## Young X-ray pulsars and ULXs

#### Roberto Soria (MSSL)

Thanks also to: Rosalba Perna (JILA-Boulder) Luigi Stella (INAF-Rome)

## Content

What are the most luminous non-nuclear X-ray sources in galaxies? (Ultraluminous X-ray sources = ULXs)

Young neutron stars powered by accretion? powered by spin-down?

powered by spin-down? Search for luminous young X-ray pulsars

Black hole X-ray binaries

in the Milky Way and nearby galaxies

Constraints to the initial NS spin distribution

What are ultraluminous X-ray sources (ULXs) Non-nuclear X-ray sources with apparent  $L_x \sim 10^{39}$ - $10^{40}$  erg/s



NGC6946 (d ~ 6 Mpc)

Antennae (d ~ 20 Mpc)

What are ultraluminous X-ray sources (ULXs) Non-nuclear X-ray sources with apparent L<sub>x</sub> ~ 10<sup>39</sup>-10<sup>40</sup> erg/s

Most luminous X-ray source in the Milky Way: GRS 1915+105:  $L_x \sim 1 \times 10^{39}$  erg/s

Peak luminosity of MW X-ray binaries in outburst  $L_x \sim 0.5-1 \times 10^{39}$  erg/s

Eddington luminosity for "typical" stellar-mass BHs:  $L_x \sim 1 \times 10^{39} \text{ erg/s}$ 

What are ultraluminous X-ray sources (ULXs) Non-nuclear X-ray sources with apparent L<sub>x</sub> ~ 10<sup>39</sup>-10<sup>40</sup> erg/s

If ULXs are powered by accretion, they require either: Higher BH masses (100 M<sub>sun</sub>? 1000 M<sub>sun</sub>?) Moderately beamed emission Super-Eddington luminosity

But no such problem (no Eddington limit) if ULXs are not powered by accretion

Most luminous X-ray sources ( $L_x \sim 10^{40}$  erg/s) found in starburst, starforming or colliding galaxies (not in massive ellipticals)



High-mass X-ray binaries? Supernovae, young supernova remnants? Young pulsars?

## X-ray emission from supernovae

Supernovae produce (mostly) thermal emission from shocked gas after the *reverse shock* (shocked ejecta)

Undisturbed ISM/CSM

Shocked . ISM/CSM

Hot (shocked) ejecta

Cold ejecta

Young SNe can have L<sub>x</sub> ~ 10<sup>39</sup> – 10<sup>41</sup> erg/s But steady decline over ~ 1000 yr





SN1993J in M81 (Zimmermann & Aschenbach 2003)

Mekal spectrum

#### ULX in Holmberg II Power-law + diskbb

Young supernovae cannot explain ULXs (= power-law-dominated X-ray spectra)





### Composite supernova remnants: fast-spinning pulsar and pulsar wind nebula inside the expanding SN remnant



#### Gallery of X-ray bright pulsar wind nebulae





NASA/CXC/SAO/P.Slane et al.

#### B1509-58 / G320.4-1.2



NASA/CXC/MIT/B.Gaensler et al.



NASA/CXC/PSU/G.Pavlov et al.



NASA/CXC/ASU/J. Hester et al.



NASA/CXC/U.Mass/F.Lu et a

(Gaensler & Slane 2006)

#### Gallery of X-ray bright pulsar wind nebulae



(Kargaltsev & Pavlov 2008)

#### Pulsar J1846-0258 (Kes 75)



155ks Chandra observation from 2006, Ng et al (2008)

