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Thermonuclear X-ray bursts

® Neutron-star low-mass binaries exhibit a
~unique type of variability on timescales of
seconds to minutes — X-ray bursts’
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Key thermonuclear reactions

Bursts typically ignite via the triple-alpha
reaction, and 1f hydrogen 1s present, burn

also via the (a,p) and rp processes

Fuel composition and accretion rate the
primary determinants of the burst properties
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Constraining nuclear reactions

® Burst lightcurves are
sensitive to certain
nuclear reactions,
from 1-zone and Kepler

Factor of 10 simulations e.g. Cyburt et
variation in al. 2016, Ap] 830, #55

UCDPLBELE ¢ Holds promise for
constraining reaction
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This study instead
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This seems straightforward — why
haven’t we done this already?

® Even for the best-understood burst sources, we
don’t know the basic system parameters (surface
gravity, fuel composition etc.)

® There are four reasons for this shortcoming:

. We lack suitable observations to compare against our
models

. We can’t efficiently explore the parameter space to

find the best combination of parameters to match
observations

. We lack a comprehensive way to compare models to
observations

. There are astrophysical uncertainties (distance,
system inclination) that confound our measurements
® As a result, we can’t (yet) robustly reproduce
the burst behavior for any source, which means

we can’t (yet) robustly test for the effects of
different reaction rates or masses
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1. Gathering suitable observations

® The Multi-INstrument Burst ARchive seeks to
gather all the bursts observed by long-
duration missions BeppoSAX/WFC, RXTE/PCA,
and INTEGRAL/JEM-X; data release 1 imminent!

http://burst.sci.monash.edu/minbar
Improved global view of T o0
burst behaviour and rare . (I

events; now >7000 events O :
from 85 (of 112) sources e RN

At = 16.55 h

Analysis of burst rates as s
a function of accretion :
rate calloway et al. 2018, ApJ 857, L24

“Reference” bursts for

model comparisons calloway et al
2017, PASA 34, €019
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http://burst.sci.monash.edu/minbar

2. Exploring parameter space

State-of-the-art codes are 1-D with adaptive
nuclear reaction grids like KEPLER and MESA,

which take ~week for each run

Not feasible for e.g. MCMC parameter space
exploration

® We can run & release
large samples of model
results e.g. Lampe et al. 201cH
New grids are being used gl
via interpolation
schemes to do fast (x108

speedup!) parameter

eXp-I.OI"Clt'Lon see Johnston poster
#49, inside the library

Lampe et al. 2016, Ap] 819, 46
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2. Exploring parameter space #Z

® We can also use simpler (faster) ignition
codes, provided we have confidence that we
understand how the predictions differ
between models e.g. Cumming & Bildsten 2000, Ap] 544, 453

® This work has revealed Preliminary
surprising new results MCMC

about the neutrino flux
from bursts

Previously assumed to
lose =~35% of energy,
KEPLER measurements
suggest max. 14% and

typically much lower see
Goodwin poster #249, in the hall
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3. Model-observation comparisons

Multiple-epoch comparisons are likely
necessary to resolve degeneracies (e.g. 1n
GS 1826-24, the “Clocked burster?”)

® We lack suitable tools to compare multiple
sets of burst simulations dgdainst models

Also difficulties > L
balancing (e.g.) ¥ : )

recurrence time
comparisons vs.
lightcurves

“concord” software to s
do this is now in i
development and

testing
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4. Astrophysical uncertainties

Distance to bursters are typically poorly
known, 1introducing uncertainties to the

purst energetics e.g. calloway et al. (ApJS 179, 360, 2008)

® Burst emission i1s enhanced/attenuated due to
the anisotropy of the environment (the
accretion disk) e.g. He & keek (ApJ 819, #47 2016)
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Figure 12. ¢ /¢, for different disk shapes, as presented in Figures 8 and 11.
The observed a-parameter differs from the intrinsic value by this factor.
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4. Astrophysical uncertainties

D1stance to bursters are typically poorly
known, 1introducing uncertainties to the

purst energetics e.g. calloway et al. (ApJS 179, 360, 2008)
Burst emission 1s enhanced/attenuated due to
the anisotropy of the environment (the
accretion disk) e.g. He & keek (ApJ 819, #47 2016)

Estimates of the accretion rate are made via
the persistent emission, which suffers the
same problem (but a different factor)

Burst emission is affected by gravitational
redshift, depends on (unknown) mass & radius
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Ultimate goal

® A synergy of observation, simulation, and
nuclear experiment

observational
data

astrophysical

/' parameters \
numerical

nuclear physics model(s)
parameters

-

Cf. with talk by B. Cboté
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Ultimate goal

® A synerg

Cf. with talk by B. Cboté
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Summary and future prospects

® We now have access to a substantial
accumulated observational dataset to
analyse, as well as detailed models

® We are making good progress on the tools
required to combine these elements to
provide models consistent with observations

Anticipate within 12 months we have a

complete solution of astrophysical
parameters for the best-studied source, GS

1824-26 (or we’ll show it can’t be done!)

Prospects for application to other sources
are good, and incorporating nuclear physics
may allow us to constrain reaction rates
etc.
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