analysis of time series.

We will first define the spectra as the Fourier transform of the auto-covariance function and discuss
some properties. A more colorful description will be given by the Fourier analysis of the time series,
namely the periodogram, in the final subsection, which discusses how the spectra is estimated from
a time series. We will further discuss how the spectrum shall be presented and what the caveats
of the different presentations are. The information contained in the spectrum or how it could be
interpreted will be discussed based on some examples. The theoretical spectrum for AR(1)- and
AR(2)-process will be discussed. Finally we give a short description of how the spectrum can be
estimated from a time series, based on the periodogram.

9.1 Definition of the Spectrum

Let Xt be an ergodic weakly stationary stochastic process with auto-covariance function γ(τ), τ =
0,±1, . . .. Then the spectrum (or power spectrum) Γ of Xt is the Fourier transform F of the
auto-covariance function γ. That is

Γ(ω) = F{γ}(ω) (9.1)

=
∞∑

τ=−∞
γ(τ)e−2πiτω.

for all ω ∈ [−1/2, 1/2]. Note that the largest frequency that a time series with time step of 1.0
can resolve is ω = 1/2. Therefore the spectrum is only defined for ω ∈ [−1/2, 1/2]. The spectrum
should not be extend beyond ω = 1/2, this will in general make no sense (see, for instance, the
spectrum of an AR(1)-process in section 9.6).

Note that since γ is an even function of τ ,

Γ(ω) = γ(0) + 2
∞∑

τ=1

γ(τ) cos(2πτω)

77
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This definition of the spectrum is similar to the definition of the covariance between γ(τ) and
cos(2πτω) (compare with eq. 5.12). The spectrum can therefore be interpreted as the covariance
between the auto-correlation function and the cosine function at different frequencies. so if the
auto-correlation function project well onto a specific cosine-function, than this frequency will be
the dominant frequency of the spectrum.

Characteristics of the spectrum:

• The spectrum ,Γ(ω), is continuous and differentiable everywhere in the interval [−1/2, 1/2]. So
unlike the discrete time series or auto-correlation function, the spectrum is always continuous.

• The spectrum describes the distribution of variance across the time scales. In particular,

Var(Xt) = γ(0) = 2

∫ 1
2

0
Γ(ω)dω (9.2)

The spectra,Γ(ω), is a variance per frequency as a function of frequency, in units: [Γ(ω)] =
[X2

t ] · [time]. Note that is often unclear if a spectral estimate considers the right frequency
unit, if the time step is not 1.0. Thus one should check if the integral of the spectrum fits to
the total variance of the time series.

• γ(τ) =

1
2∫

− 1
2

Γ(ω)e2iπωτdω. The auto-covariance function can be reconstructed from the spec-

trum.

• d
dωΓ(ω)|ω=0 = 0. The spectra must be flat at long time scales for stationary processes.

• Γ(ω) ∼ χ2 → σ(Γ(ω)) ∼ E(Γ(ω)) The spectral coefficient, Γ(ω), are variances, those pdf
is χ2-distributed. Thus the statistical uncertainty of an estimated spectrum is proportional
to expectation value, which is important for discussion of the significance of peaks in the
spectrum.
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Figure 9.1: Spectral estimates of SST time series in the northern North Atlantic. Left is with
seasonal cycle and right is also with the mean seasonal cycle removed.



9.2. PRESENTATION OF THE SPECTRUM 79

9.2 Presentation of the Spectrum
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Figure 9.2: The spectrum of an AR(1)-process time series presented in log-linear scaling (upper)
and in log-log scaling (lower). In addition the 10% and 90% quantiles of the spectral coefficients
estimate are plotted (right).

By representing/plotting the spectra one should consider, some important characteristic of the
spectra. We have basically three option to present the spectra, with each of it has its advantages
and its drawbacks:

1. Linear: This seems the obvious way to present the spectrum, but is in many cases not opti-
mal. The Advantage: The area between the x-axis and the Γ(ω)-curve is the total variance.
So we can easily evaluate how the total variance is distributed over the frequency domain.

The drawbacks are: It is difficult to highlight low-freq. variances within the full spectrum.
The spectral coefficients are equidistant on the frequency axis, but we tend to think of the
time scales in terms of orders of magnitudes, e.g. 1, 101 , 102 . . . . Thus we like to present
the x-axis in log-scale.

Further the uncertainties of Γ(ω) are a function of frequency. The spectral coefficients are
variances, those pdf is χ2-distributed. Thus the statistical uncertainty is proportional to
expectation value. If plotted linearly the uncertainty of each spectral coefficients has different
length. If plotted on log-scale the uncertainty of each spectral coefficients has equal length.
The example in Fig. 9.2 illustrates that the linear presentation of Γ(ω) emphasis spectral
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peaks, which are actually just fluctuations due to the limited time series for estimating the
spectrum. In the log-scaling the peak 5 · 10−3 appears to much less ’significant’.

Another drawback is that theoretical models for the stochastic nature of the time series
tent to follow simple power-laws in log-log scaling, which are not as easily verified in linear
presentations. See spectrum of AR-p processes.

2. LogLog-scale: In log-log scaling we can present the entire spectrum over all timescales and
all scales of variance. The advantage is that the error of each spectral estimate is now a
constant length. Simple power laws, such as the AR(1)-process, have often a linear relation
over a large part of the log-log presentation. The drawback is that it unclear how the total
variance is distribution over the frequency, because now the area between the x-axis and the
Γ(ω)-curve is not the total variance anymore. One tents to over estimate the importance
of low-frequency variance. Compare, for instance the different presentations of the El Niño
spectrum in Fig. 9.3.

Note that sometimes the log-scaling unit decibell [db] is used. This is note a real unit, it
means: 1db = 100.1, 10db = 101 and , 25db = 102.5. However, this unit is not used in climate
research. We right the real units (e.g. K2 · yrs).

3. Linear-Log(f)-scale: A trade off between linear and log-presentation is to plot Γ(ω) · ω
as function of log(ω). Note: dlog(ω) = 1

ωdω. By presenting Γ(ω) · f as function of log(f)
we maintain the option how the total variance is distributed over the frequency domain, by
the area between the x-axis and the Γ(ω)-curve. The drawback is still that the errors are
a function of frequency and theoretical power-laws are still not as easily evaluate as in the
log-log presentation.

Fig. 9.3 illustartes the different presentations for the El Niño spectrum.
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Figure 9.3: The spectrum of the monthly mean El Niño time series in four different presentations
of the same spectrum. Note the lower right panel shows Γ(ω) · ω. For all spectra the fitted AR(1)-
process spectrum with the 90% confidence interval is plotted for comparison.
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9.3 Interpretation of the Spectrum

The Spectrum is: [Γ(ω)] = [V ar(ω)]
[ω] . It gives a variance density along the frequency-scale. The

amplitude of a sine-function at frequency ω fitted to the time series would have the amplitude:

E(σ(sin(2πω))) =
√∫ ω+∆ω

ω−∆ω
Γ(ω)dω ≈

√
Γ(ω) · 2∆ω ≈

√
Γ(ω) · ω

if we assume that we resolve ω by ∆ω ≈ 0.5ω (it seems reasonable to assume that the resolution
is proportional to ω ). Note, that in this estimate you have to multiply by the frequency, ω, to
get the variance. So a constant spectrum will have sine-functions with decreasing amplitude for
low-frequencies, although the variance density is constant.
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Figure 9.4: Comparison of the time series (upper right), band-pass filtered time series (lower right)
and its relation to the spectrum of the time series. The colored line in the spectrum (left) illustrate
the frequency-band for which the time series on the rigth were filtered. The numbers next to it are
the mean Γ for the frequency-band.

Fig. 9.4 illustrates how the spectrum can be ’read’. The figure shows a time series of an AR-1
process and its spectrum. In addition three band-pass filtered time series of the original time
series are shown. The standard deviations, σ, of the four time series are different, with the largest
standard deviation for the original time series. The standard deviations of the band-pass filtered
time series can be estimated by the looking at the spectrum. We can estimate the frequency-band
to which we have filtered the time series and we can read the mean Γ for the frequency-band. Thus
we estimate the integral or area underneath the curve (if plotted in linear scale; not as shown in
Fig. 9.4) by the length of the δω and the mean Γ(ω) over the interval. The standard deviation of
the filter time series would than be:

σ(low − pass) ≈
√
0.39 ∗ 0.114 = 0.21

σ(mid− pass) ≈
√
0.0232 ∗ 1.167 = 0.16

σ(high− pass) ≈
√
0.0023 ∗ 4.0 = 0.10
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A comparison with standard deviation estimated from band-pass filtered the time series (Fig. 9.4)
shows that the estimates are quite close. Note that one may be mislead by the spectrum if we just
compare the variance at low-freq. with those at high-freq.. Γ(low− freq.) is 100 times larger than
Γ(high − freq.), but the low-pass time series standard deviations is only twice as large. We have
to account for the different length of the frequency-band, which is about a 100-times shorter for
the low-pass filtered time series.

9.4 The Spectra of AR(p) Processes

The spectrum of an AR(p) process with process parameters {α1, . . . , αp} and noise variance V ar(Zt) =
σ2Z is

Γ(ω) =
σ2Z

|1−∑p
k=1 αke

−2πikω|2 . (9.3)

The structure of this equation is similar to the total variance of AR(P), see eq.[7.13].

9.5 The Spectrum of a white noise process.

A white noise process is an AR(0) process:

Γ(ω) = σ2Z (9.4)

A white noise process distributes the variance on all frequencies equally.

9.6 The Spectrum of an AR(1) Process.
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Figure 9.5: Spectra of different AR(1)-processes.

The power spectrum of an AR(1) process with lag-1 correlation coefficient α1 is

Γ(ω) =
σ2Z

|1− α1e−2πiω|2 =
σ2Z

1 + α2
1 − 2α1 cos(2πω)

(9.5)
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We can approximate the cosine for low values of ω ∈ [0, 0.5] with the first two terms of the cosine
series:

cos(2πω) = 1− (2πω)2

2!
+ ...

thus the AR(1) spectra is approximately:

Γ(ω) ≈ σ2Z

1 + α2
1 − 2α1(1− (2πω)2

2! )
=

σ2Z
1 + α2

1 − 2α1 + α1(2πω)2
=

c1σ
2
Z

c2 + ω2
(9.6)

The spectra of an AR(1) process is therefore approximately following a linear gradient of -2 in
loglog-scale for frequencies ω >> 0. This spectrum has no extremes in the interior of the interval
[0, 1/2] because, everywhere inside the interval, the derivative

d

dω
Γ(ω) = −2α1Γ1(ω)

2 sin(2πω) 6= 0

The sign of the derivative is determined by α1. Thus the spectrum has a minimum at one end of
the interval [0, 1/2] and a maximum at the other end. When α1 > 0, the ’spectral peak’ is located
at frequency ω = 0, where it reaches a plateau. Such processes are often referred to as red noise
processes.
In Fig. 9.5 we see the spectra of AR(1) processes with different α1 compared with the spectrum of
the driving white process. We can see that all spectra of AR(1) processes have more variance on the
low-frequencies while they have less variance for the high-frequencies if compared with the spectrum
of the driving white process. In the intermediate frequencies all spectra of AR(1) processes have a
linear decreasing spectrum with a gradient of -2, while the AR(1) process with the largest α1 has
the longest increase in variance.
Note that this presentation may be somewhat misleading, since it indicates that an AR(1)-process
amplifies the forcing. But a linear damping system, the physical process associated with an AR(1)-
process (see section7.3.2), is always damping the forcing signal. For more details see 9.9.
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Figure 9.6: The spectra of AR(1) processes with different α1 compared with the spectrum of the
driving white process. The spectra correspond to the time series in Fig. 7.2.

In Fig. 9.6 we see the spectra of different AR(1)-process, as estimated from time series and the
theoretical spectrum.

9.7 Fitting the AR(1)-Process to a time series.

The AR(1)-process, red noise, is often chosen as the null hypothesis for the time scale characteristics
of a climate variables variance. It is therefore a practice to compare the spectra of time series with
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the fitted AR(1) process. The AR(1)-process is well defined by the standard deviation of the time
series, σXt and the lag-1 correlation. The spectrum of the fitted AR(1) process results from eq.[9.5],
using the relation between σXt and σZ from eq.[7.16]:

σ2Z = (1− α2
1)σ

2
Xt

(9.7)

Some examples are shown in Fig. 9.7 and 9.8.
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Figure 9.7: Spectra of observed 24hrs mean temperature time series. For comparison the fitted
AR(1)-process spectra are shown together with the 95% confidence interval.
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Figure 9.8: Spectra of observed 24hrs mean 500hPa geopotential heights time series. For comparison
the fitted AR(1)-process spectra are shown together with the 95% confidence interval.

Note, that comparing these spectra of observed time series with the fitted AR(1)-process has some
limitations. The spectrum following eq.[9.5] is the spectrum of a discrete process with the time step
of the time series. The observed time series are in general continuous processes that are sampled
on some time interval (days, hours, etc.) and than averaged onto the time step of the time series
(e.g. monthly means, annual means).

Fig. 9.10 illustrates that the spectrum of a time series resulting from a discrete AR(1)-process with
the time step of one month is different from the spectrum of a discrete AR(1)-process with the
time step of one day averaged to a monthly mean time series. This effect has to be considered if
deviations from the AR(1)-process are discussed.
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Figure 9.9: Spectra of the observed monthly mean El Niño time series (NINO3 region average). For
comparison the fitted AR(1)-process spectra are shown together with the 95% confidence interval.

9.8 The Spectrum of an AR(2) Process.

The power spectrum of an AR(2) process with parameters (α1, α2) (24) is given by

Γ(ω) =
σ2Z

1 + α2
1 + α2

2 − 2g(ω)

where

g(ω) = α1(1− α2) cos(2πω) + α2 cos(4πω)

Depending upon the parameters, the spectrum can have a minimum or maximum in the interior of
the interval [0, 1/2]. When its derivative is zero, Γ(ω) has a maximum or minimum, and we note
that Γ′(ω) = 0 whenever g′(ω) = 0. By using the identity sin(4πω) = 2 sin(2πω) cos(2πω), we find
that

g′(ω) = −2πα1(1− α2) sin(2πω)

−4πα2 sin(4πω)

= (−2π) sin(2πω)

×
(
α1(1− α2) + 4α2 cos(2πω)

)
.

Since sin(2πω) 6= 0 for all ω ∈ (0, 1/2),Γ′(ω) = 0 it follows the condition for a maxima and minima:

cos(2πω) = −α1(1− α2)/(4α2). (9.8)

The last equation has a solution ω ∈ (0, 1/2) when |α1(1−α2)| < 4|α2|. This solution represents a
spectral maximum when α2 < 0 and a spectral minimum when α2 > 0.
Note also, that the log-slope of an AR(2) is variable. It can be smaller or larger than the slope of
an AR(1)-process. Examples of spectra of AR(2)-processes are shown in Fig.9.11.
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Figure 9.10: The spectrum of a discrete AR(1)-process with the time step of one day averaged to
a monthly mean time series (black, green). For comparison the spectrum resulting from eq.[9.5] of
the AR(1)-process fitted to monthly mean time series is shown (red).

9.9 The Spectra of some continuous physical processes (differen-
tial equations)

The discussion of the spectra of AR-p processes can be somewhat misleading, because it focus
on discrete time series and some statistical parameters. The spectrum of a simple differential
equation, which describe some simple physical processes, has sometimes different characteristics.
The variance of an AR-1 process, for instance, is larger than that of the forcing. However, the
variance of a damped system (eq.7.17), which is a physical interpretation of an AR-1 process, is
always smaller than that of the forcing.

We therefore will discuss the spectrum of some simple physical processes to illustrate some impor-
tant characteristics.

... to be continued!

9.10 Estimating the Spectra (The Periodogram)

The variance of a time series {X1, X2, . . . , XT } of finite length may be attributed to different
time scales by expanding it into a finite series of trigonometric functions. We have assumed, for
mathematical convenience, that T is odd. The expansion is slightly more complex when T is even.
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Figure 9.11: The spectra of AR(2) processes with different α1, α2 (red line) and the estimated
spectra from the time series in Fig. 7.3 (black line), compared with the spectrum of the driving
white process(green line) and a fitted AR(1)-process(dashed blue line).

Xt = A0 +

(T−1)/2∑

k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
. (9.9)

So the T values of Xt are reorganized into a mean A0 and (T-1)/2 pairs of spectral coefficients. We
will see below that the spectrum is a continuous function of frequency. In contrast, the periodogram
is always discrete. Thus the number of non-trivial coefficients aj and bj is always T .

The coefficients are estimated over the mean and covariances:

A0 = µ̂ =
1

T

T∑

t=1

xt (9.10)

and

aj =
2

T

T∑

t=1

xt cos(2πωjt) (9.11)

bj =
2

T

T∑

t=1

xt sin(2πωjt), (9.12)

for j = 1, . . . , q. Note that, for even T ,

aq =
1

T

T∑

t=1

(−1)qxt, (9.13)

bq = 0 (9.14)

The equation splits the time series into a number of frequencies:

ωi =
i

T
i = 1, ..., (T − 1)/2 (9.15)

with ∆ω = 1
T . So the longer the time series the smaller the ∆ω, and the more independent spectral

coefficients are estimated. The frequency interval is constant. it follows from the fact that this
choice of frequencies leads to uncorrelated estimates over the time series length:
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a)
∑T

t=1 cos(2πωkt) cos(2πωlt) =
T

2
δkl

b)
∑T

t=1 sin(2πωkt) sin(2πωlt) =
T

2
δkl

c)
∑T

t=1 cos(2πωkt) sin(2πωlt) = 0,

where δkl = 1 if k = l and 0 otherwise. Equation (9.9) distributes the variance in the time series

V ar(Xt) =
1

T

T∑

t=1

(Xt − X̄)2 =
1

2

(T−1)/2∑

k=1

(
a2k + b2k

)
(9.16)

to the periodic components in the expansion shows in (9.9). The elements (a2k+ b
2
k) are collectively

referred to as the periodogram of the finite time series {X1, . . . , XT }. Unfortunately, it is not
readily apparent that the expansion in (20) is related to the spectrum of an infinite time series or
a stationary process, although it is true.
The periodogram is defined in terms of the coefficients aj and bj as

ITj =
T

4
(a2j + b2j ) (9.17)

The periodogram is the basis for most estimates of the spectra. However, the periodogram has
some bad characteristics:

• ITj ∼ χ2(2). The Distribution of the Periodogram is therefore relatively wide, strongly skewed
to larger values and it peaks at zero, see Fig. 15.7.

• The uncertainty of the spectra coefficients is independent of the length of the time series.
Thus increasing the length of the time series does not improve the estimate of single spectral
coefficients, which is very unfortunate.

9.11 Better estimates of the spectra based on the Periodogram

each estimate of a spectra based on finite time series has an uncertainty in the variance and in the
frequency:
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Figure 9.12: Spectral estimate of a sine function time series with period 50 time steps. The red
lines indicate uncertainties in the variance and period estimation.
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The different methods try to minimize the combination of both in different ways.

The basic idea two ideas are to split and tapper the time series

The chunk estimator is computed as follows.

1. Divide the time series into m chunks of length M = ⌈ Tm .

2. Compute a periodogram

I
(ℓ)
Tj , j = 0, . . . , q, q = ⌈M2

from each chunk ℓ = 1, . . . ,m.

3. Estimate the spectrum by averaging the periodograms:

Γ̂(ωj) =
1

m

m∑

ℓ=1

I
(ℓ)
Tj . (9.18)

The result is an estimator with approximately ∼ χ2(2m)

The estimate at each frequency is representative of a special bandwidth of approximately 1/M .
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Figure 9.13: Different estimates of the spectrum of a AR(1)-process time series, based on the
Periodogram.
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9.11.1 Filter of a Time Series (The Running Mean)

Often we like to filter the time series to highlight the time evolution of some specific frequency band.

... to be continued



92 CHAPTER 9. THE SPECTRUM



Chapter 10

The Cross-Covariance Function

If we want to analyze the covariability between two time series of random variables Xt and Yt we
study the cross-covariance function and the Fourier transform of it, the cross-spectrum. Much of
the math is similar to the auto-covariance analysis in the previous sections.

A non-parametric estimator of the cross-correlation function ρxy(τ) is given by

ρxy(τ) =
γxy(τ)

σXσY
(10.1)

where γxy(τ) is the sample cross-covariance function is for τ ≥ 0

γxy(τ) =
1

T

T−τ∑

t=1

X′
tY

′
t+τ . (10.2)

and for τ < 0

γxy(τ) =
1

T

T∑

t=1−τ
X′
tY

′
t+τ . (10.3)

The sample cross-covariance function is set to zero for |τ | ≥ T . As a repetition of the fundamentals
section:

• τ > 0 ⇒ the time evolution of Xt leads those of Yt and vice versa for τ < 0

• γxy can be asymmetric

• γxy(τ) can be larger than γxy(0)

• |ρxy(τ)| <= 1

10.1 Some Examples

• Yt is a linear function of Xt:

Yt = aXt (10.4)

the auto-correlation of Yt is

93
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γyy(τ) = E(Yt · Yt) = E(αXt · αXt) = α2E(Xt ·Xt) = α2γxx(τ) (10.5)

then the cross-covariance function is simply

γxy(τ) = E(Xt · Yt) = E(Xt · αXt) = α · E(Xt · αXt) = α · γxx(τ) (10.6)

and the cross-correlation function is

ρxy(τ) =
γxy(τ)

σXσY
=
αγxx(τ)

σXασX
=
γxx(τ)

σXσX
= ρxx(τ) (10.7)

• Yt is a linear function of Xt, but some additional white noise is added.
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Figure 10.1: The auto/cross-correlation for the process Yt = αXt + Zt. For Xt following an
AR(1)-process (left) and an AR(2)-process (right).

Yt = αXt + Zt (10.8)

with Zt as white noise. It follows for the auto-correlation of Yt

γyy(τ) = E((αx+ z)(αx+ z)) = E((α2xx+ 2αxz + zz))

with E(xz) = 0,

γyy = E((α2xx+ zz))

for τ = 0

γyy(0) = α2γxx(0) + σ2z

and ∀τ 6= 0
γyy(τ) = α2γxx(τ)

The covariance is
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γxy(τ) = αγxx(τ)

For the cross-correlation function we find

ρxy(τ) =
γxy(τ)

σXσY
=

αγxx(τ)√
σ2X(α

2σ2X + σ2z)
=

αγxx(τ)

α

√
σ2Xσ

2
X(1 +

σ2
z

α2σ2
X
)

=
ρxx(τ)√
1 + σ2

z

α2σ2
X

(10.9)

thus the cross-correlation function between Yt and Xt is just the auto-correlation of Xt, but

scaled down in relation to σ2
z

α2σ2
X
. So the larger the relative influence of the white noise onto

Yt the smaller the cross-correlation function with Xt.

• Yt is a lagged time series of Xt,
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Figure 10.2: The auto/cross-correlation for the process Yt = Xt−ξ. For Xt following an AR(1)-
process (left) and an AR(2)-process (right). For τ > 0 the time evolution of anomalies in Xt leads
those of Yt.

Yt = Xt−ξ (10.10)

Any variability that happens in Xt at time step t will occur ξ time steps later in Yt. Thus
the auto-correlation is the same

γyy(τ) = γxx(τ)

The cross-covariance is

γxy(τ) = γxx(τ − ξ)

The cross-correlation is

ρxy(τ) =
γxy(τ)

σXσY
=
γxx(τ − ξ)

σXσY
= ρxx(τ − ξ) (10.11)
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The cross-correlation of Xt with Yt is just the auto-correlation of Xt but shifted to positive
τ values.

See Fig. 10.2. For τ > 0 the time evolution of anomalies in Xt leads those of Yt.

• Yt is the derivative of Xt,
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Figure 10.3: The auto/cross-correlation for the process Yt = Xt − Xt−1. For Xt following an
AR(1)-process (left) and an AR(2)-process (right). For τ > 0 the time evolution of anomalies in
Xt leads those of Yt.

Yt = Xt −Xt−1 ≈ d

dt
Xt (10.12)

The auto-covariance of Yt is:

γyy(τ) = 2γxx(τ)− (γxx(τ − 1) + γxx(τ + 1)) ≈ d2

dt2
γxx(τ) (10.13)

d2

dt2
γxx(τ) > 0 for τ near zero.

The cross-covariance is

γxy(τ) = E(Xt(Xt+τ−Xt−1+τ )) = E(XtXt+τ−XtXt−1+τ ) = γxx(τ)−γxx(τ−1) ≈ d

dt
γxx(τ)

(10.14)

Since γxx(τ) <= γxx(0) ⇒ local maximum at zero.

⇒ γxy(τ) ≈ d
dtγxx(τ) < 0 for τ near zero but τ > 0

⇒ γxy(τ) ≈ d
dtγxx(τ) > 0 for τ near zero but τ < 0.

So since the auto-correlation/covariance peaks at zero, the cross correlation function is chang-
ing sign at zero, with positive cross-correlation when the forcing (derivative) leads Xt.
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• Zt as the white noise that drives Xt in an AR(1)-process,
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Figure 10.4: The auto/cross-correlation for the process Xt = α1Xt−1 + Zt. For an AR(1)-process
with α1 = 0.8 (left) and α1 = 0.95 (right). For τ > 0 the time evolution of anomalies in Xt leads
those of Zt.

