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Improper colourings inspired by Hadwiger’s conjecture

Jan van den Heuvel and David R. Wood

Abstract

Hadwiger’s conjecture asserts that every Kt-minor-free graph has a proper (t− 1)-colouring.
We relax the conclusion in Hadwiger’s conjecture via improper colourings. We prove that every
Kt-minor-free graph is (2t− 2)-colourable with monochromatic components of order at most
� 1

2
(t− 2)�. This result has no more colours and much smaller monochromatic components than

all previous results in this direction. We then prove that every Kt-minor-free graph is (t− 1)-
colourable with monochromatic degree at most t− 2. This is the best known degree bound
for such a result. Both these theorems are based on a decomposition method of independent
interest. We give analogous results for Ks,t-minor-free graphs, which lead to improved bounds
on generalised colouring numbers for these classes. Finally, we prove that graphs containing no
Kt-immersion are 2-colourable with bounded monochromatic degree.

1. Introduction

Hadwiger’s conjecture [25] asserts that every Kt-minor-free graph has a proper (t− 1)-
colouring. For t � 3 the conjecture is easy. Hadwiger [25] and Dirac [11] independently proved
the conjecture for t = 4; while Wagner’s result [50] means that the case t = 5 is equivalent to the
Four Colour Theorem. Finally, Robertson et al. [44] proved Hadwiger’s conjecture for t = 6.
The conjecture remains open for t � 7. Hadwiger’s conjecture is widely considered to be one of
the most important open problems in graph theory. The best upper bound on the chromatic
number of Kt-minor-free graphs is O(t

√
log t) independently due to Kostochka [34, 35] and

Thomason [47, 48]. See the recent survey by Seymour [46] for more on Hadwiger’s conjecture.
One possible way to approach Hadwiger’s conjecture is to allow improper colourings. In a

vertex-coloured graph, a monochromatic component is a connected component of the subgraph
induced by all the vertices of one colour. A graph G is k-colourable with clustering c if each
vertex can be assigned one of k colours such that each monochromatic subgraph has at most c
vertices†. Kleinberg et al. [33] introduced this type of colouring, and now many results are
known. The clustered chromatic number of a graph class G is the minimum integer k for which
there exists an integer c such that every graph in G is k-colourable with clustering c.

Kawarabayashi and Mohar [30] were the first to prove an O(t) upper bound on the clustered
chromatic number of Kt-minor-free graphs. In particular, they proved that every Kt-minor-free
graph is � 31

2 t�-colourable with clustering f(t), for some function f . The number of colours in
this result was improved to � 1

2 (7t− 3)� by Wood [52]‡, to 4t− 4 by Edwards et al. [16], and
to 3t− 3 by Liu and Oum [38]. See [28, 29] for analogous results for graphs excluding odd
minors. For all of these results, the function f(t) is very large, often depending on constants
from the Graph Minor Structure Theorem [45].
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Our first contribution is to prove an analogous theorem with the best known number of
colours, and also with small clustering. The proof is simple, and does not depend on any deep
theory.

Theorem 1. For t � 4, every Kt-minor-free graph is (2t− 2)-colourable with clustering
� 1

2 (t− 2)�.

Theorem 1 implies that the clustered chromatic number of Kt-minor-free graphs is at most
2t− 2. A construction of Edwards et al. [16] mentioned below implies that the clustered
chromatic number of Kt-minor-free graphs is at least t− 1.

The second way to relax the conclusion in Hadwiger’s conjecture is to bound the maximum
degree of monochromatic components. A graph G is k-colourable with defect d if each vertex
can be assigned one of k colours such that each vertex is adjacent to at most d vertices of the
same colour; that is, each monochromatic subgraph has maximum degree at most d. Cowen
et al. [6] introduced the notion of defective graph colouring, and now many results for various
graph classes are known. A graph class G is defectively k-colourable if there exists an integer d
such that every graph in G is k-colourable with defect d. The defective chromatic number
of G is the minimum integer k such that G is defectively k-colourable [7]. Edwards et al. [16]
proved that every Kt-minor-free graph is (t− 1)-colourable with defect O(t2 log t). Moreover,
it is shown in [16] that the number of colours, t− 1, is best possible in the following strong
sense: for every integer d, there is a Kt-minor-free graph that is not (t− 2)-colourable with
defect d. Thus the defective chromatic number of Kt-minor-free graphs equals t− 1. (This also
shows that the clustered chromatic number of Kt-minor-free graphs is at least t− 1.)