Magnetospheric emission + wind nebula powered by pulsar spin-down

$$\dot{E}_{rot} = \frac{4\pi^2 \dot{P}}{P^3} = \frac{B^2 \sin^2 \theta \ \Omega^4 R^6}{6c^3} \sim B^2 P^{-4}$$

$$B \approx 6.4 \times 10^{19} (P\dot{P})^{1/2} \text{ G}$$

From radio pulsar measurements and evolution models: magnetic field at birth  $\log B_0(G) \approx 12.35 \pm 0.40$  (Arzoumanian et al 2002)  $\log B_0(G) \approx 12.65 \pm 0.55$  (Faucher-Giguere & Kaspi 2006)

$$L_X \approx a \dot{E}_{rot}^{1.34} \sim B^{2.7} P^{-5.4}$$



On-line pulsar catalog from the Australia Telescope National Facility







 $L_X(pwn) \approx a\dot{E}_{rot}^{1.3}$ 

$$L_{X,obs} = L_X(psr) + L_X(pwn)$$

Kargaltsev & Pavlov (2008) based on Chandra data Maximum luminosity limited only by initial NS spin and magnetic field (no Eddington limit)

Then  $L_x$  declines with time, after a timescale ~ 10<sup>3</sup> yr

$$P(t) = \left[ P_0^2 + \left( \frac{16\pi^2 R^6 B^2}{3Ic^3} \right) t \right]^{1/2} \sim (a+bt)^{1/2}$$
$$\dot{E}_{rot} \sim B^2 (a+bt)^{-2}$$
$$L_X \sim B^{2.7} (a+bt)^{-2.7}$$



### **Different X-ray components**







from pulsar magnetosphere + BB emission from polar cap (heated by polar-gap current) +

P-L synchrotron emission

BB emission from polar cap (heated by outer-gap current) +

Spatially unresolved in other galaxies

P-L synchrotron emission from wind nebula (jet, torus, termination shock)



Expected spectral appearance: Power-law (photon index ~ 2) + soft bb component (T ~ 0.2 keV)



(possibly in addition to optically-thin thermal-plasma emission from the surrounding SNR) Pulsar+PWN X-ray spectra may look similar to the X-ray spectra of ULXs. Just a coincidence?







#### Observed distribution of old radio pulsars

Evolution models by Arzoumanian et al. (2002)

Predicted X-ray luminosity of pulsars at birth



#### Predicted number of X-ray pulsars and high-mass X-ray binaries as a function of star-formation-rate





We found fewer (fainter) X-ray pulsars than predicted (Perna et al 2008) We measured or constrained the X-ray luminosity of ~ 100 historical SNe with ages ~ 10-100 yrs

(Chandra, XMM, Swift data)





Assuming we know birth rate and magnetic field

Constraints on birth period

For a log-normal distribution,

 $\langle P_0 \rangle > 50 \,\mathrm{ms}$ 

(Perna et al 2008)