Xt = α1Xt−1 + Zt (10.15)

The cross-covariance between the AR(1)-process, Xt and its driving noise Zt is,

γxz(τ) = ατ1σ
2
Z ∀ τ ≤ 0 (10.16)

γxz(τ) = 0 ∀ τ > 0 (10.17)

Thus the cross-correlation ∀ τ ≤ 0 is

ρxz(τ) =
γxz(τ)

σXσZ
=
ατ1σ

2
Z

σXσZ
(10.18)

with σ2X = σ2
z

1−α2
1
we find

ρxz(τ) =
ατ1σ

2
Z

σz√
(1−α2

1)
σZ

= ατ1

√
1− α2

1 (10.19)

and ρxz(τ) = 0 ∀ τ > 0

10.2 The Cross-Correlation of Cyclo-Stationary Time Series

Note that cyclo-stationary time series, with seasonal changes in the standard deviation for instance,
can lead to apparent lag-lead cross-correlation, which are not ’real’, see Fig. 10.5.
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Figure 10.5: Left: The standard deviation of two cyclo stationary AR(1)-process. Right: The
Cross-correlation of the two AR(1)-processes with and without cyclo stationarity in the standard
deviation.

10.3 The Cross-spectrum

Let Xt and Yt be two weakly stationary stochastic processes with covariance functions γxx and
γyy, and a cross-covariance function γxy. Then the cross-spectrum Γxy is defined as the Fourier
transform of γxy:

Γxy(ω) = F{γxy}(ω)

=

∞∑

t=−∞
γxy(τ)e

−2πiτω (10.20)

for all ω ∈ [−1/2, 1/2].
The cross-spectrum is generally a complex-valued function since the cross-covariance function is,
in general, neither strictly symmetric nor anti-symmetric.
The cross-spectrum can be represented in a number of ways.

1. The cross-spectrum can be decomposed into its real and imaginary parts as

Γxy(ω) = Λxy(ω)− iΨxy(ω).

The real and imaginary parts Λxy and Ψxy are called the co-spectrum and quadrature spec-
trum. Note that we define the quadrature spectrum as the negative imaginary part of the
cross-spectrum, as it is done in the MATLAB routines, but it is contrary to the notation in
Storch and Zwiers. In Storch and Zwiers it is defined as the positive imaginary part. This
choice is arbitrary, but may cause a great deal of confusion in the definition of the phase, for
instance.
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2. The cross-spectrum can be written in polar-coordinates as

Γxy = Axy(ω)e
iΦxy(ω).

Then Axy and Φxy are called the amplitude spectrum and phase spectrum respectively. The
amplitude spectrum is given by

Axy(ω) =
(
Λxy(ω)

2 +Ψxy(ω)
2
)1/2

.

The phase-spectrum is given in three parts

Φxy(ω) = tan−1
(
Ψxy(ω)/Λxy(ω)

)
(10.21)

when Ψxy(ω) 6= 0 and Λxy(ω) 6= 0,

Φxy(ω) =

{
0 if Λxy(ω) > 0

±π if Λxy(ω) < 0
(10.22)

when Ψxy(ω) = 0, and

Φxy(ω) =

{
−π/2 if Ψxy(ω) > 0
π/2 if Ψxy(ω) < 0

(10.23)

when Λxy(ω) = 0.

3. The (squared) coherency spectrum

κxy(ω) =
A2
xy(ω)

Γxx(ω)Γyy(ω)
(10.24)

expresses the amplitude spectrum in dimensionless units. It is formally similar to a conven-
tional (squared) correlation coefficient.

10.4 Presentation of Cross spectra

The cross spectra between a variable Xt and Yt is usually presented by the amplitude of the cross
spectra, Axy(ω), the coherency, κxy(ω), and the phase, Φxy(ω). Axy(ω) is plotted in loglog-scale as
normal spectra are plotted. It makes sense to compare Axy(ω) with Γxx(ω) and Γyy(ω). However,
Axy(ω) is the least interesting parameter of the cross spectra. The most important is the coherency,
κxy(ω), which one should examine first. If the κxy(ω) indicates coherence, it is useful to study the
phase, Φxy(ω). The phase is usually given in degrees [0o, 360o] or [−180o, 180o]

10.5 Some Simple Theoretical Examples

We described the cross-covariance functions of a number of simple processes in [11.3.3]. We present
the cross-spectra of these processes here.
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Figure 10.6: Cross-Spectrum of Salt ,S and advection, U from the Stommel model forced with a
time series of white noise.

• Yt is no function of Xt:

Yt 6= F (Xt) (10.25)

It is obvious what the expected values of the cross-spec parameters are:

Γxy(ω) = 0

Γyy(ω) = Γyy(ω)

Λxy(ω) = 0

Ψxy(ω) = 0

Axy(ω) = 0

Φxy(ω) = 0

κxy(ω) = 0

But! The estimated values from a finite time series will have:

A2
xy(ω) ∼ ΓxxΓyy

Φxy(ω) 6= 0

κxy(ω) > 0

See Fig. 10.7
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Figure 10.7: The cross-spectrum of two independent AR(1)-processes, Yt 6= F (Xt).

• Yt is a linear function of Xt:

Yt = aXt (10.26)

because γαx,x = αγxx (see eq.[??]), the cross-spectrum is a simple function of X:

Γxy(ω) = αΓxx(ω)

Γyy(ω) = α2Γxx(ω)

Λxy(ω) = αΓxx(ω)

Axy(ω) = αΓxx(ω)

Φxy(ω) =

{
0 if α > 0

±π if α < 0

κxy(ω) = 1.

These are intuitively reasonable results. All events in the two time series occur synchronously,
thus the phase spectrum is zero everywhere and the coherency spectrum is one for all ω.

• Yt is a linear function of Xt, but some additional white noise is added.

Yt = αXt + Zt

The cross-, co-, quadrature, amplitude, and phase spectra are unaffected by the added noise.
However, the power spectrum of Y, and therefore the coherency spectrum, do change. Spe-
cially,

Γyy(ω) = α2Γxx(ω) + σ2Z

Axy(ω) = αΓxx(ω)

κxy(ω) =
α2Γxx(ω)

σ2z + α2Γxx(ω)
< 1.
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Figure 10.8: The cross-spectrum between Xt and Yt for the process Yt = αXt + Zt.

The coherency is now less than 1 at all time scales, indicating that knowledge of the sequence
of the events is X is no longer enough to completely specify the sequence of events in Y. The
impact of the noise is small if its variance is small relative to that of αXt (and vice versa).

• Yt is a lagged time series of Xt,
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Figure 10.9: The cross-spectrum between Xt and Yt for the process Yt = Xt−ζ , with ζ = 20. The
solid red line in the phase plot (right) indicates 1/ζ and the dashed red line 1/2ζ

Yt = Xt−ζ

we find that

Γxy(ω) = ei2πζωΓxx(ω)

Γyy(ω) = Γxx(ω)

Λxy(ω) = cos(2πζω)Γxx(ω)
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Ψxy(ω) = − sin(2πζω)Γxx(ω)

Axy(ω) = Γxx(ω)

Φxy(ω) = −2πζω

κxy(ω) = 1.

When we shift Xt a fixed number of lags we obtain the same coherency spectrum as when
Xt is simply scaled. It is 1 for all time scales meaning that the sequence of events in Y is
completely determined by X In contrast, the phase spectrum has changed from being zero
for all ω to a linear function of ω. This type of linear dependency is characteristic of shifts
that are independent of the time scale.

Note that if the process X lagsthe process Y (i.e., if ζ > 0), then the phase spectrum Φxy is
positive for positive frequencies.

• Yt is the derivative of Xt,
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Figure 10.10: The cross-spectrum between Xt and Yt for the process Yt = Xt −Xt−1.

Yt = Xt −Xt−1

that approximates a discretized time derivative. Recall that

γxy(τ) = γxx(τ)− γxx(τ − 1)

γyy(τ) = 2γxx(τ)

−(γxx(τ − 1) + γxx(τ + 1).

Thus, again using (C.8),

Γxy(ω) = (1− e−2πiωΓxx(ω)

Γyy(ω) = 2(1− cos(2πω))Γxx(ω)
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Λxy(ω) = (1− cos(2πω))Γxx(ω)

Ψxy(ω) = − sin(2πω)Γxx(ω)

Γyy(ω) = 2(1− cos(2πω))Γxx(ω)

A2
xy(ω) = 2(1− cos(2πω))Γxx(ω)

2

= Γxx(ω)Γyy(ω)

Φxy(ω) = tan−1

( − sin(2πω)

1− cos(2πω)

)

= tan−1(− cot(πω))

= π

(
1

2
− ω

)
≥ 0 for ω ≥ 0

κxy = 1 for ω 6= 0.

Several things can be noted here.

i) The coherancy is 1 at all time scales except 0. This is reasonable since integration can
undo differentiation up to a constant.

ii) The spectrum of the differences process Y has more short time scale variability than the
spectrum of the original process X. Indeed, subtracting acts as a high-pass filter that damp-
ens long time scale variability and eliminates the time mean(Γyy(0) = 0). For example, Figure
11.9 displays the spectrum of an AR(1) process Xt with α = 0.3 and that of the differences
process Yt = Xt−Xt−1. The X-spectrum is ’red with a maximum at zero frequency whereas
the Y-spectrum is ’blue’ with a maximum at frequency 1/2.

iii) ’Physical reasoning’ suggests that the forcing should lead the response1 in the sense that
the phase lag Φyx between the ’forcing’ Y and the ’response’ X is π/2. This is approximately
the case for the long time scales near ω = 0, since Φxy(0) = −π/2. The phase converges
towards zero on shorter time scales. This ect occurs because the time derivative is only
approximated by the time difference, and the accuracy of this approximation increases with
the time scale.

• Zt as the white noise that drives Xt in an AR(1)-process,

Xt = α1Xt−1 + Zt (10.27)

Unfortunately I could not derive all ellements of the cross spectra analytically, but here the
incomplete list:

Γxz(ω) = unknown!!!

Γzz(ω) = σ2z

Λxz(ω) = unknown!!!

1The ’physical’ argument is as follows. Suppose dX/dt = Y where Y = A cos(ωt). Then X = A/ω cos(ωt+ Φxy)
where Φxy = −

π
2
.
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Figure 10.11: The cross-spectrum between Xt and Zt for the process Xt = α1Xt−1 + Zt.

Ψxz(ω) = unknown!!!

A2
xz(ω) = Γxx(ω)Γzz(ω) = σ2zΓxx

Φxz(ω) = unknown!!!

κxy = 1

However, we can estimate the missing parts with a time series realization of an AR(1)-process.
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10.6 Some Examples with Climate Observations
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Figure 10.12: Cross-spectra of observed monthly mean time series. Upper: Between SST and heat
flux in the northern central Pacific. Middle: Between SST and 500hPa geopotential height in the
northern central Pacific. Lower: Between SST and 500hPa geopotential height in the equatorial
east Pacific.
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In Multivariate Data Analysis we are interested in the covariability of multivariate data, which
could be field of a physical quantity (e.g. global temperature) or it could be fields of many physical
quantities.
In time series analysis we analyzed the variance and the covariance in terms of the auto/cross-
correlation function or spectra. In Multivariate Data Analysis we continue to analyze the auto/cross-
correlation function, namely the covariance matrix.
In time series analysis we were concerned with peaks in the spectra, indicating some interesting
oscillating variability, which may indicate predictable climate variability. We need to note that
time scale variability is a continuous spectra, which even in the absence of peaks can have different
characteristics. In multivariate data analysis the analog to the spectra are the principal components.
Here we are interested in dominant spatial modes of variability.
As for the spectra of time series, the multivariate pattern-modes are a continuous series of modes,
we will see that it is difficult to define something that is similar to a peak in the spectrum, a
dominant coherent mode.
This part starts with some basic linear algebra, which is followed by the presentation of the principal
component ( also named Empirical Orthogonal Function (EOF)) analysis, which is the fundament
of multivariate data analysis. Some other and alternative methods will be discussed shortly. Some
discussion of the interpretation of the EOFs will be discussed and a null hypothesis for the EOF-
modes will be presented.
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Chapter 11

Principal Component Analysis
(Empirical Orthogonal Functions
(EOFs))

11.1 Basics

Much of the Multivariate Data Analysis is linear algebra; Vector space analysis. Some important
basic elements shall be discussed first:

Data Sample Vectors: As in the fundamentals section introduced, a time series of a continues
random Variable can be written as a vector:

X̂ = {xt=1, xt=2, ..., xt=T } = ~X (11.1)

The vector ~X has the dimension T . It may be good to note that the dimension T means that none
of the xt can be expressed by the other components of ~X.

Using this vector notation we find that the covariance between two sampling vectors ~X and ~Y is

σ̂2xy =
1

n− 1
< ~X|~Y T >≡ 1

n− 1
X · Y ′ (11.2)

we skip the vector sign if is obvious that X and Y are vectors. The correlation:

χ̂xy =
X · Y ′

√
X ·X ′Y · Y ′ (11.3)

The Data Sample Matrix: In Multivariate Data Analysis we analyze continues random vectors
or fields, χ. These can be represented in terms of a data matrix, D. We assume here that the
continues random vectors or fields, , χ is sampled at different times and at different locations, in
which we assume that , χ is sampled at each location at the same time. We can than represent χ
as a martix D:

D =




χx=1,t=1 χx=1,t=2 χx=3,t=1 · · · χx=S,t=1

χx=1,t=2 χx=2,t=2

χx=1,t=3 χx=3,t=3
...

. . .

χx=1,t=T χx=S,t=T




(11.4)
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where each row is the data field at one time and each column represents the time series of one
data point. The index x refers to an index in the spatial dimension which can include the x,y
and z dimension at the same time, so that the row vector can represent a three dimensional spa-
tial field. The data matrix D is a T × S matrix. A global climate data set is in the order of
S = 360 · 180 · 20 ≈ 106 and T = 100 ∗ 12 ≈ 103, thus D has about 109 (Giga) elements.

Following this notation we can write the estimated auto-covariance matrix of χ as sampled by D
as:

Σ̂χχ =
1

T − 1
D′ ·D (11.5)

The auto-covariance matrix Σ̂χχ is a S × S matrix. The diagonal elements of the auto-covariance

matrix Σ̂χχ, are the variances of the time series of each spatial point. The other elements are the
covariance between two spatial points.

We can also estimate the covariance or correlation of a time series, ~ψ with the data matrix:

γ̂ψχ =
1

T − 1
ψ ·D (11.6)

Here the result is a covariance vector or field, γ̂ψχ. It represents the spatial pattern that is associated

if the time series ~ψ.

We can also estimate the covariance between a spatial pattern, represented by a vector π of dimen-
sion S, and the data matrix D:

γ̂πχ =
1

S − 1
π ·D′ (11.7)

Here the result is a covariance vector, γ̂πχ of dimension T , representing a time series. The time
series of the spatial pattern π for the data set D.

11.2 Estimation of the Principal Components

Deconstruct the data matrix D into a more efficient structure. D has usually highly redondant
data, that means that most of the variance in D can be represented with much less data. A single
column of D, for instance, is usually highly correlated to the neighboring column. The Principal
Component Analysis finds the most efficient representation of the data, which represents the largest
amount of variance with the least number of data points.

The Principal Component Analysis, can also be interpreted as a more efficient way to analyze the
covariance matrix.

An efficient way to represent the data is to deconstruct the data matrixD into a number of patterns,
where each pattern has an associated time series.

D(T × S) = Ψ(T ×N) ·ΠT (N × S) (11.8)

The matrix Π is a set of N spatial pattern, πi, with the associated matrix Ψ, of N time series, ψi.
Since the total number of data points in D is S · T , we find for N = S·T

S+T . If one of S or T is much
larger than the other N will converge towards the smaller one.

We can estimate the total variance that a single pair of a pattern, πi with the time series, ψi
explains in D:
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λi = (ψi ·D)′(ψi ·D) (11.9)

The explained variances are λi scalar values. It makes sense to further deconstruct the data set,
by separating the variance, λi, from the pair of pattern, πi and time series, ψi:

D = Ψ · Λ ·Π (11.10)

D(T × S) = Ψ(T ×N) · Λ(N ×N) ·Π(N × S)

where Λ is a diagonal matrix with the diagonal elements
√
λi. So we have deconstructed our data

into a set of modes where each mode consists of three parts: a spatial pattern, a time series of the
evolution of this spatial pattern and an explained variance value for this mode. We can reconstruct
our data field at any time step with the linear combination of the modes,

D(t) =
N∑

i=1

ψi(t) ·
√
λi · πi (11.11)

In the literature we can find a nearly infinite number of methods on how to estimate this modes of
variability. The by far most widely used method is the Principal Component Analysis as described
in the following. Although, this method may from the statistical/ mathematical point of view be
the most attractive one, it is from a physical point of view often of little interest.
For defining the modes it seems efficient to have a representation of the data where the time
series of each pattern is uncorrelated with the time series of all other patterns. This is not the
case in many empirical deconstructions of data sets such as in cluster analysis (weather-regimes,
Grosswetterlagen).
Further it may seem efficient to have a representation of the data in which the modes are ordered
by the amount of total variance, λi the modes explain. Thus we have a representation of the data
in which the leading modes explain the largest amount of variance. We can therefore often simplify
the data by just analyzing a few leading modes.
In the Principal component analysis we seek for the one and only mode which explains the largest
amount of variance. This mode is by definition our mode-1. The next mode shall have an uncor-
related time series with the mode-1 and it shall be the mode which explains the largest amount of
variance of the residual of D if mode-1 is subtracted from D. This structure shall be used for all
following modes.
This ansatz for our modes leads to a maximization problem, which leads to the eigenvalues of the
covariance matrix Σ:

(Σ− λ1 · IS) · π1 = 0 (11.12)

with Σ the covariance matrix of D, λ1 the eigenvalue, IS a S × S identity matrix, and π1 the
eigenvector. The eigenvalues λi are the variances of the eigenvectors πi. We order the eigenvalues,
with λ1 being the largest eigenvalue and so on. The eigenvectors, the patterns, πi are orthogonal
to each other, meaning they are uncorrelated:

π′i · πj = 0 ∀i 6= j (11.13)

We find the time evolution of πi, ψi, by projecting πi onto the data matrix D, see eq. [11.7]. As
for the eigenvectors, the ψi are orthogonal to each other, meaning they are uncorrelated:

ψi · ψ′
j = 0 ∀i 6= j (11.14)

The time evolution of ψi is usually refered to as the Principal component. The eigenvalue is usually
referred to as the explained variance of the mode or just the order number. The eigenvector is often
called the pattern, or EOF-pattern.
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11.3 A Simple Example

A Simple Example shall illustrate how the Principal components are calculated. We use a two
dimensional problem, since it is the simplest of all possible problems. For this we define our data
set as the time series of SLP at the Azores, point 1 and at Iceland as point 2. Both time series
have the length T = 486(month) Thus we have a data matrix D(2× 486). The number of patterns
we can define is therefore N = S·T

S+T ≈ 2.
The covariance matrix for this problem is:

Σ =

(
10.2 −10.5
−10.5 32.5

)
(11.15)

the diagonal elements are the variances of the time series. We can see that the variance at Iceland
(point 2) is much larger than at the Azores. The cross-covariance between the Azores and Iceland
is negative indicating that both are anti-correlated, which is well known.
The eigenvalue problem is:

det(Σ− λ · IS) = 0 (11.16)

⇒ det

(
10.2− λ −10.5
−10.5 32.5− λ

)
= (10.2− λ)(32.5− λ)− 10.52 = 0 (11.17)

⇒ λ1 = 36.7 λ2 = 6.0 (11.18)

The eigenvectors are given by

(Σ− λi · IS) · πi = 0 (11.19)

which leaves a freedom of amplitude which we chose to be 1

π1 =

(
−0.37
0.93

)
π2 =

(
0.93
0.37

)
(11.20)

The structure of the 2 dimensional problem is illustrated in Fig. 11.1. we see that the EOF find
the vectors that point into the direction of the main axis of the 2 dimensional ellipsoid.

11.4 The Effective Spatial Number Degrees of Freedom

The eigenvalues of the Principal component analysis are ordered so that they decrease with in-
creasing order number. The characteristics of the decrease in eigenvalues gives some insight into
the Effective Spatial Number Degrees of Freedom. Bretherton et al .(1999) found that the Effective
Spatial Number Degrees of Freedom is given by a simple sum of the eigenvalues:

Nspatial =
1

∑N
i=1 λ

2
i

(11.21)

with the eigenvalues normalized to
∑N

i=1 λi = 1. This equation can somehow intuitively be under-
stood. Assume that we have just two eigenvalues with each explaining 1/2 of the total variance
we would expect the Spatial Number Degrees of Freedom to be two, as it is in eq.[11.21]. Thus we
have a simple way to estimate how many modes of variability we need to represent the data set D.
it should be in the order of Nspatial. See Fig. 11.2 for an illustration of Nspatial in different sets of
eigenvalues.
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Figure 11.1: The scattered dots are the values of the 2 dimensional SLP field with the x-axis
representing Iceland and the y-axis representing Azores. The contour line represented a fitted 2
dimensional normal pdf . The vectors are the eigenvectors (EOF-modes) scaled by 2.5

√
(λi).

11.5 Presentation of EOFs

The EOF-modes have three components, the eigenvalues, the eigenvectors (EOF-patterns) and the
PC time series. The eigenvectors (EOF-patterns) are usually of primary interest since they hold
the information on how the data set is spatially organized. We have essentially three different ways
of presenting a spatial pattern associated with an EOF-mode:

•
√
λiπi: We simply present the eigenvector as a spatial pattern. However, the eigenvector

has no dimension and it may be instructive to present the eigenvector scaled by
√
λi. The

EOF-pattern amplitudes are now in values of the field itself and can be compared more easily
with anomalies of the data field. See example in Fig. 11.5.

• ρπiD: The correlation field of the ψi with the data set is a presentation of the EOF-mode
which can be quite different from the eigenvector itself if the variance field of the data set is
very inhomogenuous. See example in Fig. 11.6.

• ρ2πiD: An EOF-mode that has an eigenvalue of 20%, for instance does not explain 20% at all
points of the domain, but only where the amplitude of the eigenvector is larger compared to
the standard deviation. The squared correlation field is the explained variance field of the
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Figure 11.2: An illustration of Nspatial in different sets of eigenvalues.

EOF-mode. It essentially puts the eigenvalue of the EOF-mode into a local perspective. See
example in Fig. 11.7.

The eigenvalues are usually presented in relation to the total variance, as percentages. It sometimes
is useful to presented the integrated eigenvalues against the eigenvalue number to find the number
of eigenvalues needed to explain a certain amount of variance.
The principal component time series, ψi are analyzed as discussed in the time series analysis chapter.

11.6 Examples

The winter time monthly mean SLP of the Northern Hemisphere is a good example to demonstrate
that the different presentations of the leading EOF-modes can lead to different interpretations,
Figures 11.5, 11.6 and 11.7. The spatial domain has 4176 points and the time series is 227 month.
Therefore the vector space has the dimension N = 227.
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Figure 11.3: The leading eigenvalues of winter time monthly mean SLP of the Northern Hemisphere

Figure 11.4: Comprison of original fields at three random time steps (upper) and a reconstrution
by 10 EOF-modes of winter time monthly mean SLP of the Northern Hemisphere. In units of hPa.
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Figure 11.5: The leading eigenvectors (EOF-modes) of winter time monthly mean SLP of the
Northern Hemisphere, scaled by

√
λi. In units of hPa.
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Figure 11.6: The correlation fields of the leading EOF-modes of winter time monthly mean SLP of
the Northern Hemisphere.

Figure 11.7: The explained variance fields of the leading EOF-modes of winter time monthly mean
SLP of the Northern Hemisphere. In relative values
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Figure 11.8: The leading eigenvalues of monthly mean SST in the Pacific.

Figure 11.9: The leading eigenvectors (EOF-modes) of monthly mean SST of the Pacific, scaled by√
λi. In units of K. In addition the corresponding explained variance fields are shown



Chapter 12

Alternative Analysing Techniques

The number of techniques and names for defining the leading modes of variability is nearly infinite.
We can divid this methods into two categories: the ones based on eigenvalues of a covariance
matrix, maximizing some covariance and those that do not. In the following only a few will be
discussed, starting we those based on eigenvalues of a covariance matrix.

12.1 Canonical Correlation Analysis (CCA)

Is identical to Principal Component Analysis, but the eigenvalue problem of the correlation matrix
is solved, instead of the covariance matrix. The resulting CCA-modes maximize the correlation
between the points of the domain. This method is sometimes preferred over the Principal Compo-
nent Analysis if the coherency of the patterns is more important than the variance. In data sets
of large spatial inhomogenity of the variance fields it is often more instructive to study the CCA-
modes instead of the EOF-mode. Rainfall data sets, for instance, have often same small regions
with heavy rainfall, thus very large variances. The EOF-modes will gather around these spots,
while large regions of the domain may be ignored due to the small variance at these regions. The
CCA-modes do not know about variance they only care about coherency, thus they will compared
to EOF-modes have larger spatial extend. Whether or not the CCA-modes or the EOF-modes are
the ’better’ presentation depends of cause on the point of view. CCAs are good for the large scale
patterns of rainfall, where EOF-modes are good for heavy rainfall events,floods where the total
amount counts.

12.2 Singular Value Decomposition (SVD)

Is essentially another word for Principal Component Analysis, although in a strictly mathemat-
ical point of few they may be different. And another word for Singular Value Decomposition is
Maximum Covariance Analysis (MCA).