Our second contribution is an improved upper bound on the defect in the result of [16].

Theorem 2. For t � 4, every Kt-minor-free graph is (t− 1)-colourable with defect t− 2.

Edwards et al. [16] wisely noted that their theorem mentioned earlier should not be
considered evidence for the truth of Hadwiger’s conjecture, since their method also proves that
every Kt-topological-minor-free graph is (t− 1)-colourable with defect O(t4). It is not true
that every Kt-topological-minor-free graph is properly (t− 1)-colourable. This last statement
is Hajós’ conjecture, which is now known to be false [4, 49]. On the other hand, our proof of
Theorem 2 does not work for graphs excluding a topological minor.

Theorems 1 and 2 are corollaries of the following decomposition result of independent
interest. A sequence H1, . . . , H� is a connected partition of a graph G if each Hi is a non-
empty connected induced subgraph of G, the subgraphs H1, . . . , H� are pairwise disjoint, and
V (G) = V (H1) ∪ · · · ∪ V (H�). Two disjoint subgraphs H and H ′ of a graph G are adjacent if
there is an edge in G with one endpoint in H and one endpoint in H ′. For a positive integers
n,m, we use [n] to denote the set {1, . . . , n} and [n,m] to denote the set {n, . . . ,m}.

Theorem 3. For t � 4, every Kt-minor-free graph G has a connected partition H1, . . . , H�

such that for i ∈ [�]:
(1) Hi is adjacent to at most t− 2 of the subgraphs H1, . . . , Hi−1;
(2) Hi has maximum degree at most t− 2; and
(3) Hi is 2-colourable with clustering � 1

2 (t− 2)�.

We actually prove a decomposition theorem with several further properties; see Theorem 11.
It is easy to derive Theorems 1 and 2 from Theorem 3. Colour the subgraphs H1, . . . , H�

greedily in this order, such that adjacent subgraphs receive distinct colours. By property (1),
t− 1 colours suffice. Theorem 2 follows from property (2) by colouring each vertex in Hi by
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the colour assigned to Hi. Theorem 1 follows from property (3) by taking the product of the
(t− 1)-colouring of H1, . . . , H� with the given 2-colouring of each subgraph Hi.

Theorem 3 is an extension of a result by Van den Heuvel et al. [27] in which properties
(2) and (3) are replaced by ‘Hi has a Breadth-First Search (BFS) spanning tree with at most
t− 3 leaves’. Van den Heuvel et al. [27] were motivated by connections to generalised colouring
numbers. Note that the result in [27] implies that Hi has at most t− 3 vertices in each BFS
layer. It follows that the maximum degree of Hi is at most 3t− 10. Alternately colouring the
BFS layers shows that Hi is 2-colourable with clustering t− 3. Constructing Hi more carefully,
and choosing the 2-colouring more carefully, leads to the improved bounds in Theorem 3, which
we prove in Section 3.

Our main decomposition theorem, Theorem 11, also has the following corollary, which might
be of independent interest.

Theorem 4. For t � 4, every Kt-minor-free graph G has a connected partition H1, . . . , H�

such that
(1) the quotient graph Q obtained by contracting each Hi to a single vertex is chordal with

clique size at most t− 1 (and hence has treewidth at most t− 2); and
(2) each part Hi has bandwidth (and hence pathwidth and treewidth) at most t− 3.