# X-ray luminosity associated with every core-collapse SN from 1900-1970 in galaxies at distances <= 15 Mpc

| SN ID | Type | Galaxy | Distance<br>(Mpc) | Chandra time<br>available (ks) | Chandra time<br>requested (ks) | X-ray SN?          | $L_{0.3-8} \ ({\rm erg \ s}^{-1})$ |
|-------|------|--------|-------------------|--------------------------------|--------------------------------|--------------------|------------------------------------|
| 1909A | П    | M101   | 7.4               | 100                            | 120                            |                    | $< 5 	imes 10^{36}$                |
| 1917A | II   | N6946  | 5.5               | 180                            | -                              |                    | $< 2 \times 10^{36}$               |
| 1921B | II   | N3184  | 8.7               | 65                             | -                              |                    | $< 10^{37}$                        |
| 1923A | IIP  | M83    | 4.5               | 50                             | -                              | -                  | $< 3 	imes 10^{36}$                |
| 1937A | IIP  | N4157  | 15                | -                              | -                              |                    | $(< 3 \times 10^{37})^{lpha}$      |
| 1937F | IIP  | N3184  | 8.7               | 65                             | -                              | -                  | $< 10^{37}$                        |
| 1940A | IIL  | N5907  | 13                | -                              | 042                            | 12                 | $(< 2 \times 10^{37})^{a}$         |
| 1940B | IIP  | N4725  | 13                | 25                             | 0 <u>-</u>                     | 12                 | $< 3 	imes 10^{37}$                |
| 1941A | IIL  | N4559  | 10                | 23                             | 1. <del>.</del> .              | -                  | $< 2 	imes 10^{37}$                |
| 1941C | II   | N4136  | 10                | 39                             | 30                             | $\mathbf{Y}^{b}$   | $5 	imes 10^{37}$                  |
| 1948B | IIP  | N6946  | 5.5               | 180                            | -                              | -                  | $< 2 \times 10^{36}$               |
| 1951H | Π    | M101   | 7.4               | 100                            | -                              | -                  | $< 5 	imes 10^{36}$                |
| 1954A | ІЬ   | N4214  | 3.0               | 85                             | -                              | -                  | $< 5 	imes 10^{35}$                |
| 1959D | IIL  | N7331  | 15                | 30                             | 40                             | $\mathbf{Y}^{b}$ ? | $4 	imes 10^{37}$                  |
| 1961U | п    | N3938  | 12                | -                              | 30                             | ?                  | ?                                  |
| 1961V | IIn  | N1058  | 9.1               | 20                             | -                              | -                  | $< 3 	imes 10^{37}$                |
| 1962L | Ic   | N1073  | 15                | 6                              | 35                             | ?                  | $(< 2 \times 10^{38})$             |
| 1962M | IIP  | N1313  | 4.0               | 50                             | -                              | -                  | $2 \times 10^{36}$                 |
| 1964H | п    | N7292  | 15                | -                              | 40                             | ?                  | ?                                  |
| 1964L | п    | N3938  | 12                | (5) <sup>c</sup>               | 30                             | ?                  | 7                                  |
| 1966J | ІЪ   | N3198  | 12                | $(62)^{c}$                     | 100                            | ?                  | ?                                  |
| 1968D | Π    | N6946  | 5.5               | 180                            | 100                            | $Y^b$              | $2.4 	imes 10^{37}$                |
| 1968L | IIP  | M83    | 4.5               | 50                             | 012                            | <u> </u>           | $< 3 	imes 10^{36}$                |
| 1969B | IIP  | N3556  | 14                | 60                             | 0.2                            | 1                  | $< 3 	imes 10^{37}$                |
| 1969L | IIP  | N1058  | 9.1               | 20                             | 10.00                          | -                  | $< 3 	imes 10^{37}$                |
| 1970A | п    | IC3476 | 10                | -                              | 30                             | ?                  | ?                                  |
| 1970G | IIL  | M101   | 7.4               | 140                            |                                | $\mathbf{Y}^{d}$   | $\approx 10^{37}$                  |



Our X-ray survey result agrees with the pioneering study of Srinivasan et al (1984), based on X-ray and radio luminosity of young Galactic SNRs



# Low angular parameter at birth:

 $a/M \approx 0.015 \left(\frac{50 \,\mathrm{m}}{P}\right)$ 

consistent with Spruit & Phinney's (1998) model, initial spin ~ kick velocity

Not enough energy at birth to power a hypernova  $E_{rot} \approx 10^{49} \text{ erg for } P = 50 \text{ ms}$  $E_{rot} \approx 3 \times 10^{52} \text{ erg for } P = 1 \text{ ms}$ 

Consistent with Vink & Kuiper's (2006) study of magnetar/SNR associations

Implies pre-collapse Fe core *P* ~ 50-100 s (Ott et al 2006) Main result of our X-ray survey

Almost all NS pulsars born with P> 40 ms

*Why?* Is it true also for stellar BHs? Are BHs born with angular parameter a ~ 0.01?

High-energy pulsars are a small fraction of X-ray population (Crab-like systems are rare)

Alternative possibility:

Is the NS birth rate overestimated?

Perhaps a larger fraction of core-collapse SNe forms BHs or leaves no remnant?

*Do many SNe produce quark stars (expected to be X-ray fainter) instead of neutron stars?* 

Ultraluminous X-ray sources (ULXs) cannot be high-energy pulsars

ULXs = accreting X-ray binaries with BH + donor star



Higher BH masses (100 M<sub>sun</sub>? 1000 M<sub>sun</sub>?)
ULXs Beamed emission
Super-Eddington emission