The main difference is that SVD analysis we can not only find the eigenvalues of the auto-covariance
matrix, but we can find the eigenvalues of the cross-covariance matrix. That means we find the
patterns of covariance between two different fields. The structure of the problem is identical to the
Principal Component Analysis, but we know have for each SVD-mode two patterns, one for each
field, and two time series, one for each field. the eigenvalue of a SVD-mode is a covariance value.

12.3 Rotation of Principal Components

A multivariate data set D represents an N -dimensional vector spaces that evolves in time (or other
dimension). As for any vector space we can chose different basis for the presentation of the space.
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The number of possible basis is infinite. The basis of the Principal Components analysis is found
by maximising the total variance of one basis vector, the EOF-1.
The literature is full of criteria to define other basis usually guided by some other statistical or
mathematical criteria to maximize. Most methods have in common that the algorithm for finding
the alternative basis is initialised with the EOF-basis. This concept we can sketch as: In PCA we
analyse the data matrix D in the following steps:

D → Σ → det(Σ− λ · IS) = 0 → Πeigenvectors (12.1)

So we have a data matrix D from which we get our covariance matrix Σ. This gets us to the
eigenvalue problem, which we solve and than find the eigenvectors (patterns) Πeigenvectors.
Methods that are based on EOF-basis rotation do not analyse the data matrix D itself, but in-
directly estimate some optimisation criteria by assuming that the leading EOF-modes are a good
approximation of the data matrix D. So Rotated analyse starts from the PCA results and then do
the following steps:

Πeigenvectors → max(criteria(Πrotated)) → Πrotated (12.2)

The new basis is found by pair wise rotating the EOF-modes, until the maxima of the criteria of
the alternative method is reached with sufficient accuracy. Thus the name rotated EOF is a totally
insufficient description of the basis, since it does not say what criteria the basis of the vector space
is maximising. Unfortunately, it seems that many researcher are not aware that rotation of EOFs is
only describing the calculation algorithm, it is not the essential statistical or mathematical criteria
underlying the new basis.This is probably because the common criteria in climate research is the
VARIMAX criteria, which is basically the default way in rotating the EOF-modes. Thus rotated
EOFs are the VARIMAX basis, if not otherwise specified.
The new set of patterns, Πrotated, do not need to be orthogonal to each other (π′i · πj = 0 ∀i 6= j;
eq. [11.13]). Indeed in many criteria in the literature the new set of patterns will have patterns
that are similar to each other:

π′i · πj 6= 0 ∀i, j (12.3)

The time series of these new patterns Πrotated, also do not need to be orthogonal to each other
(ψi · ψ′

j = 0 ∀i 6= j; eq. [11.14]). Indeed in many criteria in the literature the new set of patterns
will have time series that are correlated to each other:

π′i · πj 6= 0 ∀i, j (12.4)

Quit often it is unclear what exactly the constraints are in the patterns defined in the literature. In
the VARIMAX criteria, for instance, the new patterns are often not orthogonal to each other and
this may also be the case for the time series. It how depends on how the VARIMAX opitimisation
has been applied. In principle the VARIMAX criteria or most other optimisation criteria can be
apply with the constraints of eqs. [11.13] and [11.13]. For VARIMAX it is at least common in
climate research to have relax the pattern orthogonality (VARIMAX pattern are often chosen to
be not orthogonal to each other).

12.3.1 VARIMAX (Simplicity)

The VARIMAX criteria is based on maximising the simplicity of all spatial patterns. The simplicity
of a pattern is defined as:

Svar(π) =
1

S

S∑

i=1

(
χi
σi

)4 − 1

S2

(
S∑

i=1

(
χi
σi

)2

)2

(12.5)
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with σi a possible normalisation for each spatial point of the domain, which is not used in the ’raw’
VARIMAX criteria. The simplicity compares the amplitudes of the patterns to the power 4 with
the squared amplitudes. This maximizes if only a few point have large amplitudes. Thus we find
more compact (simple) patterns than the EOF-patterns.

Πeigenvectors → max(Svar(Πrotated)) → ΠV ARIMAX (12.6)

Note that the rotation has different options, where you can for instance chose if you want to relax
the orthogonality in the spatial patterns or the in time series. It is, I think more common to relax
the orthogonality in the spatial patterns, so that VARIMAX patterns are spatially correlated to
each other, but the time evolutions different VARIMAX-modes are uncorrelated.

Figure 12.1: The leading EOFs and VARIMAX patterns of winter time monthly mean SLP of the
Northern Hemisphere.

12.4 ... and a Million Other Methods or Names

12.5 Cluster Analysis (Methods not based on Eigenvalues of the
Covariance Matrix)

The set of modes or patterns that we use to describe the data matrix can be driven in many different
ways. We already discuss methods that use the results of the PCA as the starting point for their
optimisation criteria. these are often called ’rotated EOFs’. However, many different methods exist
to define patterns in the data set that do not depend on PCA at all. Those are of called ’Cluster
Analysis’ or just ”Clusters”.
As for the PCA and the rotated EOFS these methods will have an optimisation criteria. The
concept of cluster analysis can be sketched as follows:

D → max(algorithm(D)) → Πcluster (12.7)
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So unlike rotated EOFs, a cluster analysis applies, in general, some maximisation algorithm directly
onto the data matrix D. In principle a cluster analysis criteria may be optimised directly on the
basis of the data matrix D or by rotation of EOF-modes. The resulting patterns should be about
the same, but do not have to be (depending on the method/criteria).
”K-means” is one out of many examples for cluster analysis. Another example is self organising
maps which is based on training neural networks. The number of methods to define the clusters is
virtually infinite, it seems.

12.6 Detection of Propagating Structures

To be continued . . .



Chapter 13

Interpretation of Principal
Component Analysis

In many studies EOF-analysis or alternative pattern definition methods are carried out in order
to understand the physical processes that drive the spatial variability of data field. Therefore
the analysis aims on trying to understand what the structure of the leading EOF-modes may
tell us about the teleconnections between different regions of the data domain. In most of these
studies the principal component analysis is interpreted in terms of Factor Analysis, see next section.
As an alternative we may think of the EOF-patterns as a continuous spectra of different spatial
scales, similar to the power spectra of time series. In chapter 13.2.1 we will discuss an alternative
approach, which considers the multi-variate data as a high dimensional stochastic process similar
to the approach used in time series analysis.

In this chapter here we will discuss the factor analysis approach and the problems in interpreting
the EOF-modes that go long with it. The next section will introduce the factor analysis approach.
In section 13.1.2 we will discuss some exmples of the interpretation of EOF-modes as it has been
discussed in the literature. As comment on this discussion a simple artificial example of an EOF-
analysis is presented in section 13.1.3, that shall illustrate the problems in the interpretation of
individual EOF-modes. In final section of this chapter the Indian Ocean SST is discussed in more
detail.

Most of this chapter is based on two of my own publications (Dommenget and Latif 2002 and 2003).
So be warned, that this my not be the common textbook point of view.

13.1 The Deterministic Mode View

13.1.1 Factor Analysis

The way EOFs modes are discussed in most statistical analysis (e.g. Dommenget and Latif (2002)
and references therein) is based on factor analysis, as pointed out by Jolliffe (2003). It is assumed
that the multivariate data X is a result of the evolution of a set of factors ,πi, (often called
teleconnections), and some residual unstructured noise Ξ:

X = ΨΠ+ Ξ (13.1)

Π is a matrix of factors πi, where each factor πi is interpreted as a coherent spatial pattern (tele-
connections) with a time evolution of ψi. The factors are the dominating influences for x (for
details on factor analysis see textbook by Jolliffe 2002). Here we usually assume that X is a high
dimensional space NX >> 1, while the the number of factors is small NΠ ≈ 1.
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It may be important to note here that neither in EOF nor in VARIMAX analysis any evidence is
given that the leading modes represents a factor λi, and is not just a fancy representation of the
residual unstructured noise e. Dommenget and Latif (2002) argue that most likely neither EOF
nor VARIMAX will find the leading teleconnection factors in climate data sets.

13.1.2 Some Examples of EOF-Analysis in Recent Publications

EOF-analysis is currently very popular in the climate community, which we can easily quantify be
the citation index of some recent publications (numbers update 2005):

Thompson and Wallace 1999: ”The Arctic Oscillation signature in the wintertime geopotential
height and temperature fields”. times cited: 605.

Saji et al. 1999: ”A dipole mode in the tropical Indian Ocean”. Times cited: 227

Chang et al. 1997: ”A decadal climate variation in the tropical Atlantic Ocean from thermody-
namic air-sea interactions”.Times cited: 140

MOURA AD, SHUKLA J 1981: ON THE DYNAMICS OF DROUGHTS IN NORTHEAST
BRAZIL - OBSERVATIONS, THEORYANDNUMERICAL EXPERIMENTSWITH AGENERAL-
CIRCULATION MODEL. Time cited: 195.

These are outstanding numbers considering that the citation index of the leading scientific climate
journals are in the order of 2-3 (citations over the first two years).
Thus the climate modes motivated by EOF-analysis are the most popular topics of our times in
climate research. In the following we will present the EOF-modes of this three examples and high-
light some of the controversial aspects of these examples.

The Tropical Atlantic SST

The first two EOFs and VARIMAX patterns of the tropical Atlantic SST anomalies are shown in
Fig. 13.1. The EOF-1 pattern is more or less uniform over the entire domain, while the EOF-2
is an inter-hemispheric dipole pattern. In contrast two the two EOF-patterns, the two leading
VARIMAX patterns are more localized, while each of the two leading VARIMAX pattern covers
just one hemisphere and the two pattern do not overlap significantly. Two regression patterns
between the box averaged SST of the centers of the dipole pattern and the SST field are shown
additionally for comparison in Fig. 13.1.
The inter-hemispheric dipole pattern in the EOF-2 has received a lot of attention, in terms of
whether this pattern represents a potential physical mode of SST variability on decadal time scales
(Weare (1977), Servain (1991), Nobre and Shukla (1996), Chang et al. (1997) and Tourre et al.
(1999) ), or is only an artifact of the EOF analysis (Houghton and Tourre 1992, Enfield et al. 1999,
Dommenget and Latif 2000). Dommenget and Latif (2000) basically argue on the basis of coupled
model results and observations that the dipole in the tropical Atlantic does not represent a physical
mode.
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Figure 13.1: The EOFs, VARIMAX patterns and regressions of box averaged monthly mean sst in
the tropical Atlantic Ocean. The amplitudes are in Kelvin.
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SST in the tropical Indian Ocean

A similar analysis is now repeated for the tropical Indian Ocean. The first two EOF and VARIMAX
patterns and two regression patterns between box averaged SST and the SST field are shown in
Fig. 13.2.
Again, the EOF-2 of the SST variability is characterized by a dipole. However, there are some
significant differences compared to the tropical Atlantic. First, the EOF-1 of the Indian Ocean
explains much more variance than the EOF-1 of the tropical Atlantic, and second, the EOF-1
explains also much more variance than the EOF-2 of the tropical Indian Ocean. Furthermore, the
VARIMAX patterns do not pick up the two centers of EOF-2. The eastern center of the dipole
does not show up in any of the four most dominant VARIMAX patterns (patterns 3 and 4 are not
shown).
The first two EOF patterns have been interpreted in terms of potential physical processes by Saji et
al. (1999). They point out that the EOF-1 has a strong correlation with the El Niño in the tropical
Pacific and can therefore be interpreted as the Indian Ocean response to El Niño. A response of the
Indian Ocean to ENSO is well known and has also been pointed out by others (e.g. Venzke et al.
2000 and Reason et al. 2000). Since the EOF-2 has an orthogonal time evolution to EOF-1, they
argue that the EOF-2 can be interpreted as an El Niño independent mode of variability, which is
unique to the tropical Indian Ocean. However, the VARIMAX representation and the regressions
provide no indication for the existence of a dipole mode, as suggested by EOF-2.

Figure 13.2: The EOFs, VARIMAX patterns and regressions of box averaged monthly mean sst in
the tropical Indian Ocean. The amplitudes are in Kelvin.
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SLP variability in the Northern Hemisphere

We shall now analyze the Northern Hemisphere winter SLP variability. The following example is
different in many aspects compared to the ones described above. In contrast to SST anomalies, SLP
anomalies in one region are usually compensated by SLP anomalies of opposite sign in a nearby
region at the same time. Therefore the patterns of SLP have in general a dipole or multipole
structure.
Furthermore, the standard deviation of the SLP is very inhomogeneous, with much stronger vari-
ance in higher latitudes compared to lower latitudes. In data sets with inhomogeneous standard
deviations, the covariance-matrix based EOF can be very different from a correlation-matrix based
EOF analysis. It is therefore instructive to additionally calculate the correlation-matrix based
EOF-analysis.
In Fig. 13.3, the first two covariance-matrix based EOFs, correlation-matrix based EOFs, VARI-
MAX modes and two regression patterns are shown. Again, the different methods of representing
the SLP variability in the Northern Hemisphere give quite different results with respect to the
teleconnections. This may be one of the reasons why there is a scientific debate about which of
these patterns describe best the dominant modes of SLP variability. For an overview of this con-
troversy see Ambaum et al. 2001 (see also Barnston and Livezey 1987, Thompson and Wallace
2000, Wallace 2000).
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Figure 13.3: The leading EOFs, VARIMAX patterns and regressions of box averaged monthly mean
winter time (November to April) SLP in the Northern Hemisphere. The amplitudes are in Pascal.
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13.1.3 A Simple Artificial Example of EOF-Analysis

A simple 3-dimensional example might help to understand the difficulty in interpreting the patterns
of the former examples. The advantage of the following artificial example compared to the ones
described above is that we discuss a low-dimensional problem which is well-defined and in which
statistical uncertainties do not exist.
We assume that our domain can be divided into three regions. We then define three different modes
of variability, which are shown in the upper panel of Fig. 13.4. We have one mode which only acts
in the left region, one only in the right region and one which covers all three regions. The explained
variance of each mode is shown in the titles of each plot in Fig. 13.4. We assume that the time
evolutions of theses modes are uncorrelated and that the standard deviation of all time series of
these modes amount to unity.
The structures of the physical modes are motivated by the analyses of the SST in the tropical
Atlantic and Indian Oceans. The three modes may therefore yield some further insight into the
modal structure in these regions.
For the SLP in the Northern Hemisphere, Mode-1 could be interpreted as the North Atlantic
Oscillation (NAO) of the Atlantic-European region (similar to VARIMAX-1 in Fig. 13.3), Mode-2
as the Pacific North America pattern (PNA) (similar to VARIMAX-2 in Fig. 13.3) and the Mode-3
would be an annular mode (similar to EOF-1 in Fig. 13.3, but much weaker and more zonal). The
three regions of the simple example would then be interpreted as the Atlantic-European region
(the left region in Fig. 13.4), the Pacific domain (the right region) and the rest of the Northern
Hemisphere (the central region).
However, to keep the problem as simple as possible we represent each region by one point only. The
values at these points are printed on top of the mode (see Fig. 13.4). We can therefore interpret each
physical mode as a three dimensional vector, πi, where each component of this vector represents
the variability of one region. The Variance of πi ist given by,

γ(πi) = πiπ
′
i (13.2)

The set of the three vectors defines a matrix Π,

Π =




5 0 2
0 0 2
0 4.5 2


 (13.3)

Each column represents one of the modes shown in Fig. 13.4. The actually observed variability in
the three regions defines a matrix Y which is related to Π by:

Y = ΨΠ (13.4)

Ψ := (ψ1(t), ψ2(t), ψ3(t)) (13.5)

The coordinates ψi of Vector Ψ describe the time evolutions (PCs) of the basis Modes. The con-
struction of our example allows us to calculate the covariance matrix exactly, since our example
has been constructed such that the characteristics of the physical modes are known exactly. There-
fore all structures that appear in the following statistical analysis are well-defined. The covariance
matrix is given by,

ΣY Y = ΠΠ′ =




29 4 4
4 4 4
4 4 24.25


 (13.6)
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Figure 13.4: The physical modes (1st panel from top), EOF (2nd panel from top), VARIMAX
(3rd panel from top) pattern and the regressions patterns of each coordinate with all coordinates
(bottom panel) of the simple low-dimensional example are shown. The values plotted on top of the
patterns represent the associated vectors and are identical to the amplitudes of the patterns in the
respective region. The amplitudes are in arbitrary units.
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The square root of the covariance matrix yields the regressions of one coordinate of the vector space
(one region) with all coordinates (regions) of the vector space. The regression patterns and values
are shown in the lower panel of Fig. 13.4.

Based on the covariance matrix we can also calculate the EOF vectors exactly. We therefore do
not have to consider the sampling error problem, which can lead to unstable estimations of the
EOF vectors (North et al. 1982). The EOFs are also shown in Fig. 13.4. The EOF vectors are not
degenerated, since all eigenvalues of the covariance matrix are different (see explained variances of
the EOFs in Fig. 13.4).

The set of the three EOF vectors define a matrix Q. Similar to equation [13.4] the observed Vector
Y is related to Q by:

Y = QPQ (13.7)

The Vector PQ describes the time evolutions (PCs) of the EOFs. Using the equations [13.4] and
[13.7] we can show that the Vector PQ can be presented by as linear combination of the Vector ψi:

QPQ = ΨΠ (13.8)

=> QTQPQ = QTΨΠ (13.9)

with Λ = QTQ = the diagonal matrix of the eigenvalues of the EOFs we find:

=> ΛPQ = QTΠΨ (13.10)

=> PQ = Λ−1QTΠΨ (13.11)

A := Λ−1QTπ (13.12)

Thus the matrix A describes the linear combination of the Vector Ψ, which constructs the vector
PQ.

The coefficients of A are listed in Table 13.1. A row in Table 13.1 describes the relative influence
of the basis modes onto a single EOF-mode. For example, it can easily be seen (in Fig. 13.4
and corresponding in Table 13.1.) that the EOF-2 includes the time evolutions of Mode-2 with
positive loadings and Mode-1 with slightly smaller negative values (Table 13.1). Please note that
the EOF-2 represents a pattern which does not really exist in our simple example, so that it is
completely artificial.

principal component Mode-1 Mode-2 Mode-3

PC-1 0.74 0.40 0.54
PC-2 -0.56 0.81 0.6
PC-3 0.37 0.43 -0.82

Table 13.1: The matrix A, by which the PCs of the EOF vectors are constructed.

Usually the VARIMAX representation is calculated by using the EOF-patterns. Here we can
directly calculate the VARIMAX representation from our basis vectors, since the basis vectors
are already given with orthogonal time evolutions, which is usually not the case in climatological
data sets. Therefore the VARIMAX vectors are well-defined. The VARIMAX patterns and their
explained variances are also shown in Fig. 13.4 and the corresponding transformation matrix A for
the PCs of the VARIMAX vectors are listed in Table 13.2.

Our simple 3-dimensional example has an inhomogeneous distribution of the local standard devia-
tion, with larger variability in the left and right region and less variability in the center region. It
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principal component Mode-1 Mode-2 Mode-3

VPC-1 0.94 -0.06 0.33
VPC-2 -0.07 0.93 0.35
VPC-3 0.33 0.36 -0.87

Table 13.2: The matrix A, by which the PCs of the VARIMAX vectors are constructed.

is therefore similar to the inhomogeneous standard deviation of Northern Hemisphere winter SLP
variability.

In data sets with inhomogeneous standard deviations, the covariance-matrix based analysis can
be very different from a correlation-matrix based analysis. We have therefore calculated the
correlation-matrix based EOFs and VARIMAX modes, and correlations between the different re-
gions ( Fig. 13.5). The correlation-matrix based VARIMAX analysis is equivalent to the “normal”
VARIMAX as stated in Kaiser (1958).

The transformation matrix A for the PCs of the correlation-matrix based EOFs and VARIMAX
vectors are listed in Table 13.3 and 13.4.

principal component Mode-1 Mode-2 Mode-3

PC-1 0.38 0.39 0.84
PC-2 0.75 -0.66 -0.03
PC-3 0.55 0.64 -0.54

Table 13.3: The matrix A, by which the PCs of the correlation-matrix based EOFs vectors are
constructed.

principal component Mode-1 Mode-2 Mode-3

VPC-1 0.98 -0.04 0.19
VPC-2 0.00 0.98 0.21
VPC-3 -0.19 -0.21 0.96

Table 13.4: The matrix A, by which the PCs of the correlation-matrix based (normal) VARIMAX
vectors are constructed.

Discussion: We used three different statistical methods (EOF, VARIMAX and regression analysis)
to identify the different variability modes in different multi-variate data sets.

In the following discussion we compare the results from the simple low-dimensional example with
those from the other three examples using observed data. We do not consider statistical uncertain-
ties, since the problems due to statistical uncertainties in EOF analysis have already been discussed
elsewhere (e.g. North et al. (1982) and Richman (1986)). Furthermore, the points that we make
here are not related to statistical uncertainties.

Although the discussion will be mostly focused on the differences in the spatial patterns, one has to
take into account that each pattern is related to a specific time series. Patterns that do show large
differences in the spatial structures will in general also have large differences in the corresponding
time series.

In the simple low-dimensional example we consider three variability modes. The three modes can
be interpreted as the ’real physical modes’ of the domain. From a mathematical point of view all
representations (e.g. EOF, VARIMAX ) of the simple low-dimensional example are equally valid,
but from a physical point of view we would like to find the representation, which is most clearly
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pointing towards the ’real physical modes’ of the problem.

We constructed the simple low-dimensional example by two local and spatially orthogonal modes,
which should represent some simple internal modes (see Fig. 13.4). The third mode in this example
represents a domain-wide mode, which may be regarded, for instance, as the response of the domain
to some kind of external influence. The third mode is not orthogonal in space with the other two,
which will be important in the following discussion. By construction the simple low-dimensional
example does not contain any statistical uncertainties, which allows us to determine the EOF and
VARIMAX patterns exactly.

Although the Mode-3 is the weakest one in the simple low-dimensional example, the EOF-1 is very
similar to it (see Fig. 13.4). Despite the fact that it captures some features of the two other basis
modes, it may be interpreted as the domain response to some kind of external influence, similar
to how Saji et al. (1999) have interpreted the EOF-1 of the tropical Indian Ocean. Although
the EOF-1 in the simple low-dimensional example is very similar to the Mode-3, the PC-1 is a
superposition of all three basis modes (see Table 13.1).

In the tropical Indian and Atlantic Ocean SSTs this kind of weak external influence may be the
ENSO response or a greenhouse warming trend, as expressed by the leading EOFs (see Fig. 13.1
and Fig. 13.2). In the Northern Hemisphere SLP such an external influence might manifest itself
as an annular mode like the EOF-1 of Northern Hemisphere SLP (see Fig. 13.3).

On the other hand, we would like to clarify that the EOF-1 does not need to be a superposition
of many modes. If we would have chosen the Mode-3 as the most dominant mode in our simple
example then the patterns of the EOF and VARIMAX analyses would not look much different
compared to the ones shown in Fig. 13.4, but the PC-1 would clearly be dominated by the Mode-3.
It is, for example, well known that the EOF-1 of the tropical Pacific SST is really representing the
El Niño mode.

The orthogonality constraint in space forces the EOF-2 of the simple low-dimensional example to be
a domain-wide dipole, although the two centers of the dipole are not anti-correlated by construction
(see Fig. 13.4). It can therefore be concluded that in a domain which has an EOF-1 pattern with a
shape of a domain-wide monopole must have a dipole in the EOF-2. The dipole, however, is totally
an artifact of the orthogonality constraint.

The EOF-3 and VARIMAX-3 patterns in Fig. 13.4 are interesting, since they indicate a kind
of central mode which does not really exist. Interestingly, the time evolution of this mode is a
superposition of all three basis modes. This leads to the fact that the PC-3 includes variability
from the basis Mode-1 and Mode-2 which actually are not influencing this region at all (see Table
13.1 and 13.2).

By construction the EOF analysis maximizes the explained variance in the leading EOFs. This
will in general lead to the fact that only a few EOF patterns are needed to explain a large amount
of variability. In the artificial example the two leading EOFs explain more than 95% of the total
variance (see Fig. 13.4). However, our artificial example has three modes. This indicates that the
EOF analysis will in general underestimate the complexity of the problem. This is also indicated
in the tropical Indian Ocean SST analysis, in which the two leading EOFs explain much more total
variance than the two leading VARIMAX pattern (see Fig. 13.2).

Sometimes maps of explained local variances are shown in order to highlight certain regions in
which a relatively high amount of variance is explained, indicating that these regions should be
analyzed in greater detail. This approach will in general favor the VARIMAX method, since VARI-
MAX optimizes the simplicity and therefore produces local patterns. Although, the VARIMAX
representation is often a very instructive representation of the data, it may often fail to find global
modes, like the Mode-3, due to the optimization of the simplicity which favors localized modes.

In Fig. 13.5, we have repeated the analysis of our simple example but with correlation-matrix based
EOFs and VARIMAX analysis, and by computing the correlations between the different regions.
The patterns are presented in terms of correlation values. These representations look quite different
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from the covariance-matrix based analyses. Here the VARIMAX analysis and the correlations are
in very good agreement with the original modes, but the EOF patterns are again very different
from the original modes.

This example and the example of the SLP variability in the Northern Hemisphere (see Fig. 13.3)
may indicate that correlation-matrix based analyses are more instructive than covariance-matrix
based analyses. However, we believe that this cannot be generalized. Whether correlation- or
a covariance-matrix based analysis gives a better representation of the ’physical modes’ depends
strongly on the spatial structure of the ’physical modes’. Imagine, for instance, that the Pacific and
the Atlantic pole in the covariance-matrix based EOF-1 in Fig. 13.3 would have the same spatial
structure, but the Pacific pole would have a larger amplitude than the Atlantic Pole. In this case
a correlation-matrix based analysis would not be able to focus on one of the poles, as in Fig. 13.3,
since the correlation-matrix does not know anything about the larger amplitude of the Pacific Pole.
In this case the covariance-matrix based analyses would be a better representation, and the EOF-1
would be focused on the stronger Pacific pole.

In the artificial example the regression patterns seem to be most instructive in representing the
dominant modes of variability. However, the disadvantage of the regression analysis is that the
choice of the index region is highly subjective and it is much easier to choose an index that is not
instructive at all, than to choose an adequate index. For the SLP in the Northern Hemisphere, for
instance, we could have chosen an index region over the North Pole and the regression would look
very much like the covariance-matrix based EOF-1 (the regression pattern is not shown, but see
Fig. 13.3 for the EOF-1). Thus, the disadvantage of the regression analysis is its subjectivity so
that one always needs to argue why a certain index has been chosen.

Often regression indices are motivated by EOF analysis (e.g. the tropical Atlantic or Indian Ocean
dipole indices), which seem to make the regression indices more objective. However, one has to
consider that these indices are as limited in the interpretations as the EOF patterns themselves
from which these indices are derived.

In our simple example both covariance-matrix based EOF and VARIMAX analysis somehow fail to
adequately represent the weak global mode (Mode-3) and one can imagine that in many practical
problems the correlation-matrix based EOF and VARIMAX analysis will also fail to identify the
weak global mode. It may therefore be a good approach to eliminate the weak global mode prior
to the EOF analysis.

However, there is no simple way to determine the pattern and time series of such a weak global,
since one can not derive these structures by analyzing the domain itself. This would again lead to
a superposition of the local and weak global modes into one mode, as in EOF-1 of Figs. 13.4 and
13.5. The structure of the weak global mode has to be determined by some additional knowledge
about external influences like global warming or ENSO.

Conclusions: We have shown that EOF and rotated EOF analyses have problems in identifying
the dominant centers of action or the teleconnections between these centers of action in multi-
variate data sets. We therefore have to be very careful in interpreting the EOF or rotated EOF
modes as potential physical modes.

The problems in interpreting the patterns derived from EOF and VARIMAX analyses arise from
the basic assumptions that are made by these statistical methods, which are not identical to the
assumptions that we make to derive the so called ’physical modes’ of the problem. The EOF analysis
always represents modes of variability that are orthogonal in time and space. The constraint of the
orthogonality in space is often not consistent with the real nature of the problem, like in the simple
example, in which the basis modes are not orthogonal in space (see Fig. 13.4). The VARIMAX
analysis is looking for localized modes, which is also not adequate for our simple example, since
the Mode-3 is highly non-local.

A good strategy for statistical analysis of climate data is to look at the data with different statistical
tools, like regressions, VARIMAX or EOF analysis, and develop a hypothesis for the potential
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’physical modes’ which is consistent with all representations of the data, instead of developing a
hypothesis for the potential ’physical modes’ based on only one representation, which is often in
contradiction with other representations.
We would like to conclude our discussion with the following caveats for the interpretation of the
results of the EOF or VARIMAX methods:

• The teleconnection patterns derived from the orthogonal analysis cannot necessarily be in-
terpreted as teleconnections which are associated with a potential physical process (e.g. the
dipole pattern Fig. 13.4 ).

• The centers of action derived from the EOF or VARIMAX methods do not need to be the
centers of action of the real physical modes (see EOF-3 or VARIMAX-3 in Fig. 13.4).

• The PCs of the dominant patterns are often a superposition of many different modes, which
are uncorrelated in time and which are often modes of remote regions that have no influence
on the region in which the pattern of this PC has its center of action.
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Figure 13.5: Same as in Fig. 13.4 but all analysis are based on the correlation matrix and the
values are in terms of correlation.
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13.1.4 A dispute about modes (tropical Indian Ocean SST Variability)

our hypothesis

statistical representation

dipole hypothesis

statistical representation

Figure 13.6: The hypothetical modes and their statistical representations by EOFs, VARIMAX
patterns and regressions of box averaged SST in an artificial 3-dimensional domain are shown for
two different hypotheses. The amplitudes are in arbitrary units.

The discussion of the previous artifical example caused some response by the coauthors of the
Indian Ocean Dipole paper Behera et al. (2002). In their introduction Behera et al. (2002) say:
“DL question the existence of the IOD as a physical mode. The argument put forward by DL,
however, suffers from misinterpretation of statistical analysis as well as misuse of the statistical
techniques...” (DL = Dommenget and Latif, 2002). This is of cause a statement that can not be
left without a reply. So parts of the reply by DL:

Behera et al. (2002) report in their comments that several statistical characteristics or relationships
are consistent with their dipole-hypothesis. We can only agree to this, but we would like to point
out that all the characteristics or relationships they present are indeed also consistent with the
alternative hypothesis that a dipole mode does not exist. These characteristics can therefore not
be put forward as evidence for the existence of the dipole mode.

In the following, we would like to outline how these apparently contradictory hypotheses can be
tested. Therefore we would like to use the concept of the artificial 3-dimensional example (described
in DL) as a simplification of the Indian Ocean SST variability.

We assume that the response to ENSO is the most dominant mode of SST variability in the
Indian Ocean, which can be simplified as a domain wide monopole (see left panels of Fig. 13.6).
We assume further that the remaining ENSO-unrelated SST variability can be explained by local
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air-sea interaction, which will most likely favor localized SST modes. In the framework of our
3-dimensional example we simplify the remaining variability by two local modes, as shown in the
left panels of Fig. 13.6.

The dipole-hypothesis from Behera et al. (2002) is treated in a similar way in the right panels of
Fig. 13.6

The two apparently contradictory hypotheses lead to essentially the same large-scale SST statistics
as shown by the EOFs, VARIMAX and box-regressions in Fig. 13.6. Since both hypotheses describe
the same SST statistics, analyses based on these statistics cannot be used to either support or reject
one of the two hypotheses. It therefore does not make sense to count the number of dipole events,
as Behera et al. (2002) do, in order to support the existence of a dipole mode. The numbers of
expected dipole events are the same in both hypotheses.

According to Behera et al. (2002) the linear relationship between the IOD index and the zonal
wind anomalies along the Indian Ocean equator as shown in their Fig. 1 should support the ocean-
atmosphere coupled nature of the IOD mode. We do not see why this relationship should not exist
in our “local” hypothesis. Thus the apparent “physical and dynamical understanding of various
ocean-atmosphere parameters” in Behera et al. (2002) or Saji et al. (1999) cannot be put forward as
evidence for the dipole mode, since they are also consistent with the alternative “local” hypothesis,
which does not include a dipole mode.

Furthermore, Behera et al. (2002) say, in their section “4. Dipole Mode in EOF and VARIMAX
”: “The question, which arises here, is that whether it is possible to identify the dipole mode in the
real SST data using these two methods? This can be achieved by filtering out the monopole mode
related to ENSO (Fig.4).”

principal component ENSO-response Mode-2 Mode-3

PC-1 (our hypothesis) 0.83 0.42 0.37
PC-1 (dipole hypothesis) 0.9999 0.0001 0.0128

Table 13.5: The table shows the contributions of the hypothetical modes to the PCs of the EOF-1
vector for both hypotheses.

Removing the “monopole mode related to ENSO”, which is the ENSO-response mode, would indeed
be a good strategy for testing the hypothesis of a dipole mode. However, it cannot be done by
removing EOF-1, since this already assumes that EOF-1 is identical to the ENSO-response, which
is not necessarily true. In Table 13.5, the contributions of different hypothetical modes to the time
evolution (PC) of EOF-1 are shown. For the dipole-hypothesis of Behera et al. (2002), the EOF-1
is essentially identical to the ENSO-response. In our hypothesis the EOF-1 is a superposition of
all modes, although it is dominated by the ENSO-response.

In section 2.“IOD as a climate mode” Behera et al. (2002) point out that: “The correlation
coefficient peaks at 0.75 when the Niño-3 index leads the EOF mode by 4 months.”

This is indicates that at most 56 % (0.752) of the variance of EOF-1 is related to the ENSO
response, while the remaining 44% is not related to ENSO. This appears to be consistent with our
local hypothesis, but it is not consistent with the dipole hypothesis, in which EOF-1 has to be
identical to the ENSO response.

Thus removing EOF-1 does not verify the existence of the dipole mode, since it already assumes
that the dipole-hypothesis is valid. Instead of removing EOF-1, the real ENSO-response should be
removed.

In Figure 13.7 we removed the ENSO-response from the data prior to the statistical analyses.
Now the statistical representations of the two hypotheses are very different. Similar to Figure 4
in Behera et al. (2002), all statistical representations of the dipole-hypothesis would now clearly
point towards a dominant dipole-mode. In our hypothesis, none of the statistical representations
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our hypothesis (ENSO removed)

statistical representation

dipole hypothesis (ENSO removed)

statistical representation

Figure 13.7: As in Figure 1, but the ENSO-response mode has been removed from both hypotheses.

would show a dipole mode as the most dominant mode. Thus removing the ENSO-response mode
properly would clearly show which of the two hypotheses is true.
Baquero et al. (2002), followed the strategy outlined above. In their analysis of observed SST
variability in the Indian Ocean they removed the ENSO-response statistically using the leading
POP mode of the tropical Pacific. In addition they also analyzed two global coupled general
circulation models, one in which a realistic ENSO mode is present and one in which the ENSO
mode is suppressed physically.
None of the analyses presented in Baquero et al. (2002) can support the dipole-hypothesis. More-
over, all results seem to be consistent with our “local” hypothesis that the SST variability in the
Indian Ocean is dominated by the ENSO-response alone and that the remaining ENSO-independent
SST variability is consistent with local air-sea interaction.

13.2 The Stochastic Continuum View
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13.2.1 A Null Hypothesis for Teleconnections (EOF-modes)

In the previous chapter the problems with interpreting the EOF-modes was discussed and it illus-
trated that statistical inferences from EOF-modes is far from trivial. In this chapter an approach
will be presented that may help understanding the physical processes causing the structure of the
leading EOF-modes. The basic idea is to compare the spectrum of EOF-modes with a simple
stochastic null hypothesis, similar to the approach used for the time series analysis.

In following section some concepts from time series analysis and a definition of climate modes
or teleconnections are presented. In section 13.2.3 a stochastic null hypothesis for the spatial
structure of climate variability if formulated. The concept on how this stochastic null hypothesis
can be compared with observed EOF-modes is presented in section 13.2.4 and some artificial and
real data examples are discussed in the subsequent section. The chapter concludes with a discussion
section.

13.2.2 Concepts

It is helpful to first discuss how climate modes could be defined and how limited such definitions
may be. It is also instructive to illustrate how the concept of testing a stochastic null hypothesis is
performed in time series analysis, which will be a guide for the subsequent analysis of the spatial
structures of climate variables.

The null hypothesis in time series analysis

It is common in time series to evaluate the spectra of time series against an first order auto-regressive
process (AR(1)-process), which goes back to the stochastic climate model of Hasselmann (1976).
In its simplest form, Hasselmann’s model is an AR(1)-process, which is defined by the following
differential equation for time evolution of any physical variable Φ:

d

dt
Φ = cdamp · Φ+ f (13.13)

with cdamp < 0 being a constant damping and f white noise. The auto-correlation function in time,
c(τ), of Φ is:

c(τ) = e−τ/t0 (13.14)

with the time lag τ and the e-folding time t0 =!/cdamp. One can derive the analytical form of the
spectral distribution of the null hypothesis of Φ from eq.[13.14]. In time series analysis, this null
hypothesis is often used to evaluate the temporal behavior of Φ, by simply comparing the spectrum
of Φ with that of a fitted AR(1)-process. The parameters of the fitted AR(1)-process are derived
from the auto covariance function of Φ (e.g. Reynolds 1978, Dommenget and Latif 2002b).

In the case of the El Niño SST time series, for instance, the spectrum shows some characteristic
enhanced variance (peak) in the interannual frequency range, which is usually interpreted as an
indication for the oscillating nature of El Niño SST. The spectrum of the midlatitudes SST time
series shows no peak, but a different overall slope of the spectrum, which indicates deviations from
the AR(1)-process null hypothesis (Dommenget and Latif 2002b).

Definitions of teleconnection/climate modes and their limitations

The way EOFs modes are discussed in most statistical analyses (e.g. Dommenget and Latif (2002a)
and references therein) is based on a factor analysis approach, as pointed out by Jolliffe (2003). It
is implicitly assumed that the multivariate data X is a result of the time evolution of a set of K
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fixed factors ,πi, (often called teleconnections, modes or patterns), and some residual unstructured
noise ξ.

X(t) = Ψ(t)Π + ξ(t) (13.15)

Π is a matrix of factor loadings πi, where each πi is interpreted as a coherent spatial pattern
(teleconnection). These patterns are the dominating influence for X (for details on factor analysis
see textbook by Jolliffe 2002). The time evolution of Π is given by a matrix of time series Ψ.
The idea is to assume that the high-dimensional system can be approximated by a low-order state
space model, with the number of modes, K, much smaller than the dimension of X (von Storch
and Zwiers 1999 section 15.5). The patterns Π in this approach are a reflection of the underlying
low-order physical model. This approach, however, depends strongly on how the patterns Π are
estimated. In the recent literature it seems a popular approach to associate the leading EOFs or
other statistical modes with the leading teleconnections (e.g. Thompson and Wallace 1998 or Saji
et al. 1999). It is, however, important to note that it is in general unclear if any teleconnections
exist in the data set and how they can be estimated (e.g. Jolliffe 2002 section 7 and Dommenget and
Latif 2002a). Dommenget and Latif (2002a) argue that most likely neither EOF nor VARIMAX
will find the leading teleconnection factors in climate data sets. The inherent problem in this
approach is that a criteria or algorithm needs to be formulated by which the empirical patterns Π
are chosen. Thus the resulting modes may in many cases be a reflection of the statistical method
used, but are not a good representation of the underlying physical processes.
An alternative method, which avoids to formulate any criteria for the structure of teleconnection
modes, is to formulate a null hypothesis for the structure of spatial variability, which can be regarded
as a model for the noise. Any pattern that is very distinct from the patterns of the null hypothesis
is a good starting point for the estimation of teleconnection modes. This concept is similar to the
time series analysis, in which the time scale behavior of El Niño, for instance, is simplified into a
distinct oscillation mode on interannual time scales and a background red noise. In analogy the
teleconnection modes are defined as the modes that stick out of the background noise, as define by
the null hypothesis.

13.2.3 A stochastic null hypothesis for the spatial structure of climate vari-
ability

Before a stochastic null hypothesis for the spatial structure of climate variability can be fromulated
it helps to have a look at some data to get an impression on how the spatial structure in climate
variability looks like.
In Fig. 13.8 and 13.9 the NCEP global monthly mean SLP from 1948 to 1999 (see Kalney et al.
1996) and the global monthly mean SST anomalies, based on the Reynolds data set from 1950
to 2000 (Reynolds and Smith 1994) are represented by 5 simple box-correlations as well as by
the 5 leading EOF-modes. The box-correlations have been chosen somewhat randomly with some
guidance by the structure of the EOF-modes. From the two different representations of the data
we find several interesting characteristics of both the data and the statistical methods we used:

• In all box-correlations the correlations decrease relatively fast with distance to the center
of the box, clearly indicating that most of the SST and SLP variability is related to nearby
regions only, while remote regions have in general a much weaker influence (correlation). This
clearly represents a main characteristic of climate variability and can not be inferred from
the EOF-modes.

• In all box-correlations positive correlations reach beyond the box boundaries, which indicate
that nearby regions are in general linked by some kind of diffusive processes. Again this is
not obvious from the EOF structure.
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• The EOF-modes tend to be global modes with long distance teleconnection patterns. Some
of these teleconnection patterns can be seen in the box-correlations as well, but others are not
reproducible by box-correlations. For instance, the EOF-2 of the SLP presents a dipole over
the North Atlantic, which is similar to the NAO-pattern, but has as well large correlation
values in other regions of the globe. The box-correlation (see box-3 in Fig. 13.8) shows
similar correlations in the North Atlantic, but very different correlations outside this region.
Thus, teleconnection of EOF-modes can not be verified by box-correlations. However, this
does not imply that the EOF teleconnection is not valid, but there seem to be no objective
way to decide which teleconnection of the EOF modes is indeed reflecting a physical mode of
variability.

• A few EOF-modes explain a lot of variability, while the same number of local box-correlation
tend to explain much less variability. Therefore, EOF-analysis implies that a few modes of
variability are responsible for a large fraction of the variability covering the entire domain.
On the other hand, the same number of modes based on local box-correlations explains a
much smaller fraction of the variability, which only covers the nearby regions.
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Figure 13.8: Box correlations and EOF-analysis of global monthly mean SLP anomalies. The left
column shows 5 different box correlations. The right column shows the correlation patterns of the
5 leading EOF-modes of the domain. Values are non-dimensional.
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Figure 13.9: Same as Fig. 13.8 but for global monthly mean SST anomalies.
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The stochastic model of Calahan et al. (1996) is essentially given by the correlation between two
spatial locations of the data field, Φ:

c(r) = e−r/d0 (13.16)

Here r is the distance between the two locations and d0 is the decorrelation length. Note that
eq.[13.16] is the equivalent to eq.[13.14]. Thus the stochastic model of Calahan et al. (1996) is an
AR(1)-process in the spatial domain dimension.
The simple physical model in eq.[13.13] can be extended to include diffusion for the relation between
two locations:

d

dt
Φ = cdamp · Φ+ cdiffuse∇2Φ+ f (13.17)

cdiffuse is a diffusion coefficient and f now represents spatial and temporal white noise. In this
equation the diffusion is just introduced in a statistical sense. This diffusion model is often refered
to as a simple energy balance models of the climate system (see e.g. North et al. 1981 and 1983
and references there in). Leung and North (1991) discussed some statistics of this model for the
atmospheric variability of a zonally symmetric planet. North (1984) finds that the EOFs of this
model driven by homogenous forcing f (spatially white noise with the standard deviation of f
constant over the domain) coincide with the eigen modes of the dynamic operator of the system.
Note that for an isotropic diffusive process (neither cdamp nor cdiffuse are a function of the location)
driven by a homogenous forcing f , the model in eq.[13.17] is an AR(1)-process in the spatial domain.
We can derive the covariance matrix of Φ:

Σij = σiσje
−dij/d0 (13.18)

where σi is the standard deviation of Φ at point i and dij the spatial distance between the two points
i and j. If the standard deviation field σ or d0 exhibit spatial variations (e.g. σi 6= σj for i 6= j
), than the model in eq.[13.17] is not a spatial AR(1)-process any more and eq.[13.18] does not
exactly represent the covariance matrix of Φ. However, eq.[13.18] should be a good approximation
if the spatial variations of σi and d0 are small. The effect of spatial variations of σ will be discussed
in section 13.2.6 by means of a realistic example.
An isotropic diffusive process in equations [13.17] and [13.18] is the null hypothesis for the spatial
characteristics of a climate variable Φ. In this formulation, Φ has no teleconnections other than
the exponential decay of its auto-correlation function. In analogy, the spectrum of a time series of
an AR(1)-process, is not considered to have a significant time scale (peak in the spectrum) other
than a damping time scale.
We can find the EOF modes and eigenvalues of the null hypothesis numerically. In Fig. 13.10 the
leading EOF modes of a domain defined by 17x11 points with constant σ = 1 and d0 = 4.6 points
is shown. The eigenvalues of the leading EOF modes are also shown in Fig. 13.10.
Based on this example and a few other examples with variations in the domain dimensions and d0
(not shown), a few important characteristics of the EOF modes and eigenvalues of the diffusion
null hypothesis can be formulated as follows:

• The EOF modes are a hierarchy of multi poles, starting with a monopole as EOF-1, followed
by a dipole, and then by higher order multi poles. The order and structure of the multi poles
is a result of the domain dimensions and the decorrelation length d0. Note that this kind of
structure of the observed leading EOF modes of most climate data sets is also discussed in
Richman (1986), but not in the context of the simple stochastic model in [13.17].

• The EOF-1 peaks in the center of the domain, because the center point is the point which
is in average closest to all other points and has therefore a larger covariance with all other
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Figure 13.10: The leading EOF modes (left panels) and eigenvalues (right panel) of a spatial
AR(1)-process in a 17× 11 points domain.

points. Note that σ and d0 are identical for all points, so that the statistics of all points of the
domain are identical. The EOF-1 mode is therefore only a reflection of the domain geometry.
It simply reflects that there is no structure in the variability other than exponential decay of
covariance with distance.

• None of the EOF modes represent teleconnections (factors), since no teleconnections exist in
this simple model. In the simple model of an spatial AR(1)-process the spatial variability is a
continuous spectrum of spatial patterns, where no spatial pattern is dominating over the other
patterns. The EOF modes should be interpreted as a reflection of different spatial scales. In
analogy, the spectral coefficients of a continuous spectrum of an AR(1)-process are a reflection
of the different time scales, but not a representation of an oscillating behavior. The domain
wide monopole of the leading EOF-1 represents the largest spatial scale of variability in the
domain, which in an AR(1)-process has the largest variance. EOF-2 and EOF-4, for instance,
should be interpreted as spatial variability along the x-axis with a spatial length scale of
about 1/2 of the domain size along the x-axis. They do not represent an anti correlation
between the centers. The same holds for all other EOF modes.

• The decrease of the eigenvalues to higher order EOFs is only a function of the domain size
and the decorrelation length d0. None of the 20 leading eigenvalues is degenerated (equal to
another eigenvalue), reflecting the different length of the domain along the x- and y-axis. Note
that in this example the number of points in each direction was chosen as a prime number to
avoid degenerated eigenvalues, which in real domains, such as ocean basins, would not occur.
Note also that the numerical precision of the EOF analysis in this example is much better
than the line (dot) thickness in Fig. 13.10.

An important quantity that quantifies the degree of complexity in the domains spatial vari-
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ability is the effective spatial number of degrees of freedom Neff (Bretherton et al. 1999). It
essentially estimates the effective dimension of the multivariate variability:

Neff =
1∑
e2i
, with

∑
ei = 1 (13.19)

with ei the eigenvalues as derived from the EOF analysis. The number Neff corresponds to
the number of independent spatial modes. It also quantifies the decrease of the eigenvalues
and is a monotonic function of the decorrelation length d0. It can therefore also be used as
an estimate for the decorrelation length.
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13.2.4 Evaluating EOF-vectors and eigenvalues against a stochastic null hy-
pothesis

The stochastic model allows an evaluation of EOF modes. In many studies only the leading EOF
modes of an observed data set are discussed. Here the focus is often on the spatial structure of the
observed EOF patterns, which are interpreted as teleconnection patterns. It is therefore important
to discuss to which degree the leading EOF modes are consistent with the simple null hypothesis
or, in a more objective approach, to find those patterns, that are most distinguished from those of
the null hypothesis.

Fitting an isotropic diffusion process to data

The null hypothesis as formulated in the previous section can be fitted to any data set by estimat-
ing the standard deviation field σ and the average decorrelation length d0. Given σ and d0 the
covariance matrix of the null hypothesis in eq.[13.18] is defined and the EOF modes of the null
hypothesis can be calculated.

Note that the estimation of d0 can have large uncertainties in a limited gridded domain (see e.g.
Storch and Zwiers, 1999). However, d0 is a monotonic function of the spatial number of degrees
of freedom, Neff , which is estimated by the sum of eigenvalues. The estimation of d0 will usually
depend on the correlation of neighboring points, which is a function of the variability on all spatial
scales. The estimation of Neff is essentially a function of the leading EOF-modes only, while the
small scale variability has little effect on this quantity. Hence, the agreement between the leading
eigenvalues of the observations and the fitted null hypothesis appears to be better if the observed
Neff is used to estimate the fitted d0 in (13.18). An analytical relation between Neff and d0 may
exist for some simple domain geometries, such as a sphere for instance. However, it will be difficult
to write down an analytical relation for complicated geometry and boundary conditions and it
may therefore be most practical to estimate these quantities numerically. Thus, d0 is varied until
Neff of the fitted null hypothesis agrees with the Neff of the observational data set within the
uncertainty range of Neff , which should be given by the statistical uncertainties of the eigenvalues
due to sampling errors (North et al. 1982).

Comparing the observed EOF modes with a null hypothesis

An EOF eigenvector (mode) of an observed data set, ~Eobsi , and the corresponding eigenvalue eobsi
can be compared to the eigenvectors ~Enullj and eigenvalues enullj of a null hypothesis by projecting

the eigenvectors ~Enullj onto the eigenvector ~Eobsi .

cij =
~Eobsi

~Enullj

| ~Eobsi || ~Enullj |
(13.20)

cij is the uncentered pattern correlation coefficient between the two EOF-patterns. The variance

that the mode ~Eobsi would have under the null hypothesis can be estimated by the linear combination
of all eigenvalues enullj of the null hypothesis using cij :

eobsnulli =
N∑

j=1

c2ije
null
j (13.21)

The variance eobsnulli is the expected variance of ~Eobsi if the data follows the diffusive process of
the null hypothesis. Note that while the eigenvalues eobsi decrease monotonically with higher order
numbers, the eobsnulli values does not need to decrease with higher order number. A pattern that
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explains a lot of variance in the observations (large eobsi ) may explain little variance under the null
hypothesis (small eobsnulli values).

13.2.5 Statistical inferences about the nature of EOF modes

The uncertainties of the eigenvalues eobsi of the observed data due to sampling errors are given
by North et al. (1982). When the observed data follows the null hypothesis we expected the
eobsnulli value to be within the uncertainties of the eigenvalues eobsi . A comparison of the eigenvalue
spectrum eobsi with the spectrum of eobsnulli allows to quantify the deviations of the observed data
from the null hypothesis, which can be the basis for statistical inferences about the nature of EOF
modes. The concept is in analogous to the comparison of the spectrum of an observed time series
with the spectrum of the fitted AR(1)-process.

eobsi and eobsnulli are variances, which tend to be χ2-distributed. Statistical inferences about χ2-
distributed random variables are usually obtained on the basis of the ratio, eobsi /eobsnulli , as in
time series analysis (e.g. Reynolds 1978, Dommenget and Latif 2002b). However, as mentioned
in Calahan et al. (1996) , the strongest deviations of the ratio, eobsi /eobsnulli , are found in the low
(higher order) eigenvalues, which are in most studies of little interest. It therefore may be more
instructive for large-scale teleconnections to base the statistical inferences on the difference between
eobsi and eobsnulli . However, the choice of the right test variable depends on the focus of the analysis.

The method of projecting the null hypothesis onto observed patterns can be used for all kind of
patterns, like box-averages or more sophisticated indices. The explained variance of the index
compared to the explained variance eobsnull could reveal whether the index indeed presents an
unexpected structure and thus can be used to justify a specific choice of indices.

13.2.6 DEOFs: An estimate of teleconnection modes

If the ~Eobs appear to be different from the null hypothesis one may be interested in the spatial pat-
tern that maximizes the difference in explained variance between the data and the null hypothesis.
These are named distinct EOFs (DEOFs or ~Dobs) and distinct PCs for the time series (DPCs),
respectively. The leading ~Dobs is defined as the pattern that maximizes the differences in explained
variance ∆var:

∆var = V arobs( ~D
obs)− V arnull( ~D

obs) (13.22)

Where V arobs denotes the variance that the pattern ~Dobs explains in the observed data and V arnull
denotes the variance that the pattern ~Dobs explains under the null hypothesis following [13.21]. The
leading ~Dobs can be found by pairwise rotation of the leading EOFs, as it is done for determining the
VARIMAX modes (Kaiser 1958), until the maximum of ∆var is found. By iterating this procedure
we can define a complete set of orthogonal DEOFs, building a complete representation of the data.

The patterns that are most distinguished from the null hypothesis, the leading DEOFs, are, from a
statistical point of view, a good first guess for the teleconnections. They should in general be a good
starting point for the understanding of the underlying physical processes. Identifying the DEOFs
with the teleconnections, however, depends strongly on the formulation of the null hypothesis.

The DEOF have, however, some limitation in the interpretation, that are similar to those pointed
out for EOFs in section 13.2.3. The concept of teleconnection patterns may not always be helpful
in the understanding of the multivariate data. In some systems, the DEOFs may be a reflection
of deviations from the isotropic diffusion, that are better described by physical process parameter,
such as anisotropy in the diffusion or advection. The DEOFs focus on the deviations in the leading
(large) eigenvalues, while differences in the higher order (small) eigenvalues are neglected, which
in some systems may be important for the understanding of the underlying physical processes
(Crommelin and Majda 2004).
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The DEOF are defined in an orthogonal system, which, similar to EOFs, maximize some variance
criteria. Therefore it can be difficult to interpret the DEOFs in systems where many DEOFs
explain more variance than expected under the null hypothesis (see also the discussion of the
observed Northern Hemisphere and tropical SLP variability in sections 13.2.6, 13.2.6 and 13.2.7).
Note that due to the limited length of the time series the expected value of ∆var 6= 0 when the data
follows the null hypothesis. For statistical inference about the significance of ∆var of the leading
DEOF we have to estimate the probability distribution function (PDF) of ∆var. The simplest way
to estimate the PDF of ∆var of the leading DEOF is by means of a bootstrapping approach (see
von Storch and Zwiers 1999).

Examples

We start with some artificial examples, in which the true nature of the problem is well defined.
The two artificial examples illustrate two different ways in which a multivariate data set can differ
from a pure isotropic diffusion process. We shall then discuss several examples of observed climate
variability, some of which have led to some controversy in the recent literature. In the discussion
of all examples, the null hypothesis of the climate variability is an isotropic diffusion process as
formulated in section 13.2.3 and the parameters are fitted to the data as described in section
13.2.4. The discussion of the observed climate variability modes will be brief and focuses on the
new technique. A more detailed physical analysis of the observed climate variability modes may
be desirable, but would be beyond the scope of this paper.

An isotropic diffusive field with inhomogeneous standard deviation

The following example is a numerical stochastic realization of eq.[13.17]., which should be similar
in its statistics to typical monthly mean time series of ocean basin SSTs. The model in eq.[13.17]
was integrated on a grid with 18 × 18 points with a daily time step. The diffusion coefficient was
chosen to produce a decorrelation length of about 3 points. For the statistical analysis, 30 time
steps were averaged to build a monthly mean and the damping cdamp in eq.[13.17] was chosen to
create a one month lag correlation of about 0.6. The resulting time series has a length of 1000
months with about 500 degrees of freedom. The standard deviation of the spatially uncorrelated
forcing f was increased in two regions, with one peak in the northeast and one in the southwest.
The resulting standard deviation of Φ varies between 1.0 and 4.0 (at the peaks) in arbitrary units.
The EOF analysis was performed on only the central 10× 10 domain to avoid boundary effects.
In Fig. 13.11a-c, the leading EOFs of the stochastic simulation are shown. In addition, the leading
EOFs of the covariance matrix Σ based on eq.[13.18] with parameters σi and d0 fitted to the
statistics of the simulation are shown for comparison (Fig.13.11d-f). The explained variance of
the EOF modes of the simulation, eobsi , are compared with the fitted isotropic diffusion process by
projecting the EOF modes of the null hypothesis onto the EOF modes of the stochastic simulation
as outlined in section 13.2.4 using eqs. [13.20] and [13.21] (see Fig.13.11g). Note that while the
eigenvalues eobsi decrease monotonically with higher order numbers, the variance under the null
hypothesis, eobsnulli , does not need to decrease with higher order number, because these are not
eigenvalues (see section 13.2.4).
In a first comparison we find that the EOF modes and eigenvalues of the stochastic simulation are
in good agreement with the fitted null hypothesis. If we rotate towards the leading vectors ~Dobs,
which point towards the largest differences, the two leading modes (see Fig. 13.11h,i) reveal some
significant structures (no other higher order mode shows any significant differences). These two
structures represent some differences in the spatial scale of variability near the two centers of the
leading EOF mode. They reflect that eq.[13.18] is only an approximation if structures in σ or d0
exist. In this example the structure introduced in the standard deviation of the white noise forcing
f leads to some structure in the standard deviation of Φ and it also creates some variations in d0.
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Figure 13.11: The leading EOFs of the stochastic simulation (panels a-c) and the EOFs of the fitted
isotropic diffusion process (panels d-f) of the example in section 13.2.6 are shown. The eigenvalues
eobsi (black line) are compared with the projection of the fitted diffusion process eobsnulli (red line) in
panel g). The shaded envelope around the black line is the statistical uncertainty of the eigenvalues
eobsi due to sampling errors after North et al.(1982). The panels h and i show the leading DEOF-1
and DEOF-2. The first percentage value in the heading of the panels h and i give the explained
variance of the DEOF in the stochastic simulation and the second value the explained variance of
the DEOF under the null hypothesis. All spatial modes are in arbitrary units.
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However, the difference between the stochastic simulation and the null hypothesis amounts to only
4% for the leading mode.
If we repeat the experiment with a homogenous standard deviation of the forcing f , the significant
structure in the leading vectors ~Dobs is gone (the difference in explained variance is < 2%, decreasing
with the length of the time series).
In summary, the EOF modes and eigenvalues are close to those of the null hypothesis.
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A diffusive field with a weak teleconnection pattern

Here the standard deviation of the forcing f is homogeneous through out the domain. In addition to
the spatially and temporally white noise forcing f , a teleconnection forcing pattern π was introduced
in eq.[13.17] leading to the following equation:

d

dt
Φ = cdamp · Φ+ cdiffuse∇2Φ+ π · F + f (13.23)

The spatial pattern of π is shown in Fig. 13.12a, where F is a white noise time series with a variance Fig. 13.12
of about 12% of the variance of f . The teleconnection forcing pattern π is therefore relatively weak.
Fig. 13.12b,c highlights the correlation between the two centers of the teleconnection forcing pattern
by means of box correlations, showing only a weak correlation in Φ between the two centers. For
the EOF analysis, the data were normalized so that each point has unity standard deviation. As a
result the stochastic simulation reflects a domain which has no structure in the standard deviation
of Φ, but it has a structure in the covariance matrix forced by a teleconnection pattern.
The EOF modes and eigenvalues are shown in Fig. 13.12d-k. The EOF modes are very similar
to those of a purely diffusive process as discussed in section 13.2.3, but that the eigenvalue of
EOF-2 is larger than expected by a diffusive process. The leading mode of the rotation towards
the largest difference relative to the fitted isotropic diffusion process, DEOF-1, is very similar to
the teleconnection forcing pattern. DEOF-1 explains 18% of the total variance, where this pattern
would only explain 10% in the fitted AR(1)-process (see Fig. 13.12l). Thus the residual of about
8% of the total explained variance may be associated with a teleconnection following the spatial
structure of DEOF-1. Note that none of the leading VARIMAX modes (not shown) have any
similarity to the teleconnection π, because the structure of the teleconnection forcing pattern (a
dipole) does not maximize the VARIMAX criteria ’simplicity’.
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Figure 13.12: As in Fig. 13.11 but for the example in section 13.2.6. In addition the forcing pattern
π is shown in panel a, and the box-average correlations of two regions with the rest of the domain
are shown (panel b & c).
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Figure 13.13: As in Fig. 13.11 but for the tropical Pacific SST as discussed in section 13.2.6.

Tropical Pacific SST

The first example of observed data is the tropical Pacific (from 30oS − 30oN to 100oE − 70oW )
monthly mean SST as presented by the HADISST data set from 1870-2003 (Folland et al. 1999).
The ENSO mode in the tropical Pacific is probably the best understood teleconnection mode of
natural global climate variability and is therefore a good example on which to apply the analysis
introduced in this paper. Whether or not the ENSO mode is stochastically forced, as assumed
by the null hypothesis, or due is to intrinsic chaotic behavior, will not be addressed in this work
(Kirtman et al. 2005 and references therein).
The three leading EOFs are compared with the EOFs of the fitted null hpyothesis in Fig. 13.13a-f. Fig. 13.13
The structures of the leading EOFs of the observed SST are quite different to those of an isotropic
diffusion process. The comparison of the variance of the eigenvalues shown in Fig. 13.13g clearly
shows that nearly all leading EOFs are different from the null hypothesis.
If we maximize the difference between the observed EOF modes and the null hypothesis by rotation
we find a pattern similar to EOF-1 (see Fig. 13.13h), with less explained variance (32%) but with
a much larger difference relative to the null hypothesis of about 22%, which makes this mode
more distinct to a diffusive process than EOF-1. It is also interesting to note that the leading
teleconnection DEOF-1 is more focused on the central equatorial region than the EOF-1, a region
often discussed in ENSO forecasting studies to be the most predictable region on seasonal to
interannual time scales (e.g. Barnett et al. 1993, Dommenget and Stammer 2004).
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Figure 13.14: As in Fig. 13.11 but for the tropical Indian Ocean SST as discussed in section 13.2.6.

Tropical Indian Ocean SST

The EOF-1 of the monthly mean Indian Ocean SST (20oS − 30oN to 30oE − 120oE) from the
HADISST data set over the period from 1870 to 2003 (Folland et al. 1999), as shown in Fig.
13.14a, has been identified as the response of the Indian Ocean to ENSO by Saji et al.(1999). They
further identify the EOF-2 as a new mode of ocean-atmosphere interaction in the Indian Ocean.
A discussion of whether or not this interpretation is justified can be found in Baquero and Latif
(2002), Behera et al. (2003) and in Dommenget and Latif (2003).
The spatial structure of the leading EOFs appear to be very similar to the EOFs of the null hypoth-
esis and the leading eigenvalues are in good agreement with the variance of the null hypothesis (see
Fig. 13.14a-g). It therefore seems that the SST variability of the Indian Ocean is consistent with
a purely diffusive process. In particular, EOF-2, the so called Indian ocean dipole mode, explains
less variance than expected from the fitted AR(1)-process.
Although there is no indication for strong deviations from an isotropic diffusion process, a rotation
towards the leading differences from the null hypothesis was performed (see Fig. 13.14h). However,
DEOF-1 explaining 32% of the total variance ( 24% in the null hypothesis) is only slightly different
from the null hypothesis.
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Figure 13.15: As in Fig. 13.11 but for the Northern Hemisphere wintertime SLP as discussed in
section 13.2.6. In addition the explained variance field of DEOF-1 is shown (panel i).

Northern Hemisphere winter time SLP

Thompson and Wallace (1998) proposed the Arctic Oscillation (AO) or the annular mode as one of
the leading modes of climate variability, which is defined by EOF-1 of Northern Hemisphere (from
10oN) wintertime SLP. The leading EOFs are shown in Fig. 13.15a-c based on the NCEP SLP Fig. 13.15
from 1948-1999 (Kalney et al. 1996). A teleconnection between the Pacific and Atlantic region is
seen in EOF-1.

However, Deser (2000) and Ambaum et al. (2001) pointed out that the AO does not project onto
local correlation patterns as well as the two more localized patterns of the North Atlantic Oscillation
(NAO) and the Pacific North America pattern (PNA), which are the leading EOFs of the Atlantic
and Pacific sub domains. The NAO and the PNA both project well onto the AO pattern. Further,
they argue that the data does not give much support for strong interactions between the Atlantic
and Pacific region as the AO pattern suggests.

In response to the lack of correlation between the two oceans, Wallace and Thompson (2002)
argue that the EOF-2 may represent another inter-oceanic mode of variability, which leads to
the apparent weak correlation between the SLP over the two oceans. In summary, Thompson
and Wallace indicate that there is a relatively strong connection between the Atlantic and Pacific
regions, whereas Deser (2000) and Ambaum et al. (2001) do not see evidence for this connection.

Furthermore, the arguments of Deser (2000) and Ambaum et al. (2001) are similar to the arguments
which lead to the null hypothesis. Assuming the leading modes of variability should be reflected
in the local correlation patterns, as the two more localized patterns NAO and PNA, is in principle
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the same as assuming that the data are dominated by diffusive processes and a few (one or two)
teleconnections.
The leading EOFs of observed wintertime SLP are quite different from those of the null hypothesis
in that each of the leading EOFs explains considerably more variance than it would under the null
hypothesis (see Fig. 13.15a-g). The comparison therefore indicates that the wintertime SLP is
inconsistent with diffusive processes. However, the leading teleconnection DEOF-1 is quite clearly
represented by a NAO like structure explaining about 17% ( 4% in the null hypothesis) of the total
variance (see Fig. 13.15h,i). Note that this pattern has a high correlation with the EOF-1 or AO
mode, but it explains very little variance in the Pacific region (see Fig. 13.15i).
Note that one should resist in interpreting all the DEOFs, that explain more variance, than expected
under the null hypothesis, as teleconnection patterns. In multivariate systems with many DEOFs
explaining more variance than expected under the null hypothesis, the interpretation of the DEOFs
can be very difficult and the concept of teleconnection modes may not be very helpful. It may in
some cases be possible to identify some of the DEOFs with teleconnections, but one have to keep
in mind that in a multivariate orthogonal system, rotation of the dominant DEOFs patterns may
lead to a different presentation of the leading teleconnections. Moreover, the DEOF will in most
cases not represent any coherent teleconnections, but be a reflection of dominant physical process
that drive SLP in the extra tropics, such as mass and vorticity conservation.
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Figure 13.16: As in Fig. 13.11 but for the tropical SLP (from 15oS − 15oN to 0oE − 360oE).

Tropical SLP

Tropical monthly mean SLP variability is strongly related to SST variability, which is dominated
by the ENSO-mode. While the El Niño SST pattern is well represented by the leading EOF of the
tropical Pacific SST, the Southern Oscillation mode is not well represented by the leading EOF of
the tropical SLP, see Fig. 13.16a . The Southern Oscillation has some similarity with EOF-2, but Fig. 13.16
is usually defined by the correlation with the NINO3 region (5oS − 5oN/150oW − 90oW ) or as the
pressure difference between the stations at Darvin and Tahiti.

The structure of the EOF-patterns is similar to what is assumed for a pure isotropic diffusion
process (as discussed in section 13.2.3), with a monopole as EOF-1 followed by dipole patterns in
EOF-2 and EOF-3. Thus the structure or the EOF-patterns does not suggest any characteristic
teleconnection pattern. The important role of the EOF-2 (Southern Oscillation) becomes clear,
when the eigenvalues of the EOFs are compared with the fitted null hypothesis (Fig.13.16g). Overall
the eigenvalues of the EOFs are relatively close to those of the fitted null hypothesis, but the EOF-2
explains considerably more variance than expected, while EOF-3 explains much less variance than
expected. The situation is similar to the artificial example with a zonal dipole teleconnection, as
discussed in section 13.2.6.

The leading DEOF is similar to the EOF-2 (Southern Oscillation), but is more global, with larger
amplitudes in the tropical Atlantic region. In the context of the ENSO mode we would expect
the leading SLP in the tropical atmosphere to be correlated to the SST. The DPC-1 shows higher
correlations with the PC-1 and DPC-1 of the SST in the tropical Pacific (as discussed in section
13.2.6) than the PC-2. It also shows larger correlations with global SST than the PC-2, including
the North Pacific, tropical Indian Ocean and Atlantic, which are region known to be influenced by
the ENSO mode.

The tropical SLP also shows some clear anisotropy in the decorrelation length. In the zonal direction
the decorrelation length is much larger than in meridional directions. This deviation from the
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isotropic diffusion process becomes more dominant in the leading DEOFs, if the analysis is repeated
on a wider latitudes range (e.g.30oS − 30oN ; not shown). The mismatches between the leading
eigenvalues and the fitted null hypothesis become larger, but the EOF-2 (Southern Oscillation)
remains to be the largest deviations from the null hpyothesis. The southward shift of the amplitudes
in the DEOF-1 (Fig.13.16h)is also a reflection of the anisotropy in decorrelation length.

13.2.7 Discussion of the Evaluation of EOFs against a Stochastic Null Hy-
pothese

In this paper it is suggested that the leading EOF modes of observed data are compared with the
EOF modes of a fitted stochastic null hypothesis in order to determine what the nature of the
spatial structures of the data are. Calahan et al. (1996) formulated a simple stochastic model for
rainfall data, which can be used as a general null hypothesis for the spatial structure of climate
fields. The stochastic model of Calahan et al. (1996) is an AR(1)-process in the spatial dimension,
which is the same as the null hypothesis for the temporal dimension (time series) as introduced
by Hasselmann (1976). The spatial AR(1)-process can be described by a simple physical model,
in which the relation between two spatial locations is only due to isotropic diffusion. The EOF
modes of a spatial AR(1)-process are characterized by a hierarchy of multi poles with decreasing
eigenvalues. In this simple model the spatial variability is a continuous spectrum of spatial patterns,
where no spatial pattern is dominating over the other patterns.

Similar to time series analysis the formulation of this stochastic null hypothesis for the spatial
structure of climate variability allows one to compare the EOF modes and eigenvalues of an observed
data set with the EOF modes and eigenvalues of a fitted null hypothesis. It also allows to define
a representation alternative to the EOF modes, the so called distinct EOFs (DEOFs or ~Dobs).
The leading DEOF is defined as the mode that is most distinguished from the modes of the null
hypothesis. It represents the direction in the multivariate space, in which the observed data differs
most from the null hypothesis, which may be called the ”finger print” of the observed data. It is
a good starting point for the understanding of underlying physical processes. However, one should
be careful in interpreting the DEOF as a coherent teleconnection pattern. This will in many cases
be a misleading interpretation.

Note that in VARIMAX or other criteria for rotation of the EOFs a simple equation, which reflects
a predefined symmetry in the system (e.g. simplicity for VARIMAX), is maximized. The rotation
analysis will therefore find patterns that follow the assumed symmetry. The DEOFs introduced
in the present study are rotated by comparison with a stochastic null hypothesis, which reflects a
physical model. The structure of the resulting DEOF-1 is therefore not predefined by any math-
ematical symmetry. It is only assumed that it is different from the null hypothesis. It can in
some cases point to a coherent teleconnection pattern, but it may also be a reflection of physical
processes, different from isotropic diffusion, driving the variability of the domain.

As an example the SST of the tropical Pacific was analyzed, which is known to contain the ENSO
teleconnection pattern. The comparison with the fitted isotropic diffusion process clearly supports
the idea that the El Niño pattern is the leading teleconnection. The rotation towards the leading
differences finds a pattern similar to the EOF-1 but more focused in the central Pacific. It is
interesting to note that the EOF-1 mode explains 41% and about 34% in the fitted null hypothesis.
Thus about 4/5 of the variance of EOF-1 may be explained by the fitted isotropic diffusion process.
The leading rotated mode DEOF-1 explains 32% and about 10% in the fitted null hypothesis. If
we consider the diffusive part of the fitted null hypothesis as noise, then the leading DEOF-1 has
a much better signal to noise ratio, which amounts to 3:1.

In the other example of the tropical Indian Ocean, the SST seems to be much closer to the fitted
isotropic diffusion process.

Northern Hemisphere winter time SLP showed that SLP variability is not well described by a pure
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isotropic diffusion process. Essentially the entire large-scale structure of Northern Hemisphere SLP
deviates from the modes of the fitted null hypothesis. This is somehow not surprising since the
large-scale SLP is driven by the quasi-geostrophic equations in which the conservation of absolute
vorticity and mass plays an important role, forcing wave like structures (Navarra 1993, Metz 1994,
Gerber and Vallis 2005). It is therefore inappropriate to assume that local box correlations should
reflect the leading teleconnections, because this already assumes that the main characteristics of
SLP is that of a diffusive process. A better strategy appears to be a formulation of a stochastic null
hypothesis based not on the isotropic diffusion, but on the quasi-geostrophic equations or simple
linearized models (Navarra 1993, Metz 1994, Gerber and Vallis 2005). Comparing the observed
EOF modes against the EOF modes of a stochastic quasi geostrophic model will help to decide if
the SLP variability has teleconnections with strong links between the Pacific and Atlantic region.
The SLP variability of the tropical regions is much closer to the null hypothesis, which may reflect
that mass and vorticity conservation are less important in the relatively narrow zonal band of the
tropics.
In summary, one should compare the observed spatial patterns to those expected from a simple
physical model to evaluate their significance. A good starting point is the isotropic diffusion process,
which is the equivalent to the AR(1)-process used in time series analysis.
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In climate or statistical studies we often want to know thinks like:

• Is the value of X(t) significantly different from X0? (The global warming issue)

• Is X related to Y, as estimated by the correlation? (Teleconnections)

• Is this Peak in the spectrum of X(t) significant? (Climate Modes)

The concepts needed to address these issues are discussed in this chapter. In this section we will
present and discuss the statistical uncertainties of the parameter introduce in the previous sections
and we will discuss the concepts of hypothesis testing and how statistical inferences can be made.
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Chapter 14

Uncertainties in Statistical Analysis

In statistical analysis we analysis stochastic continuous random variables X, which have a theo-
retical expected value and a pdf . Any sample of X will be different from another sample due to
basically two uncertainties:

• Uncertainties in the estimate due measurement errors or uncertainties in the estimating al-
gorithm (as for the spectrum for instance).

• Uncertainties due to the inherent stochastic nature of the variable. e.g. in throwing a dice
the result is uncertain due to the stochastic nature, but not due to errors in the measurement
of the value of the dice.

So in statistical analysis we have to deal with some uncertainties that is inherent to the problem
and it is not caused by measurement errors. We will therefore always formulate the results of
statistical analysis in terms of likelihoods.
Examples may illustrate this:

• Example 1: Lets assume we have a time series of X and Y with the length T for both time
series. Further we find that the correlation, γxy, between both is 0.3. The uncertainties due
to measurement errors or uncertainties in the estimating algorithm are negligible in general,
the correlation for this time interval is 0.3.

But statistical uncertainties due to the limited time series are more relevant. If we measure
X and Y again for a time period T2, independent of T , we do not expect γxy to be exactly
0.3, but only to be within some uncertainty range. If we estimate the statistical uncertainty
of the correlation value due to the limited length of the time series, we can make inferences,
about the theoretical expected value of γxy or the value we expect for γxy if we measure it
again for a time period T2, independent of T .

• Example 2: see Fig. 14.1. Here we have the spectrum of a time series of X with length
T . We see that the spectrum has a maximum at a certain frequency with a relatively large
uncertainty for the variance at this frequency. If we measure X again for a time period T2,
independent of T , we do not expect that the peak will remain at the frequency, but that
it will vary within in some uncertainty range. We would say that the peak is statistically
insignificant, but for the time interval at hand it is the frequency with maximum variance.

14.1 The Confidence Interval

We incorporate the likelyhoods of X into our results by a Confidence Interval. We assume that
X is following a known pdf , which we either estimated somehow or we have made an assumption
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Figure 14.1: The spectrum of an AR(1)-process time series presented in log-linear scaling (left)
and in log-log scaling (right). In addition the 10% and 90% quantiles of the spectral coefficients
estimate are plotted.

about a theoretical pdf (Gauss for instance). We further assume that the sampled value of X, xt
is the expected value of the pdf and we build a confidence interval around this value by either the
standard deviation:

Ω = [xt − σ, xt + σ] (14.1)

if we assume near normal distribution or the quantiles (recall that the 90% quantile, x90 was define
as FX(x90) = 90, with FX as the cdf , see section 3.5):

Ω = [FX(x10), FX(x90)] (14.2)

in all none-normal distributions. So we treat the confidence interval of X like error bars. See Fig.
14.4 for examples.

14.2 Uncertainties of the Correlation

When the sample {(Xi ,Yi)
T : i = 1, ...,n} consists of independent, identically distributed random

vectors of length n, a good estimator of the correlation coefficient ρXY is

ρ̂XY =
γ̂XY

σ̂X σ̂Y
=

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ)2
(14.3)

This is the maximum likelihood estimator when (X,Y) is bivariate normally distributed. Further-
more, eq.[14.3] is asymptotically normally distributed with mean ρXY and variance (1− ρ2XY )

2/n.
However, because ρ̂XY converges slowly to its asymptotical distribution, this result is generally not
used to make inferences about ρXY . Instead, inferences are based on Fisher’s z-transform,

z =
1

2
ln
(1 + ρ̂XY

1− ρ̂XY

)
, (14.4)

and inverse:

ρ̂XY =
e2z − 1

e2z + 1
= tanh(z) (14.5)
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Figure 14.2: Auto-correlation (upper) and spectrum (lower) with the 90% confidence interval rel-
ative to the observed values (left) and relative to a null hypothesis (right) of the monthly mean El
Niño SST time series.

which converges quickly to the normal distribution N
(
1
2 log

(
1 + ρXY

1− ρXY

)
, 1
n − 3

)
when ρXY is

nonzero. It is easily demonstrated that an approximate ρ̃ × 100% confidence interval for ρXY is
given by

(tanh(zL), tanh(zU )), (14.6)

where

zL = z − Z(1+p)/2/
√
n − 3

zU = z + Z(1+p)/2/
√
n − 3

and Z(1+p)/2 is the (1+p)/2-quantitle of the standard normal distribution (see Appendix D). David
[100] (see also Pearson and Hartley [308]) gives tables for exact confidence intervals for ρXY .

As an example we can again discuss the global mean surface temperature, Tsurf , time series, see
Fig. 15.5. It seems that Tsurf has a positive trend. This can be quantified by the correlation
between the time and Tsurf , which is

ρ̂tT = 0.67 ⇒ z = 0.7928

, the time series has 681 month long, while we assume that very 24month is an independent sample,

n = 681/24 ≈ 28
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Figure 14.3: ...

for our confidence interval we choose p = 90%, thus the interval boundaries are

Z(1+p)/2 = Z95% = 1.66

thus we get

⇒ zL = z − Z(1+p)/2/
√
n − 3 = 0 .7928 − 1 .66/

√
25 = 0 .46

zU = z + Z(1+p)/2/
√
n − 3 = 0 .7928 + 1 .66/

√
25 = 1 .125

⇒ ρ̂tT = [0.43, 0.81]

So it seems that this trend is very likely to be positive (see also Fig.).

14.3 Uncertainties of the Spectrum

The spectra Γ(ω) are Variances as a function of frequencies. So each Γ(ω) is χ2(k) distributed,
while the number degree of freedom k depend on the estimating method.

The periodogram is χ2(k = 2) distributed. Smoothed estimates like the Chunk or Welch estimate
which split the time series into chunks are χ2(k) distributed with

k ≈ 2
T

M
(14.7)

depending on the window function. T is the length of the time series and M the length of the
window. The different estimating methods will in general give the values of k as a function of the
estimating parameters.

We see that for spectral estimates we do not need to estimate any number of independent samples,
the spread of the pdf only depends on the ratio T

M . Or in other words it only dependence on the
number of cycles that the time series includes from the longest period estimated. e.g. A time series
with T = 600 and M = 120 includes 5 cycles of the longest period, f = 1/120. So the number
degree of freedom k = 10. The 95%-quantile of a χ2(k = 10) is xp ≈ 18. Scaling it with the physical
dimensions we have

x95% ≈ 18
Γ(ω)

k
=

9

5
Γ(ω) (14.8)
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Figure 14.4: The Spectrum of monthly mean SST of the NINO3 region. the statistical uncertainties
are given by the 90% confidence interval relative to the observed spectrum (left) and relative to
the null hypothesis of a fitted AR(1)-process spectrum (right).

14.4 Uncertainties of the Cross Spectrum

14.5 Uncertainties for the Coherancy Spectrum.

The smoothed coherency spectrum can be thought of as a squared correlation coefficient that de-
pends upon frequency.
This is most easily appreciated by considering the Daniell estimator, but the analogy applies equally
to the other spectral estimators summarized in [12.3.19].
The Daniell cross-spectral estimator [12.3.11] is given by

Γ̂xy(ωj) =
1
n

∑j+(n−1)/2
k=j−(n−1)/2 IxyTk

.

We can view Γ̂xy(ωj) as an estimate of the (complex) covariance between processes X and Y at
time scales between ω−1

j+(n−1)/2 and ω−1
j−(n−1)/2. To appreciate this, we substitute equation (12.56)

for the cross-periodogram to obtain

Γ̂xy(ωj) =
T
4n

∑j−(n−1)/2
k=j−(n−1)/2 ZxTkZ

∗
yTk

.

Except for the factor T , this expression looks just like an estimate of the (complex) covariance
between a pair of zero mean random variables ZxT and ZyT that is computed from a sample
{(ZxTk,ZyTk

: k = j−(n−1)/2, . . . , j+(n−1)/2}. This interpretation becomes even stronger when
we assume that the cross-spectral density function is constant in the interval (ωj−(n−1)/2, ωj+(n−1)/2)
because then the random pairs (ZxTk,ZyTk

) are approximately independent and identically dis-
tributed.
We can estimate the correlation between theX andY processes in the frequency range (ωj−(n−1)/2, ωj+(n−1)/2)

by normalizing Γ̂xy(ωj) with estimates of standard deviations of the X and Y in this frequency
range. The latter are just the square roots of the estimated auto-spectra of X and Y. Thus we have

ρ̂xy(ωj) =
Γ̂xy(ωj)

(Γ̂xx(ωj)Γ̂yy(ωj))
1/2 .

Consequently the estimated coherency

κ̂xy(ωj) = |ρ̂xy(ωj)|2

can be viewed as a measure of the squared correlation, or proportion of common variance that is
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shared by X and Y in the ω−1
j−(n−1)/2 to ω−1

j+(n−1)/2 time scale range.
This interpretation of the coherency carries over to other periodogram-based spectral estimate
sectionMonte Carlo Simulations Fisher’s z-transform was used in [8.2.3] to construct confidence in-
tervals for ordinary correlation coefficients. The same method can be used here for nonzero κxy(ωj).
Fisher’s z-transform (8.5) of the square root of the coherency,

1
2 ln

(
1+κ̂xy(ωj)

1/2

1−κ̂xy(ωj)1/2

)
= tanh−1(κ̂xy(ωj)

1
2 ),

is approximately normally distributed with mean tanh−1(κxy(ωj)
1/2) and variance 1/r, where r

is the equivalent degrees of freedom of the spectral estimator. Therefore approximate p̃ × 100%
confidence limits for the squared coherency are

(
tanh

(
tanh−1

(
κ̂xy(ωj)

1/2
)
±

Z(1+p̃)/2√
r

))2

, (14.9)

where Z(1+p̃)/2 is the (1 + p̃)/2critical value of the standard normal distribution (Appendix D).1

The approximation that leads to interval (57) breaks down when κxy(ωj) is zero. Then

(r/2−1)κ̂xy(ωj)
1−κ̂xy(ωj)

is approximately distributed as an F (2, r − 2) random variable. Thus

H0 : κxy(ωj) = 0 versus Ha : κxy(ωj) < 0
can be tested at the (1− p̃)× 100% significance level by comparing κ̂xy(ωj) with

2Fp̃
r − 2 + 2Fp̃

(14.10)

where Fp̃ is the p̃ critical value of the F (2, r − 2) distribution.

14.6 Uncertainties for the Phase of the Cross Spectrum.

Hannan [157, p. 257] shows that approximate p̃ × 100% confidence limits for the phase spectrum
Φxy are given by

Φ̂xy(ωj)± sin−1
(
t(1+p̃)/2

r−2

(
(κ̂xy(ωj))

−1 − 1
))

where ˆPhixy(ωj) is the phase estimate obtained by substituting a periodogram-based estimator
Γ̂xy(ωj) of the cross-spectral density into equations (11.63)-(11.65), r is the equivalent degrees
of freedom of the spectral estimator, and t(1+p̃)/2 is the (1 + p̃)/2 critical value of the t(r − 2)
distribution (see Appendix F).

14.7 Uncertainties of EOF-Eigenvalues (Degenerated eigenvalues)

To be continued ldots

1Koopmans [229, p. 283] gives a slightly refined version of this interval. He also points out that the quality of
the approximation depends upon the equivalent degrees of freedom r and κxy(ωj), and that is best when r > 40
and 0.4 < κxy(ωj) < 0.95. However, in our experience, interval (57) gives useful, although perhaps not precise,
information when there are substantially fewer equivalent degrees of freedom.



Chapter 15

Test of a Hypothesis

15.0.1 The Logic of a Hypothesis test

In statistics you often like to test a hypothesis, hoping the observed data is verifying your hypoth-
esis. To understand the logics in this we consider the probabilities of the following events:

H: Hypothesis is true
N: Null Hypothesis is true
D: Observed the data or characteristics (e.g. ρ = 0.3)

So what you like to know is: the probability of your hypothesis, H, under the condition of observing
D:
Hypothesis Test: P (H|D) =?
In the following you will see that it is essentially impossible to estimate this probability

However, what we test is: P (D|N) =?
We assume that a null hypothesis is true and estimate what the likelihood of D is. Note: P (D|N) 6=
P (N |D). e.g. P(snow storm / winter) 6= P(winter /snow storm)

So knowing how likely the null hypothesis is quite tricky.
P (N |D) = P (N ∧D)/P (D)
P (D|N) = P (N ∧D)/P (N)

P (N) ∗ P (D|N) = P (N ∧D)

⇒ P (N |D) = P (N) ∗ P (D|N)/P (D)
It is not possible to know P(N), similar for P(H). We would need to know all possible hypothesis.

Example:

hypothesis: El Nino influences Melbourne Rainfall
null hypo.: El Nino and Melbourne Rainfall are independent
obs.: correlation = 0.3

P (D|N) = 0.001% → null hypo. rejected

El Nino influences Melbourne Rainfall? → You dont know this yet.
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Many other hypo. are possible:

Example:

hypothesis: El Nino decreases Melbourne Rainfall
null hypo.: El Nino and Melbourne Rainfall are independent
obs.: Melbourne Rainfall for El Nino = -20%

P (D|N) = 10% → null hypo. Not rejected?

El Nino does not influences Melbourne Rainfall? → You dont know this yet.

Signal is just not strong enough

Example:

hypothesis: EOF-2 is El Nino Modoki (physical mode)
null hypo.: EOF-2 is degenerated (North et al.1984 test) / Test of white noise for a pair of EV.
obs.: EV-1: 45% EV-2: 10% EV-3: 7%

P (D|N) = 1% → null hypo. Rejected?

EOF-2 is El Nino Modoki? → NO! statistical significance is largely irrelevant for the interpretation.

EOF-2 can result from red noise.

15.1 The Null Hypothesis

The Null Hypothesis is a priori assumption about the expected value of the pdf ofX, independent of
the samples of X. We have a Null Hypothesis, H0. We can than build a test to make inferences like
’H0 is true’ or ’H0 is rejected’ as discussed in the subsequent section or we can build a confidence
interval for this null hypothesis. Here we build the confidence interval relative to the expected
value in the null hypothesis, x0, with the pdf of the null hypothesis:

Ω = [−σX0 + x0, σX0 + x0] (15.1)

if we assume near normal distribution for the null hypothesis or the quantiles:

Ω = [FX0(x10), FX0(x90)] (15.2)

in all none-normal distributions. See Fig. 14.2 for example.

15.2 The structure of a Test

A test of a null hypothesis, H0 has several elements that need to be specified:

• The Test Variable: We need to formulate a test variable, T that quantifies deviations
from the null hypothesis in the most efficient way. That means for a given sample size, T is
the variable that will have low likelihoods if H0 is false and it will have large likelihoods if H0

is true. No other variable will separate truth and falsehood of H0 better. Finding the right
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test variable is often not easy. Some examples for ’standard tests’ are given in the following
subsections.

• The pdf of the test variable: Obviously we need to know the pdf of T in order to quantify
likelihoods of truth and falsehood of H0. The theoretical pdf of T will in general make some
assumption about the pdf of the sampled variables used for T. If these assumption are not
valid than the test will not be valid, meaning the likelihood of rejecting H0 when H0 is right
will increase, while at the time the likelihood of non-rejecting H0 when H0 is wrong will
increase too. Which is not good! So it is important to know the assumptions made for a
specific test situation. See also chapter 17.

• Confidence level: We need to decide about the probability limit of our Confidence level,
which is a quantile of the cumulative distribution function of T. This level sets the strength
or risk of the test. The Confidence level should be large, because small values (e.g. < 80%)
makes the sampling of observation point less, since the test will likely fail no matter what the
observations are. if

So a hypothesis is tested as follows: We formulate the test variable, T and find its pdf . We verify
that the assumption made for the pdf of T under the null hypothesis are indeed given. We than
estimate the value of T from the data and check if the T value passes the Confidence level in the
cumulative distribution of T under the null hypothesis. Some examples will be discussed in the
subsequent sections.

PDF of test variable Confidence interval Regions of Hypothesis "true" or "false" 

 

 
true
false

caption Sketch illustrating the three elements of a test.

15.3 The strength and risk of a Test

A test is strong when it can reject H0 whenever H0 is wrong and it does not reject H0 whenever
H0 is right. Although, this seems obvious, it is important to know that the some tests are not as
strong as others.
If, for instance, T, the data under investigation, is not consistent with H0, but it follows a pdf
similar to that of H0. Than the test will have problems to reject H0. So we need to optimize the
test variable.
The risk of a test is to reject H0 when H0 is true or to find H0 true when H0 is false. The risk of
a test is usually defined by the Confidence level. The risk can never by zero due to the stochastic
nature of the problem. In the test we assume, for instance, that if T is far away from the expected
value (far in terms of passing a confidence level), than H0 is false. But obviously there is a non-zero
likelihood that T was just an unusual event of H0. If we choose our Confidence level to be 95%,
than we will reject H0 when H0 is true in 5% of all cases.



178 CHAPTER 15. TEST OF A HYPOTHESIS

Strong Test Weak Test

Figure 15.1: . Sketch illustrating strong and weak tests.

Minimizing the risk is a trade of between false rejection of H0 when H0 was true and false non-
rejection when H0 was wrong. Some guidance may be given by considerations of what we consider
as ’physically’ significant.

Hypothesis true: Risk of false rejection

 

 
area of false rejection

Hypothesis false: Risk of false verification

 

 
area of false verification

Figure 15.2:

15.3.1 Multiple use of Tests: Global tests

Note: The probability value of a test is only valid if it is used once:

P (t− value >= 95%) = 5%

but obviously:

P(1 out of 10 t-values >= 95%) = 1− 0.9510 ≈ 40%

Thus Multiple use of test changes the probabilities: the significance is lower. All failed tests need
to be part of the result. To consider situations in which we use a single (local) test many times we
need to have a global test that evaluates the probabilities of all test results together:

Local test: single-use test
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Global test: evaluates many local tests → significance of multiple local test results.

Examples:

(1) Australia climate change:

• Null Hypothesis: Australia climate is stationary

• t-tests of 10 different climate indicies (e.g. Melbourne temp, rain, winds, heat waves, etc.)

• you find that 1 out of 10 passes the 95% level → its the rainfall in Vic.

• Conclusion: Australia climate in rainfall is changing? → Wrong!

• You need to do global test.

(2) Test global field of Tsurf:

• Null Hypothesis: Tsurf is stationary at all locations

• t-tests of all locations

• About 10% of all points will pass the 95% level

• Need Field significance test (global test)

• Need to consider spatial correlation

15.4 The Estimation of the Effective Sample Size

As a repetition of section 8.5.
In many statistical analysis we need to know the number degree of freedom, nX , of the time series.
e.g. the χ2-pdf or the tests of mean, variance, correlation. Initially we had the definition for nX ,
that Xi and Xj have to be independent, meaning uncorrelated. This definition is for stochastic
processes not helpful, because the autocorrelation of an AR(1) process, for instance, does not go
to zero at all.
However, nX of X can be estimated by using the statistical relation between the statistical param-
eter of interest and nX . For the mean we know from the central limit theorem that:

V ar(X̄) =
σ2X
nX

(15.3)

If we know σX and V ar(X̄) we can get nX . The relation between the true number of time steps
used and nX is the decorrelation time :

τD =
n

nX
(15.4)

For the mean we find:

τD = 1 + 2
∞∑

k=1

ρ(k) (15.5)
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For the variance we find:

τD = 1 + 2
∞∑

k=1

ρ(k)2 (15.6)

So why do we have different characteristic time scales for the mean and variance? see section 8.5.
However, in general we would approximate τD simply by evaluating the auto correlation function,
γxx.

γxx(τD) ≈ 0.2 (15.7)

15.5 Test of the Mean

We want to test if the mean of a sample of X and the mean of a sample of Y are the same. We
assume the following:

• We have a number of independent samples of X, nx and a number of independent samples
of Y, ny. As mentioned earlier the number of samples is usually much larger than nx, ny,
because not all samples are independent. We need to estimate the numbers nx, ny, see section
8.5.

• X and Y are realizations of the same normal distribution

An obvious test variable for testing the differences between two values is something like:

t =
x̂− ŷ

σ
(15.8)

Defining the test variable for the mean we start with the simpler case of testing a null hypothesis
in which the mean is a priori known. So we start with just one set of samples of X and compare
it to a known mean, µ0 = constant, the mean for the null hypothesis. The central limit theorem
tells us that the standard deviation of the mean of X is:

σ2µ = σ2X/nx (15.9)

The optimal test variable for testing if µ̂x = µ0, with µ̂x as the sample mean of X, is:

t =
µ0 − µ̂x
σ̂x/

√
nx

=
√
nx
µ0 − µ̂x
σ̂x

(15.10)

Lets examine the characteristics of this equation under the assumption that µ̂x = µ0:

• The expected value of t is zero. Any sample of µ̂x can deviate into both directions. The
larger the deviation of µ̂x from µ0 the larger t. Thus the pdf of t must be symmetric with
the expected value zero and decreasing likelihoods for large values of |t|. Therefore the larger
t the more significant the differences in means are.

• t is proportional to 1/σx, with σ being the natural variability of the process (time series).
The larger σx the smaller is t for a given difference in the means.

• t is proportional to the square root of the number of independent observations, nx. So with
increasing numbers of observation t is increasing for a given difference in the means and the
difference becomes more significant. Or otherwise, with increasing numbers of observations, a
significant difference in the means becomes smaller; increase in number of observations makes
smaller differences detectable.
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The theoretical distribution of t is, for the given assumptions, the student’s t-distribution, see
section 3.12. Note that the t-pdf converges towards the standard normal pdf . This in turn means
that the t-values are similar to the values of a standard normal pdf . Thus, absolutes values large
than 1/2/3 have a probability of about 35%/5%/0.01%. So with t-values larger than 2 or 3 we
usually have a significant difference in the means.
An Example illustrates the test of means: We test a change in the global mean temperature. Lets
assume that the global mean temperature has been estimated over a very long time in the past:

µ0 = 13.8

Now we measure the global mean temperature over the last ten years and find:

µ̂x = 14.1

σ̂x = 0.2

We assume that every 2 years is an independent sample, thus:

nx = 5

The significance of the result is most strongly depending on our assumptions about nx. Knowing
about the independence of samples does make some assumptions about the auto-correlation function
(section 8.5), which in turn makes sumption about the spectrum of the global mean temperature.
Unfortunately we know little about the low-frequency (periods longer 100yrs) variance of global
mean temperature.
So using eq.[15.10] we find:

|t| = |√nx
µ0 − µ̂x
σ̂x

| = |
√
5
13.8− 14.1

0.2
| = 3.4

Looking at the cumulative distribution function of t in Fig. 3.14 we find that this change in mean
is highly significant.
Now we want to test the mean of a sample of X not against an a priori known µ0, but against the
mean of an other sample, Y. the test variable is:

t =
µ̂x − µ̂y

S
√

1
nx

+ 1
ny

(15.11)

S2 =
(nx − 1)σ̂2x + (ny − 1)σ̂2y

nx + ny − 2
(15.12)

with nx + ny − 2 as the number of independent observations for the parameter of the t-pdf . It
may not be strait forward to see that this is related to eq.[eq.15.10], but note that S ≈ σx and for
nx << ny we can set Y as the null hypothesis and will end up with eq.[eq.15.10].
As an example we apply this test to the global surface temperature field, see Fig. 15.6. As we can
see most of the earth has been warming significantly over in the last 10yrs.
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Figure 15.3: Estimated decorrelation times, τD for the mean (left) and variance (right) of an AR(1)-
process as function of time lag used for the estimation. Lower panels are a blow up of the upper
panels.
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Figure 15.4: Observed auto-correlation functions (solid blue lines) of different SST time series and
the estimated decorrelation times, τD for the mean (dashed red) and variance (solid red).



15.5. TEST OF THE MEAN 183

1950 1960 1970 1980 1990 2000 2010
13.5

14

14.5

15

15.5

16
NCEP global mean surface temperature

 

 

mean Temp
Temp (without seasonal cycle)
10yrs−mean Temp
95%−confidence interval

Figure 15.5: .

Figure 15.6: Illustration of the t-test, with the global 2meter temperature field from NCEP re-
analysis data. Upper left: differences in the mean of two periods. Upper right: the S value of
eq.[15.12]. Lower left: t-values and lower right is the same as upper left, but only points with t ¿
1.6 are colored.
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15.6 Test of Variances (Fisher F-test)
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Figure 15.7: The χ2 distribution for different degrees of freedom k = 1, 2, 10. Left pdf and right
the cumulative distribution.

Variances are χ2 distributed, see section 3.11. The spread of the χ2-distribution depends strongly
on k, the number degrees of freedom, which is the number of independent samples. The moments
are:

E(X) = k
V ar(X) = 2k

(15.13)

We see that both E(X) and V ar(X) are dimensionless. If we include the dimensions and express
V ar(X) as a function of E(X) we find:

E(X) = k · c
V ar(X) = 2k · c2 = 2E(X)2

k

(15.14)

So we see that σ, the spread of the pdf , decreases when k increases. Further we find that σ ∼ E(X).

In statistical tests we often need the p-quantiles, xp, for defining confidence intervals. The dimen-

sionless xp can be read from the cumulative χ2-distribution, by scaling it with E(X)
k we can include

the physical dimensions. If we want to compare the variance of a sample of X with the variance of
a sample of Y, the best test variable is

F = V ar(X)/V ar(Y) (15.15)

Here the test is based on the ratio, not the difference as for the test of means. This is because
the spread (σ) of the variances is proportional to Variances itself. The test variable F follows the
Fisher F -distribution. The probability density function is given by

fF (f) =
(k/l)k/2Γ((k + l)/2)

Γ(k/2)Γ(l/2)
f (k−2)/2

(
1 +

k

l
f

)−(k+l)/2

(15.16)

The distribution and espacially the cumulative F -distribution is in MATLAB / or tabulated in
statistical text books (see Storch and Zwiers). Some important characteristics of the F -distribution:
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• It is positive definit.

• It is positively skewed.

• V ar(F ) is much more sensitive to l than is is to k.

• It convergences to the χ2 distribution for l → ∞.

Examples:

(1) El Nino Variability:

σ(1950− 2000) = 1.0oC ⇒ V ar = 1[oC]2

σ(2000− 2013) = 0.7oC ⇒ V ar ≈ 0.5[oC]2

χ2(1950− 2000) : k ≈ 15
χ2(2000− 2013) : k ≈ 4

→ Variance fluctuations are likely if stationary

(2) Internal vs. External variability:

Model experiments: AGCM only vs. AGCM-coupled to Ocean

σ(AGCM, internal) = 1.0oC ⇒ V ar = 1[oC]2

σ(extenral) = 0.5oC ⇒ V ar = 0.25[oC]2

V ar(CGCM, total) = V ar(internal) + V ar(extenral) = 1.25[oC]2

→ you would need a long (about 50-100yrs) simulation to get the ocean signal to be ’significant’.

(3) Non-stationary Variance (Running means):

15.7 Test for Zero Correlation

An approximate test of H0: ρXY = 0 can be performed by computing

T = |ρ̂XY|
√

n− 2

1− ρ̂2XY

(15.17)

thus significant non-zero correlations are

ρ̂XY = ± T√
T 2 +N

(15.18)

and comparing T with critical values from the t distribution with N = n−2 degrees of freedom (see
Appendix F). The type of test, one sided or two sided, is determined by the form of the alternative
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hypothesis.

As an example we can again discuss the correlation between the time and Tsurf . The null hypothesis
of no trend means H0: ρXY = 0. The t value of t distribution with N = 28− 2 and p = 95% is ()

Confidence interval (3) and test (4) both require the normal assumption.
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Figure 15.8: ...

15.8 Test for Distribution (Komolgorov Smirnov Test)

Often we need to know if a variable X is folowing a theortical pdf or if two variables X1, X2 are
following the same pdf . So this is a more general question than to just test the mean or variance.
This can be done with only a few samples, but it is of cause much more uncertain, than the simple
tests of mean or variance, since there are now more degrees of freedom. The test variable is:

d = max(|Fn1(X)− Fn2(X)|) (15.19)



15.8. TEST FOR DISTRIBUTION (KOMOLGOROV SMIRNOV TEST) 187

−4 −2 0 2 4
0

10

20

30

40

50
Samples of a Normal−pdf

X

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 [
%

]/
[X

]

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
Cumulative distribution

X

p
ro

b
a

b
ili

ty
 [
%

]/
[X

]

 

 

samples
Normal−pdf
95% confidence limit

Figure 15.9: Illustration of the Komolgorov Smirnov Test for comparing two pdfs.

Fni(X) =observed cumulative distribution

d finds the maximum difference between two cumulative distributionsFn1(X), Fn2(X). The inverse
cumulative distribution of d,

D−1(p) = (−1

2
(
1

n1
+

1

n2
)ln(

p

2
))1/2 (15.20)

D−1(p) gives the confidence level for the probability level p.
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Chapter 16

Monte Carlo Simulations

Monte Carlo Simulations are a general expression for simulation in which some variables are given as
random numbers of a predefined pdf (just as the casino in Monte Carlo involves random numbers).
Note that most climate models (AGCMs or OGCMs) are deterministic models where all variables
have exact values.

The Monte Carlo is often used in stochastic problems, where deterministic models would be too
complex or do not exist (e.g. in quantum mechanics). We assume that a random variable Y is a
result of an operation A, such as

Y = A(X1, X2, ..., Xi) (16.1)

where theXi are random variables with known distribution. The operator can be of any complexity,
a GCM-model for instance. For some simple operators, A(·), we can give the pdf of Y, as done for
the normal, χ2, t− or F−distribution, for those we do not need a Monte Carlo Simulation. But in
most stochastic problems it is impossible to analytically find the pdf of Y. It can only be estimated
by the Monte Carlo approach.

Ensemble Forecast, or Models of the radiation transfer in the atmosphere are examples of Monte
Carlo simulations. In Ensemble Forecast we are interested in the uncertainties, the pdf . In Models
of the radiation transfer we are usually just interested in the expected value which can only be
estimated with the Monte Carlo approach, the resulting pdf is usually normal.

189
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16.1 Bootstrapping the Probability Density Functions

Bootstrapping (’to pull oneself up by ones own bootstraps’) is a Monte Carlo approach to estimate
the pdf of any random variable. In many cases we do not know the pdf of a variable and analytical
solutions are either inscrutable or frankly we do not really care about it. However, for statistical
inferences we need to know the pdf . For any random variable we can estimate the pdf , if we can
formulate Y is a result of an operation A, such as

Y = A(X1, X2, ..., Xi) (16.2)

where theXi are random variables with known distribution. The operator can be of any complexity,
a GCM-model for instance. The problem usually is to formulate the operator A(·) for the given
situation (null hypothesis). Once A(·) is formulated we can generate a distribution of Y with the
computer, which is our best estimate of the pdf . The quality of the estimate depends only on the
number of realizations used to define the pdf .
The elements of the Bootstraping approach are the following:

1. Hypothesis: (e.g. H0 : µ̂ = µ0)

2. Stochastic/Test variable: (e.g. t =
√
nx

µ0−µ̂
σ̂x

)

3. Stochastic Model/Test Situation: The test situation for the null hypothesis need to be speci-
fied: (e.g. for the test of means: X ∼ N (µ0, σ̂x) and a time series of Xt with nx independent
samples.)

4. Numerical generation of many test situations: ⇒ pdf of the test variable.

A few examples shall illustrate how a Bootstraping approach works:

Example: pdf for zero correlation

Lets assume you like to know the uncertainty in a correlation estimate. You are unshure about the
pdf of the variables or the effective sampling size:

Hypo: ρ(X1 vs. X2) 6= 0

Null Hypo.: zero correlation

Stochastic Model of reshuffling the order to test zero correlation (loop many times):

1) shuffle order in both time series

2) ρ(shuffled X1 vs. shuffled X2)

→ result PDF for zero correl with same sample numbers and same PDF.

Note: MATLAB function bootstrp does something else: It resamples (??).

Example: pdf of spectral estimates

In MATLAB the uncertainy of the spectral estimates of the psd-function is not given. However,
for statistical inferences we need to know the confidence intervals of the spectral estimate. In order
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to estimate the pdf of the spectral estimates we generate a time series of a process from which
we now the theoretical spectral distribution: An AR(1)-process for instance. Fig. 16.1 shows a
spectral estimate of a time series, which is a realization of an AR(1)-process. For comparison the
theoretical spectrum of the AR(1)-process is also shown. The non-dimensional variable for which
we like to know the psd is:

χ = Γ̂(ω)/ΓAR(1)(ω)

Where Γ̂(ω) is the spectral estimate of a time series and ΓAR(1)(ω) the theoretical spectrum of the
AR(1)-process.
We can generate a large number of χ by the following bootstraping approach:

1. Generate a time series of the AR(1)-process of length T .

2. Compute the spectrum of the time series with the MATLAB-funcion psd using the window
length M .

3. Compute χ for all ω (Spectral estimate Γ̂(ω) gives M/2 + 1 independent estimates of the χ)

4. Repeat step 1-3 many times to create a large number of realizations of χ.

The result for a large number of χ is shown in Fig. 16.1
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Figure 16.1:

Example: Test if the El Niño time series is an AR(1)-process

We may use the spectrum of the El Niño time series to test the hypothesis: The El Niño time series
is an AR(1)-process. A good test Variable would be:

t =
∑Nfreq.

i=1 log(Γ̂(ωi))− (ΓAR1(ωi))

Generate a large number of the test variable t for the hypothesis:

1. Time series of length T of the AR(1)-process with α1 = ρ(1).

2. Compute the spectrum of the time series.

3. Compute t.
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Repeat steps 1-3 many times to generate a large number of t, which builds the basis for the emperical
estimate of the pdf of t. Fig. XXX shows the pdf of t and the t-values that the El Niño time series
has, which is clearly outside the bulk of the distribution. Thus we may conclude that the El Niño
time series is very likely different from an AR(1)-process.
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Part V

Strategies, Tactics and Pitfalls
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In the previous section we learned the basics of statistical analysis. We know some basic parameters,
fundamental statistical analysis methods and how to do statistical hypothesis testing. Although
we now have the technical fundament for statistical analysis, we are still missing some guidance in
terms of overall strategies, more specific tactis and tippical pitfalls. A typical problem in statistical
analysis is to draw the right conclusions from the statistical analysis done. Most reserachers are
very much capable in applying complex statistical analysis methods to data, but the conclusions
they draw from these statistical analysis are often not supported by their statistical results. It is
therefore helpful to get some more detailed advices beyond the definitions of methods or parameter.
In analogy to a football player: we now have the technical skills to shoot and control the ball,
we know how to head the ball and to run with it, but we miss all tactical skills to win a game.
Probably you may have meet some every skillful football player that can do all tricks with the ball,
but you still do not want him in your team, because he always looses the ball after the third super
dooper trick with the ball. This guy is lagging some advices in team play and tactics. Which you
will now get for statistical analysis.
In the first chapter ’́Pitfallś’ we will look at some examples of statistical analysis or problems to
explore how difficult it some times is to draw the right conclusions from statistical analysis or how
difficult it is to do a meaningful statstical analysis. In the Second chapter ’́Strategý’ we will discuss
some main strategies in statistical ananlysis that helps in the development of meaninful statistical
studies. In the final chapter ’́Tacticś’ we will discuss a number of helpful tactics to do successful
statistical analysis.
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Chapter 17

Pitfalls

Often the main problem in statistical analysis is to draw the right conclusions/inferences from
the results. It is in most cases trivial to compute certain statistical parameters from the data,
but interpreting the results is far from trivial. Most of the problems arise in understanding the
probabilities and dealing with uncertainties. We have to acknowledge in many cases that our ability
to think logically and to be objective in our analysis are limited.
We have seen in the very beginning of this course, that the probability of an event or the pdf of a
random variable is changing if additional conditions are assumed. This is of cause also true for the
pdf of test variables.
A short and simple example shall illustrate the problem: In the roulette game we have the option
to set money on red or black numbers, both have a likelihood of about 50%. It is, however, unlikely
to have five red numbers successively,

p(5reds) = (
1

2
)5 = 3%

So some people think it is smart to go for black numbers if we already had 4 red numbers succes-
sively, since five red numbers successively are very unlikely. But of cause we know the likelihood
of the next number is independent of the previous ones,

p(5reds|4 reds already) = 1

2
= 50%

So we see that under some conditions a very unlikely event becomes an ordinary event. So the
P (A), with A being ”five time red in a row”, is very different then the conditional probability
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P (A|B), with B being ”four time red in a row”. This is easy to see for us in the above example,
but in many real world problem will will encounter such situations with conditional probabilities
P (A|B), but we may not even recognise that there is a conditional assumption and even if we know
about it, we would find it difficult to deal with it.
In the following we will discuss several examples that shall illustrate some of the pitfalls in statistical
inferences. The examples shall illustrate that additional conditions, constraints or knowledge can
change the likelihoods of events drastically and thus change the statistical significance of the events.
These example illustrate some of the most common pitfalls, which are important to known, because
one is most likely doing the same mistakes if one is not aware of them. These pitfalls will guide us
towards some general strategies and tactics in statistical analysis.
Many of these examples are taken from a number of textbooks that are not classical university
textbooks. Several examples are from the books ”Thinking Fast and Slow” from Daniel Kahneman
(Nobel price in economics) and the ”The Black Swan” from Nassim Nicholas Taleb (a non-academic
stock trader). Both are books about financial markets, but still somewhat interesting for us. Daniel
Kahneman made it quite clear that we tend to have problems in evaluating probabilities, dealing
with randomness and in being objective. All every important aspects for climate researchers. The
climate dynamics examples are from my own experience.
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17.1 Additional or Hidden Assumptions

Lets have a look at a few examples in which additional assumption mess up the problem. We start
with some examples that have nothing to do with climate dynamics, but are quite entertaining and
helpful for our logical skills. We then discuss an example from climate dynamics research.

17.1.1 Example: The Goat Problem

Lets assume we are in a Quiz show. We shall select one out of three doors, to win a fancy car. So
one of the three doors has a car behind it, which you would win, the other two have goats, which
you will not win.

So you pick one door, but it will not jet be opened, instead the quiz master gives you a hint and
opens one of the remaining doors, which uncovers one of the goats (this will always work). He asks
you if you now want to change your mind and rather pick the remaining door? so what is the best
strategy: go with your first pick, or change your mind and go with the advise of the quiz master?

Your intuition may tell you that it does not matter: all doors have the same likelihoods of showing
the nice car. But this is wrong! your first pick has a 33% chance to find the car. The door suggested
by the quiz master has a 66% chance to show the car, because it will only show a goat, if your first
pick was the car. Think about it some time if you like to.

So again the additional informations have changed the likelihoods of an unusual event.

Usually the additional conditions of a specific problem will end up in a test variable those pdf is not
listed in any textbook and therefore none of the standard test can be applied. So you are screwed?
No, of cause not, you can find the pdf of any test variable with numerical approaches, see section
Monte Carlo, or find the theoretical pdf by yourself. Well,... thinking about it ... you are screwed!
Meaning you really need to put some work into finding the right pdf .
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Figure 17.1:

Figure 17.2:

17.1.2 Example: The Two Envelopes Paradox

The two envelopes paradox is a good example about statistics, where one thinks the statistical
analysis is completely correct, but the result can simply not be true. Thus it is a paradox.

Lets assume we have two envelopes, each contains a certain amount of money, with the one envelope
containing twice as much as the other. Now the quizmaster (again) lets you pick one of the
envelopes. You can open the enevelope and see the amount of money, X$, that is in it. Now the
quizmaster asks you, wether you would rather like to have the other envelope?

Now the question: Shall you go for the other envelope? Or stated differently, more in the context
of this statistic lecture: Is the expected values larger when you take the other envelope? The
question seems totally absurd: Why should there be any different in the expected values for the
two envelopes? One may, obviously, think that the expected value of money in any of the two
envelopes must be the same. So lets compute the expected value: Following eq.[3.3] the expected
value for of a ramdon variable is:
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E(X) =

∫

Ω
xfX(x)dx (17.1)

The integral in this case reduces to a sum over all possibilities. In the case we keep our opened
enevelope the expect values is of cause the alue we have in our envelope:

E(X) =
N=1∑

i=1

xifX(xi) = X$1.0 = X$ (17.2)

So there is no uncertainty. The amount of money you get is what you already have, X$. In the
case you want to take the other envelope you find that you have two possibilities: you either have
half as much or twice as much money:

E(X) =
N=2∑

i=1

xifX(xi) =
1

2
X$0.5 + 2X$0.5 = 1.25X$ (17.3)

So the surprising result is, that you will in average have more money when you take the other
envelope. So it seems the grass is allways greener on the other side!

What is wrong here?

As the subject of this section may suggest, there is a hidden impossible assumption here: You can
always double the amount of money X$, which is indeed impossible. The two enevelope paradox
is set-up in a way that it is assumed that any value of X$ is possible, and therefor the expected
value of X$, before you have opened any envelope is ∞. But in probabilities you cannot deal with
∞. For any realistic situation the the expected value of X$ finite, and therefore the probability of
large X$ most become small. For any such pdf the expected value for both envelopes is always the
same. A simple case is illustrated in Fig. 17.3. If the amount of money X$ is larger than 1/2 the
budget limit the likelihood of doubled money becomes zero.
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Figure 17.3: Illustration of the two envelope problem with a limited budget. In the first case
(left) the amount of money X$ in the opened envelope was below 1/2 the budget limit, thus other
envelope may have either 1/2 or twice as much money. In the second case (right) the opened
envelope has more than 1/2 the budget limit and the other envelope must have 1/2 X$.
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17.1.3 Example: Landfall of Hurricanes

Figure 17.4: Path of Hurricanes in the ’calm’ 2006 season.

An intersting study entitled: ”Spatial Variations in Major U.S. Hurricane Activity: Statistics and a
Physical Mechanism” by Elsner et al. 2000 in J. Climate finds a relationship between the number of
hurricanes per year that make landfall along the Gulf coast versus those that makse landfall along
the east coast of the USA. They find that the numbers are anti-correlationed, when more hurricanes
in one year have struck the Gulf coast, then less hurricanes have struck the east coast. They further
suggest that some climate variability (the NAO) may control the pathways of hurricanes. So some
boundary condition may in one year lead most of the hurricanes in one direction and less in the
other.

It seems strait forward to conclude, that if the number of hurricanes per year that make land-
fall along the Gulf coast versus those that make landfall along the east coast of the USA are
anti-correlated, than there most be something that controls the direction of the hurricanes. But,
surprisingly, this is not correct! There can be an anti-correlation even if there is no control on the
direction of hurricanes, as will be demonstrated below by a simple model.

Fig. 17.4 shows the pathways of hurricanes in the year 2006. We can see some go into the direction
of the Gulf, some to the east coast and some go to the North Atlantic. An important thing to note
here is, that all hurricanes come more or less from the same region.

So the hidden assumption in Elsner et al. 2000 is that if the direction of hurricane tracks is
uncontroled (random) than there would be no anti-correlation between the landfall numbers. In
order to test this idea we can set up a simple Monte Carlo bootstraping model for the correlation.
We assume the following for the hurricane statistics, which is roughly based on observed statistics:

1. All hurricanes originate from the same source region, see Fig. 17.5.

2. The number of hurricanes per year is nearly normal distributed with about 7 expected hur-
ricanes per year, see Fig. 17.5 lower left.
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Figure 17.5: A Monte Carlo bootstrap model study of the distribution of correlations between
numbers of hurricanes landfall at the East coast and the Gulf coast. Upper: Schematic of Hurricane
paths; blue box is the source region; the red, blue and green line mark the three possible path ways.
Left: Distribution of Hurricanes in source region. Right: pdf of the correlation between number of
Hurricanes per year at the East coast and the Gulf region for a 100yr long time series.

3. The hurricanes leave the source region randomly into one of three possible directions: Gulf
coast, east coast or the open North Atlantic Ocean, see Fig. 17.5. The probability for each
direction is 1/3.

4. Create 100 years of statistics and compute the correlation between the number of hurricanes
per year that make landfall along the Gulf coast versus those that make landfall along the
east coast of the USA.

Creating some statistics with this model for about 104×100years, we find the pdf for the correlation
between the number of hurricanes per year that make landfall along the Gulf coast versus those
that make landfall along the east coast of the USA, see Fig. 17.5 lower right. The expected values
is clearly below zero. Thus we expect an anti-correlation eventhough nothing controls the direction
of the hurricanes. Why is that? The important point in this problem is that a limited number of
hurricanes emerge from the same source region. If one of the hurricanes goes to the Gulf coast,
than the number hurricanes left in this year, that can go to the east goes is reduced, because there
is only a limited number of hurricanes per year, which all emerging from the same source region.
If the problem is simplified to a fixed number of hurricanes per year (no variations any more)
that have to go either to the gulf coast or to the east coast (no other direction posible), than the
number of hurricanes per year at the two coasts must be perfectly anti correlated. The more the
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number of haurricanes varries or other directions for the pathway of hurricanes exist the weaker
the correlation.
This example demonstrates that it is sometimes not that easy to see what the expected value
a statistical parameter of a Hyopthesis or anti-these is. In the above model there are of cause
parameter regimes in which the expected value of the correlation is zero, but for the realistic
parameters chosen, we get the unexpected result. So one always have to be careful in using unusual
statistical parameters, such as the correlation between the landfall numbers per year from two
regions. If you do, you should be aware of what you expect for the statistical parameter if your
hypothesis is not true.

17.1.4 Example: The Role of the Indian Ocean for the ENSO mode

Figure 17.6: .
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17.2 False Assumptions

examples: EOF-modes
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17.3 Theory Bias

Academic researchers or students are obviously heavily theory biased. We spend much of our time
being educated in the theories of our research areas. When we finally, after many years of theory
training, get into real world problems we will have a tendency to overvalue our theories in situations
where the empirical evidence should tell us to rethink the theory. Consider the following example.

17.3.1 Example: Fat Tony and Dr. John

Lets assume a fair coin is flipped 19 times and each time is comes up with a head. What are the
odds that the 20th flip is head again?

The obvious answer for the well educated Dr. John (us) is: ”The chance is 50/50, as the odds are
not affected by the previous events.”

However, a well experienced, street smart (lots of experience in real world problems, but no theo-
retical education), Fat Tony would say: ”The chance is about 20/1. Screw you, no way that this is
a fair coin tossing!”

Now we are in the dilemma that either the assumptions are wrong (fair coin) or we have to assume
a 50/50 chance. If you consider that this a real world situation, then it seems much more likely
that the assumptions are wrong than to assume that this is a fair coin tossing that result into 19
times with heads. The probability of 19 times head is 0.519 = 2 · 10−6, assuming a fair coin tossing.
This only happens once in 500,000 tries. How likely is it that assumptions are wrong? This is hard
to quantify, but it certainly happens sometimes, properly more often than once in 500,000 times.
Thus we should conclude that the assumptions are wrong and not that we have indeed observed
a fiar coin tossing that result into 19 times with heads, because a wrong assumption seems more
likely.
We (the well educated Dr. John) tend to follow theories and be ignorant to empirical evidence.
Fat Tony, in turn, ignores theories and considers empirical evidence. We can learn from this:

• Empirical evidence over rules theory (model).

• The real world if often more complex than the theory.
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17.4 Confirmation Bias

We as humans tend to avoid rejecting theories, which is most likely in our genes. Back in the
stone age we had an environment, which may not support good scientific behaviour. Consider a
typical stone age situation (which is what is in our genes): All your mates come dashing away from
something. This signals to you the following theory: Something very bad is coming your way that
will kill you unless you start dashing away too. As a good scientist you would not just agree to
this theory and start running away too, but you would like to first of all test this theory. Try to
falsify it, by looking at what is really going to happen if you do not run away, but go look what is
coming. ... you will not survive for long. Even today we have an environment that probably does
not encourage to falsify theories. In the education system you have to have good marks and you
dont spend much time on trying to challenge what you learn. As researchers you tend to focus on
publishing a lot and new interesting results. There is not much time for rejecting theories.
Consider the following test as an example of our Confirmation Bias: Consider the following row of
numbers:

2, 4, 6, ...

Now you should figure out the underlying rule. You can try a sequence of numbers to find the rule
and I will tell you if your sequence fits the rule or not. You can try as often as you like and if you
think you know the rule you can try to state the rule, but only once.
Typically the students will start and testing the rule by testing the hypothesis of :Xi+1 = Xi + 2.
they will figure out that this hypothesis works. They will have confirmed their theory every time
and every time they have confirmed it they feel more certain that their theory is true. But you
properly also note, that the only way to be sure about this is to test an alternative hypothesis
that does not fit to your hypothesis. For instant, you may test: 1 4 7. Then you will, to your
surprise, figure out that this sequence of number is also consistent with the underlying rule, which
is: Xi < Xi+1, and it is not consistent with your hypothesis. Thus falsifying your thesis is the only
way to figure out if your thesis is correct. Unfortunately, students often tend to not do this, but
guess the underlying rule, before they have tried to falsify it. So the important leassons we can
learn from this is:

• We tend to be biased towards confirming theories.

• We neglect alternative theories.

• We are over confident: assuming verification of theory much too early.

• Considering alternatives and rejecting them is essential for verifying your hypothesis.
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17.5 Biased Statistics

If we estimate statistical parameter from observed statistics we assume, that the samples are taken
randomly or in fixed intervals. The decision to take a sample or not, must not depend on the
state of the system itself, which is for observations often not the case. In many cases we will have
baised statistics and the following examples may illustrate what can go wrong if you try to draw
conclusions from such statistics. Other examples have also been discussed in sections 2.2 and 5.1.

17.5.1 Example: The Feline Multi-storey Building Syndrom

From the New York Times 22.August 1989 (translated from egnlish to german):

”Experten haben verblueffende Anhaltspunkte fuer die Ueberlebensfae-
higkeit von Katzen gefunden, diesmal in New York, wo Katzen im Som-
mer haeufig aus den offenen Fenstern von Hochhaeusern fallen. Wis-
senschaftler nennen es ’das feline Hochhaussyndrom’.
Von 132 solcher Opfer, die in die Tierklinik aufgenommen wurden, ue-
berlebten die Mehrheit. Laut Experten ist dafuer die Physik und die
’Taktik der fliegenden Eichhoernchen’ verantwortlich ... der Flug reichte
von 1 bis 31 Etage ... 17 Katzen wurden von ihren Besitzern, vor allem
aus Kostengruenden, eingeschlaefert. Von den uebrigen 115 starben 8
durch Schock oder Brustkorbverletzungen.
Noch erstaunlicher war, dass die Chance zu ueberleben umso groesser
war, je laenger der Sturz dauerte. Nur eine der Katzen, die aus 7 oder
mehr Stockwerken Hoehe gefallen, starb, und es gab nur einen Knochen-
bruch unter den 13, die mehr als 9 Stockwerke gefallen waren. Die
Katze, die aus dem 31. Stock fiel, Sabrina, hatte nur leichte Verletzun-
gen an Lunge und Gebiss.
Warum hatten Katzen, die aus grorsseren Hoehen gefallen
waren, bessere ueberlebenschancen? Zum einen leigt die Termi-
nalgeschindigkeit, die beim Menschen ca. 200 Km/h betraegt, bei
Katzen nur bei ca. 100 km/h. Man vermuttet, Katzen wuerden, bevor
sie diese Geschwindigkeit erreichen, ihre Extremitaeten ausstrecken.
Wenn sie die Terminalgeschwindigkeit erreicht haetten, wuerden sie
wie die fliegenden Eichhoernchen ihren Luftwiderstand maximieren und
dadruch den Aufprall abfederen.” (Also wie Fallschirmspringer, die erst
ab einer gewissen Hoehe ueberleben)

The article may be summarized to the following:

• Data source: 132 cat brought into hospital after they jumped from a high building in
Manhattan.

• Phemomenon: Cats have a high probability of surviving a jump from a high building, the
high the level they jump from.

• Explanation: Cats use the tactic of a flying squirrel.

• Observations: 117 cats that jumped out from a tall building, with the following casualties
statistics:
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– 8 died and only of them jumped from a level above the 7. floor.

– From the 13 cats that jumped from the 9. floor or high, there was only one with a
broken bone.

– The cat Sabrina, which jumped from the 31. floor had only minor injuries at the denture
and lungs.

Some minor problems with the authors interpretation of the statistics:

• These is not supported by the data. Even if we consider the data at hand, the authors
conclusion is unsupported.

• Small data basis.

• ’Hand waveing’ physical explanation.

• Selection of unusual stories.

However, the main problem with this study is the use of biased statistics. In order to understand
the casualties statistics of cats jumping from high-rising buildings, you need to take samples of
jumping cats purely random, and not just those that were send into the hospital. You are missing
some cats and they are missing for specific, non-random reasons:

• Cats jumping from a lower floor, not getting hurt at all and happily going to stroll through
the streets with other cool cats. Those missing cats will cetainly dominate the statistics for
lower level jumps and therefore make the casualty probability for lower level jumps very small.

• Nobody will bring a dead cat to the hospital. Cats that clearly do not need a doctor anymore,
which are most likely those that jumped from high floors, will most likely ’spoil’ casualty
probability for higher level jumps.
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17.5.2 Example: The Broken cloud effect

Figure 17.7:

The broken cloud effect (BCE) describes the effect that the incoming solar radiation at the surface
is in partly cloudy conditions sometimes larger the clear sky incoming solar radiation, which is
due to the effect that the boundary of nearby clouds scatter sometimes (over short time intervals)
additional sun light onto a surface, see Fig.17.7.
One may want to know under which cloudiness the broken cloud effect (more than 100% incoming
sun light due to additional cloud reflections) is strongest. For this one may plot the pdf of the BCE
as a function of cloudiness (Fig.17.7). However, this histogram does not say if the effect is related
to cloudiness, because the samples may be taken under specific cloudy conditions. If we have only
measured a certain type of cloudiness, than we will have most BCE for this cloudiness. We have to
fold the pdf with the pdf of the cloudiness itself. A small probability of BCE may be due to only
few measurements for this cloudiness.
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17.6 Framing ... the Opposite of Objectivity

Figure 17.8: Note the ”B” or is it a ”13”. Our interpretation depends on the ”Frame”, but for an
objective researcher it should not.

Framing, in the context of this course, is similar to use of the word in the media and social sciences.
It means how you present your work to the audience or how you put things into perspective.
By framing your scientific results you want the audience to get a specific conclusions. This is
problematic, as it may indicate that your research or analysis is not objective: You aim for a
certain outcome, but this may only be because of the frame you set, but not because the outcome
is in an ’objective’ way achieved no matter how you look at it.

Have a look at the sketch 17.8. In the upper line you are forced (framed) to interpret the symbol in
the centre as a ’B’, but in the lower line you are framed to interpret it as a ’13’. The interpretation
of the symbol depends on the frame. A scientific result should not depend on the frame. It should
be on objective truth. But for us as humans we find it very difficult to evaluate anything in an
objective way. An objective point of view really does not exist. However, as a researcher we try to
present an objective point of view.

In particular in high-profile science publication the authors seem to set a frame that make the
audience interpret the result in a somewhat bold way, which, putting it mildly, would mean that
they stretch the interpretation beyond a point where you may want to argue that this is objectively
not a correct interpretation of the analysis. The following few cautionary point you should keep in
mind:

• We consider things within its frame work

• We do not have an objective view point

• A scientific approach aims for an objective approach

• There is no such thing as an objective view

The next example is about a high-impact study from the literature. It indicates a ’framing’ problem.

17.6.1 Example: The Trend in the North Atlantic Oscillation

The study from Hurrel et al., (1995) in science is one of the most cited publication in the field of
climate variability (4000+ citation by 2015). This is on the same level as Nobel price studies. Fig.
17.9 shows on of the important figures in this study. Here is a citation of one of the important
points from Hurrel et al., (1995):
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Figure 17.9: Left: Time series of North Atlantic Oscillation (NAO) as in the Hurrel et al. 1995. A
suggestive trend line is plotted over it. Right: an updated version of the NAO time series with the
same trend line.

... the past decade resemble some results obtained by coupled atmosphere-ocean models forced with
steadily increasing atmospheric greenhouse gases, ... Decadal variability in the NAO has become
especially pronounced since about 1950, but the causes for such variability in the Atlantic are not
clear. The relation of the NAO to greenhouse gas forcing and possible links to coherent variations
in tropical Atlantic SSTs need to be examined, ...

I think one of the reasons why this paper had such a big impact is, that we tend see the study in
the context of climate change (e.g. trends) and decadal variability. The study is ’framed’ this way.
In Fig. 17.9 we tend to interpolate a linear trend (see red arrow), because the study is framed in a
way that we ’see’ a trend at the end of the time series. It is very disappointing in this context to
see how the real world behaved the two decades after the publication of the paper (see right panel).
It is fiar to say that including the two additional decades into the study would have weakened the
story and the framing would not have worked. This illustrates that ’framing’ of scientific results
can mislead the research community, which should objectively not have ’seen’ a strong linear trend
in this time series, as it objectively was not there.
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17.7 Problems with Probability

Figure 17.10: White to move. Mate in two.

17.7.1 Example: Regression to the Mean

In section 4.1.1 we discussed problems in interpreting correlation. In this context we discussed the
regression to the mean problem, which indicated that we interpret correlation as a deterministic
model, e.g.:

Y = ρ ·X

This models complete ignores the noise (randomness, stochastic nature). We tend to neglect the
interpretation of the randomness. So the important conclusion was that:

• We interpret correlation as a deterministic model, ignoring that is also models the randomness.

• Correlation does quantify a stochastic process.

• We over interpret noise as a deterministic model.

• We find if difficult to include the effect of randomness (noise, stochastic process) into our
model/explanation.

17.7.2 Example: A Logical Chain with Probabilities

In a mathematical proofs you can argue if A ⇒ B ⇒ C ⇒ D then it follows A ⇒ D. Thus a very
popular approach in statistical analysis is building up logical chains like: A is correlated to B and
B is correlated to C ... correlated to Z, concluding A is correlated to Z. Unfortunately this is
almost certainly not the case. Two examples to illustrate this.

A statement of a mathematician Emil ????? (name unkonwn) was something like the following
(translated from german):

”Statistic is the same as probability theory.
Probability theory is nothing else than correlations.
Correlation is simply the cosine(angle).
Thus Statistic is trivial!”
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So we have a number of statements where each has some trues in it, but there is also some un-
certainty in it. So we could assign a probability for each statement to be true. First we have the
following variables:

A = Statistic
B = probability theory
C = correlation
D = cosine(angle)
E = trivial

Now we assign each statement of Emil ???? a probability:

P (A = B) = 0.7

P (B = C) = 0.7

P (C = D) = 0.7

P (D = E) = 0.7

So in a optimistic linear model we would evaluate Emil ????? conclusion with,

P (A = E) = Statistic is trivial

P (A = E) = P (A = B) · P (B = C) · P (C = D) · P (D = E) = 0.74 = 0.24

Thus statistic has not much to do with trivial. But it gets worth for Emil ?????. Even if A is
correlated to B and B correlated to C, we do not know anything about the correlation between
A and C. So this logical chain does not work in statistics, where very single statement has some
uncertainty. Such a logical chain is only good for an post priori explanation of the observed fact
that A is correlated to E, which in Emil ???? example (”Statistic is trivial!”) is certainly not the
case.

Figure 17.11:
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Figure 17.12:

17.7.3 Example: A Decadal Climate Mode

Timmermann et al. 1998, J. Climate is a good example of a logical chain of statistical inferences.
The paper is a highly cited documentation of a decadal oscillation in a coupled GCM simulation,
see Fig. 17.12. We see that the authors first of all find evidence for oscillations in the overturning of
the North Atlantic and in the SST. As an explanation for this oscillation they build up a feedback
loop, while they present evidences for each element of the feedback chain. Note that even if all
elements are found to be true, the SST in the North Atlantic does not need to oscillate. The
feedback loop only illustrates what could explain oscillations, if the oscillation is existing.
The above examples together with the little chess riddles illustrate that logical chains, even short
ones, are difficult to see through.
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17.8 Fishing for Something

Often the data at hand is analyzed with no particular aim. The only aim is to find some interesting
structure in the data, and interestingly you often find something interesting. But it often turns
out to not that intersting after all. The following examples shall illustrate the problem. See also
Section 15.3.1 where we discuss the multiple use of local test and the need for global tests.

17.8.1 Example: The Mexican Hut

Figure 17.13: Left: The Mexican Hut rock formation. Right: Schematic of a hypothesis test with
the blue line indicating the testvalue for the Mexican Hut.

The Mexican Hut (Fig. 17.13) is an unusual rock formation, which may raise the question: Is this
a natural rock formation? Being a statistician we test the null hypothesis: The rock formation is
natural. We therefore need to define a test variable, which quantifies the rock formation. We would
come up with a variable Trock, that would most likely evaluate the size of the rock relative to the
height above the ground and the area that actually holds the rock in place or something similar.
No matter how you would try to quantify this test, you would find that the null hypothesis must
be rejected, thus: This rock formation is not natural.
Any geologist would, however, tell you that this rock formation is caused by an eruded soft bedrock
below a solid rock formation. So the scientists with some physical understanding of this system
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would dispute the statistician finding, no matter how strongly the statistician claims that their
finding is highly significant. So what is the problem with the statistical approach?

The main problem here is that we build a test around an unsual finding. Or stated differently: We
assume we made only one test, but in fact we have made (although not that obviously) many tests
and only discuss the one that finds the significant result.

Building a test around an observation, which we think is interesting, will of cause lead to a rejection
of the null hypothesis. So statistical tests should not be build after the data has been analyzed. In
fact the second point of view, that we actually made many tests, is important here to understand
the outcome. If we apply a statistical test, than the significance level of our test (e.g. 95%) only
refers to a test situation where we have applied the test only once. If we have applied the test to
many different samples, than the probability of passing the confidence level will strongly increase,
just as throwing a 6 with one dice is less likely as throwing at least one 6 with 10 dices. Thus in
statistical test you need to consider all failed tests in your statistics. In the case of the Mexican
Hut we reconized the unusual formation, because we have already seen many other ’normal’ rock
formations. The likelyhood that one out of many thousand rock formations is as unusual as the
Mexican Hut seems much less ’unusual’.

17.8.2 Example: A Decadal Climate Cycle in the North Atlantic

Figure 17.14: The Fig. 5 from Groetzner et al. 1998, J.Climate. ”Fourier spectra of anomalous
western subtropical North Atlantic SST (30o − 40oN , 45o90oW ) and of an index describing the
model’s North Atlantic Oscillation (60o − 70oN 0o − 45oW minus 35o − 45oN , Oo − 45oW ). ”
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Groetzner et al. 1998 ”A Decadal Climate Cycle in the North Atlantic Ocean as Simulated by
the ECHO Coupled GCM” is an interesting example on how the confidence interval of spectral
estimates are interpreted, it is also one of the highly cited papers on decadal variability. The Fig.
17.14 is the Fig. 5 from Groetzner et al. 1998. The authors say the following about this figure:

“The existence of a dominant decadal timescale in the simulation, ... , is supported by two selected
Fourier spectra shown in Fig. 5.”

further they say:

”At a period of 17 yr the spectrum exhibits a clear peak that is significant at the 95% level above
the red noise background. ”

”The dominant 17-yr timescale is related to an oscillation that is characterized by propagating tem-
perature anomalies within the upper layers of the North Atlantic Ocean. ”

The discussion of this spectra by Groetzner et al. 1998 is typical for many other publication in
the literature. So what is the problem with Groetzner et al. interpretation? I think from the
statements one may assume that the probability that a red noise spectra would have a similar
peak is only 5%. This is not true! The confidence level for the spectral estimate describes the
probability that one of the spectral coefficients passes the confidence level. If the I like to know
what is the probabilty that at least one out of N spectral coefficient passes the confidence level
than the probability is (see section 2.1):

1− 0.95N

With N ≈ 20 for the spectra in Fig. 17.14 for periods longer than one year, we find that the
probability is larger than 60%. Thus a peak above the confidence level in this spectra will most
likely appear.
The problem is again that the authors of this study have indeed done many tests, but they interpret
there statistical significance level as if they have only done one test. A more appropriate way of
doing such a test is illustrated in section 16.1. In section 15.3.1 we also discuss that is many local
tests are done, then we need a global test that evaluates the likelihoods of all test results together.
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17.9 Summary of Common Problems in Statistical Inferences



Chapter 18

Strategy

Before you start a statistical analysis it is helpful to develop some strategy of how you would like
to approach your statistical analysis. In this chapter we like to take a look at a few concepts that
help you to develop meaningful statistical study.

In the first section we take a look at the general limitations of statistical analysis, illustrating
that statistical analysis can in general not proof anything, but can only give some circumstantial
evidence. In the second section we will outline the two main approaches in statistical analysis and
discuss the different philosophies behind them and what their advantages and drawbacks are. In
the final section of this chapter we outline a simple method that should be a basic principle for
most statistical analysis.

18.1 Empirical Proofs (A world full of non-elefants)

Quite often statistical analysis is carried out to ’proof’ a theory. However, you have to keep in mind
that statistical analysis can never proof any theory in a mathematical sense. An examples helps to
understand the problem: Let assume we want to proof that all ravens are black. In mathematical
terms we want to shows that from A (raven) it follows B (black): A ⇒ B. So practically we have
to observe all ravens and verify that they are black. This is of cause impossible. We may now
consider a mathematically alternative approach: If we can not proof A → B, we may follow the
approach to proof if not B than it does not follow A: ¬B ⇒ ¬A. If we can proof this, than we
have indirectly proven A ⇒ B. So we observe everything that is not black and show that none of
these non-blacks are ravens. So every yellow car proofs that ravens are black? ...

Figure 18.1: Illustrate that in statistical analysis observations of yellow cars can proof that all
ravens are black!

221



222 CHAPTER 18. STRATEGY

18.2 Confirmatory and Exploratory analysis

Scientific discoveries are often driven by two different approaches: First you may have developed a
theory or model from which you draw some conclusions, that you like to verify with observations.
Example 1: Einstein’s relative theory claimed that the space bends around heavy objects like the
sun. This was verified by the observations of stars bending around the sun during a solar eclipse.
Example 2: Global warming is assumed to follow if the CO2 concentration in the atmosphere is
increasing. Which is currently verified by the collective human activities. In statistical analysis we
call this approach ’Confirmatory Analysis’.

The second approach is to observed the real world and try to understand what you see. So you
typically have observational findings that are first of all not understood in theory; they contradict
or reject current theories or null hypothesis. Thesis ’discoveries drive the development of new
theoretical frame works. Example 1: Again the basis for Einstein’s relativity theory was the
empirical finding that the speed of light is a constant. Example 2: ENSO was an observational
finding that initially had no theoretical framework and still does not have a complete theory.

We can summarise the main characteristics of Confirmatory and Exploratory analysis in a short
table:
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Confirmatory analysis Exploratory analysis
(Hypothesis) (Null Hypothesis)

approach

Theory/Model → confirm with observa-
tions

Observe phenomenon → develop
model/theory

Hypothesis → test with observations reject Null Hypothesis → build better
model

advantage

process understanding objective approach; discussion of complete
observations

drawback

subjective approach; ignorant towards ob-
servations; role of alternative hypothesis
unclear

No physical model/theory; Sensitive to
pitfalls in statistics; over-interpretation of
noise

Example: What is causing climate variability/change in the North Atlantic?

Confirmatory analysis Exploratory analysis
(Hypothesis) (Null Hypothesis)

approach

Theory: THC controls climate Experi-
ment: Water-hosing Observations: study
relation between THC/MOC indicies and
the climate

Observations: study structures of pat-
terns (EOFs) and time series of dom-
inant modes. Model: associate lead-
ing modes with known physical processes
(THC, NAO) → develop model

drawback

role of alternatvie hypothesis unclear; role
of THC is overstated

Statistical indicies are over-interpreted
Sensitive to pitfalls in statistics
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18.3 Toy models

18.3.1 Example: The Delayed Action Oscillator for El Niño
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Figure 18.2:



226 CHAPTER 18. STRATEGY



Chapter 19

Tactics

In the following we like to like point out a few concepts that help in statistical analysis. The ideas
presented here should help to organise the way your draw conclusions from statistical analysis and
should help you in avoiding the most common pitfalls in statistical analysis. Not all of the following
advices are helpful in all statistical analysis, but most of them will help in most common statistical
analysing methods. The section starts with describing some tactics that at the end of this section
will be summarised in a list of all concepts.

19.1 Independent Verifications

In statistical analysis you often develop a model or theory on the basis of some data. It is important
that you verify your model or theory with some independent data to improve the significance of
the result and in order to void statistical artefacts that got into the statistical analysis with out
having noticed it.

Independent Verifications are based on data that is statistically independent from the original data
from which the model or theory has been developed. Such data in climate analysis is usually from
another time period, a different region (if possible) or from a model simulation. If possible one
could split the original data into two parts: one for the development of the model/theory and one
for it s verification. Note that you can only use your verifications data once. If you apply your
model to the verification data and then change the model to improve it, then your verification data
is no longer verification data, but it is the data on which you build your model on and you no
longer have verification data.

Note that Independent Verifications is NOT:

• Applying a different statistical method on the same data. In spectral power analysis, for
instants, one may want to use different spectral estimates to test if a peak in the power
spectrum is indeed ’significant’, meaning it appears in all different spectral power estimation
methods. This approach only estimates if this peak is a clear signature in the time series,
but does not test if this peak in the power spectrum is a significant feature of the stochastic
process from which the time series originates. Thus it does not verify that this peak in the
power spectrum would appear again in an independent time series.

• Using a different data set of the same time period for the same variable. Using satellite data
instead of in situ observations, for instance, is not a statistical independent verification. In
this example your are still analysing the same realisation of the stochastic process, but you
only test for errors in the observations. Independent Verifications is not about avoiding errors
in the observations. Independent Verifications is about avoiding to model unusual events, that
are not ’typical’ for the stochastic process you analyse.

227
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• Splitting the data into two half after the model/theory has been developed.

19.2 Handwaving Physical Explanations

The term ’hand waving’ is used in mathematics and physics to describe arguments that are not
mathematically rigorous. This is quite common in studies based on statistical analysis. The studies
of cats jumping from high levels in New York (section 17.5.1) illustrates this very nicely: The study
apparently (not really as we have seen) finds an interesting phenomena (higher chance of surviving
for jumps from higher levels) entirely based on statistical analysis of a single data set. The author
argue that this can be explained by the ’flying squirrel’ tactics of the cats, but no evidence what
so ever is given in this study to support the idea that cats indeed follow this tactic. This is quite
common in statistical analysis: A statistical result is presented, with statistical evidences, which
are then explained by some physical process, which are however not supported in this study at all,
but seem plausible. If you start speculating like this, you should clearly mark this as unsupported
speculation, or much better, you should provide additional evidence by either citing studies that
do support this physical explanation or by providing additional theoretical or experimental results.

19.3 Definition of Statistical Measures/Thresholds

In statistical analysis it is important that any inference from the results are drawn under well
defined assumptions. Only if the test situation is well understood, we can apply standard test
methods and understand the significance of the result (e.g. passing a confidence level). It is
therefore that we need to define our statistical measures, methods or parameter before we apply it
to the data, because our standard test in general assume that we have applied the test only once
and unconditionally. If, on the other hand, we optimise our statistical methods after we applied it
to data to ’improve’ (optimise) the significance, we actually have created a test situation that does
not fit to any standard textbook test any more. Indeed we have now done several tests that where
unsuccessful. In statistical inference unsuccessful tests have to be included in the consideration of
significance (e.g. in throwing dice we have to account for all dice that we have thrown, not only
that have the desired outcome; trowing one 6 with one dice has a lower probability than one 6
out of 10 dice). Indeed if we start optimising the significance by adjusting the statistical method
we will most likely fool ourselves by misinterpreting the significance of the result by incorrectly
applying standard tests. See also section 17.8 ”Fishing for something”.

19.4 Optimal Presentation

The aim of statistical analysis or research in general is to understand nature. Understanding nature
to some degree means that you make your self a picture it; you aim for presenting a clear structure
in the otherwise chaotic data. It is therefore central to statistical analysis that you present the
outcome of your analysis in the best and most easily understandable way. Some items to consider
here:

• Graphs and figures that present the results of your analysis should be optimised for clarity.
This could include right scaling of axes, optimising the contour intervals and range, optimis-
ing the choice of colours to highlight the important structures (e.g. contrasting regions of
positive values from those with negative values). Even though this sounds trivial, but often
studies are lazy in optimising the presentation of graphs and figures arguing that the main
results are visible even though the presentation is not optimal. However, if you optimise your
presentation you will quite often ’discover’ some important structures. Indeed optimising the
presentation is part of the statistical analysis.
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• Tables and formulas need to be optimised in presentations just as much as graphs and figures.

• An optimal presentation does not mean that you tune your statistical methods to increase
the significance of a signal. See previous section.

19.5 A Language Barrier between Statistics and Physics

Language barrier is a figurative phrase used primarily to indicate the difficulties faced when people
who have no language in common attempt to communicate with each other (e.g. mathematicians
and physicist). One may argue that mathematicians and physicist should have a common language,
but this turns out to be the language of mathematicians. It is important to note that not everything
that from a mathematical point of view is the best approach is also the best approach for developing
a physical understanding of the data. Quite often we have to ignore the statistics textbook (not
this one of cause!!) and have to use methods that from a mathematical point of view are not as
optimal or elegant. Some examples:

• Example 1: 22 football players: From a mathematical point of view 2 ·11 = 11 ·2. But from a
football coach of view 2 ·11 6= 11 ·2: 2 ·11 are two teams, whereas 2 ·11 6= 11 ·2 are just a bunch
of 22 players, which do not make two teams. So the coach has the concept of a ’team’, which
is more than the sum of 11 players. This may not fit to the concepts of the mathematician.
In principle we may be able to define the concept of a ’team’ in a mathematical way, but we
have to recognise that quite often such concepts are not available.

• Example 2: EOF-modes: From a mathematical point of view the EOF-modes are the most
efficient and most elegant way of representing the data. However, from a physical point of
view EOF-modes are quite often of little help in understanding the physical processes that
cause these structure in the data set, because they are a very complex (chaotic) superposition
and over simplification of the data with almost no value for developing physical models of the
data.

It is often tempting to develop a new or significantly modified statistical method to get an im-
proved presentation of the problem/data. It is important to note that one may be able to develop a
statistical method that indeed may be the ’optimal’ way of presenting the problem at hand. How-
ever, in this consideration of what is ’optimal’ one also has to take into account the readership or
community one is addressing. There is no point in presenting a statistical method that the largest
part of the readership or community can not understand or are not familiar with. This will in most
cases undermine the significant of the results and will let the readership doubt the results. The
community will tend to: Question if this results is only an artefact of the method or they will tend
give little significant to the result as it is only a gimmick of an unusual approach.

19.6 Simple vs. Complex Methods

A general principle in research is to make things a simple as possible, but not simpler. This is also
true for statistical analysis. You should always aim to use the most simplest methods to produce
your results. The simpler your approach the more researchers will be able to understand your
results and the more significant you results will appear. If you on the other hand apply a very
complex method that in the context of your study does not seem to be well motivated (at least for
m the point of view of the readership), than this will undermine you outcome. It will be interpreted
as less significant or it may be interpreted as an artefact of your complex method and the ’real’
structure of the data does ’really’ support your outcome.
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Figure 19.1:

However, in climate research it appears that there is a tendency to apply more complex methods
than it would be necessary to make the point. It often seems that the researchers fall in love with
a particular method and are more interested in applying a ’cool’ and sophisticated method than in
understanding the data. It seems they are often more interested in intellectual entertainment than
in scientific results. A good analog is professional football: Clearly football is for entertainment
and sometimes it seems the football player more interested in showing off a la Ronaldinho than
winning the game (shooting) goals. Professional football player that do not entertain as much but
are very efficient for the team to make it win the game a la Micheal Ballack are not as popular.
In research you should not entertain but aim for an efficient presentation and avoid complex methods
whenever you can. Complex method are difficult to understand and it is difficult to understand the
limitations of these methods and often statistical significance of the results are difficult to evaluate.
An Example should help to understand this problem:

19.6.1 Example: MSSA Analysis of El Niño Period Shift

Figure 19.2:
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Figure 19.3: The power spectra of three independent realisations of an AR(2)-process with an
oscillation period of about 4yrs. Each of the realisations is a 52yrs long time series similar as in Yu
et al. [2002]. The log linear presentation is used (Γ · ω).
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19.7 Hypothesis, Null Hypothesis and Anti-thesis

In complex statistical analysis it is important to formulate a hypothesis or null hypothesis as it
helps to understand the outcome of the statistical methods applied.

19.8 Hierarchy of Methods

In statistical analysis we usually deal with a highly complex system. If we look at this highly
complex system with just one statistical method we may ...
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Figure 19.4:
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19.9 Parametric and Non-Parametric Methods

——————————————————————

19.10 Summary of Tactics in Statistical Analysis

Thinks to consider in statistical inferences / hypothesis testing:

• Be aware of all conditions of the test and estimate the pdf for these conditions.

• Failed test must be included in the discussion of the results in order to evaluate the statistical
significance. If, for instance, you find A to be ”significantly” correlated with B, than you
should also note that you tested ten other variables with none being ”significantly” correlated
to B, which makes your ”significant” correlation look much less ”significant”.

• Note that analysis guided by the statistics of the data will tend to result into apparently
unusual signals (boost the signal), that are, however, totally ordinary. The apparently unusual
signals will most likely not be statistically significant, given the right test pdf . Consequently
the apparently unusual signal will not be found in a second independent data set.

Use a hierarchy of methods