Hadwiger’s conjecture implies that for every graph H with t vertices, the maximum chromatic
number of H-minor-free graphs equals t− 1 (since Kt−1 is H-minor-free). However, for
clustered and defective colourings, fewer colours often suffice. For example, it follows from
the main result by Ossona de Mendez et al. [40] that for every fixed non-complete graph H
on t vertices, every H-minor-free graph is (t− 2)-colourable with bounded defect, which is one
fewer colour than in the complete graph case. More interestingly, Archdeacon [3] proved that
graphs embeddable in a fixed surface are defectively 3-colourable (see also [5–7, 53]); while
Dvořák and Norin [14] proved that such graphs are 4-colourable with bounded clustering.
Ossona de Mendez et al. [40] conjectured that for every connected graph H, the defective
chromatic number of H-minor-free graphs equals the treedepth of H minus 1. They proved
this conjecture for Ks,t-minor-free graphs by showing that they are defectively s-colourable.
Note that K3,t-minor-free graphs are of particular interest since they include and generalise
graphs embeddable in fixed surfaces. In the case s � 3 we prove decomposition results analogous
to Theorem 3 that imply this result of [40] with much improved bounds on the defect. This
direction is explored in Section 4.

In the same way as Van den Heuvel et al. [27] applied their decomposition result for
Kt-minor-free graphs to the setting of generalised colouring numbers, we apply our decomposi-
tion results for Ks,t-minor-free graphs and K∗

s,t-minor-free graphs (where K∗
s,t is the complete

join of Ks and Kt) to conclude new bounds on generalised colouring numbers. Our results
when specialised for graphs of given genus are almost as strong as the best known bounds.
These results on generalised colouring numbers are presented in Section 5.

The final section, Section 6, returns to the topic of defective graph colouring, but instead
of excluding a Kt minor we exclude a Kt immersion. The analogue of Hadwiger’s conjecture,
that Kt-immersion-free graphs are properly (t− 1)-colourable [1, 37], is open. For defective
colouring, we show that only 2 colours suffice.

Before continuing, we mention an important connection between clustered and defective
colourings, implicitly observed in [16]. We include the proof for completeness.

Lemma 5 (Edwards et al. [16]). For every minor-closed graph class G, the clustered
chromatic number of G is at most three times the defective chromatic number of G.
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Proof. Liu and Oum [38] proved that for every minor-closed graph class G and integer d,
there is an integer c = c(G, d) such that every graph in G with maximum degree d is 3-colourable
with clustering c. (Esperet and Joret [17] previously proved an analogous result for graphs on
surfaces.) Let k be the defective chromatic number of G. Thus for some integer d, every graph G
in G is k-colourable with defect d. Apply the result of Liu and Oum [38] to each monochromatic
component of G, which has maximum degree at most d. Then G is 3k-colourable with clustering
c, and hence the clustered chromatic number of G is at most 3k. �

2. Preliminaries

2.1. Notation and definitions

This subsection briefly states standard graph theoretic definitions probably familiar to most
readers.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
a subgraph of G by contracting edges. Equivalently, and often easier to use intuitively: a
graph H with vertices v1, . . . , vn is a minor of G if there exist pairwise disjoint connected
subgraphs H1, . . . , Hn of G such that for every edge vivj in H, Hi and Hj are adjacent in G.
We call Hi the branch set corresponding to vi. A class of graphs G is minor-closed if for every
graph G ∈ G, every minor of G is also in G. A graph H is a topological minor of a graph G if
a graph isomorphic to a subdivision of H is a subgraph of G.

The Euler genus of an orientable surface with h handles is 2h. The Euler genus of a non-
orientable surface with c cross-caps is c. The Euler genus of a graph G is the minimum Euler
genus of a surface in which G embeds (with no crossing edges).

A tree decomposition of a graph G is given by a tree T whose nodes index a collection
(Tx ⊆ V (G) | x ∈ V (T ) ) of sets of vertices in G called bags, such that (1) for every edge vw
of G, some bag Tx contains both v and w, and (2) for every vertex v of G, the set {x ∈ V (T ) |
v ∈ Tx } induces a non-empty (connected) subtree of T . The width of a tree decomposition T
is max{ |Tx

∣∣ x ∈ V (T ) } − 1, and the treewidth of a graph G is the minimum width of the tree
decompositions of G. Note that the treewidth of G equals the minimum integer k such that G
is a subgraph of a chordal graph with clique number k + 1.

A path decomposition is a tree decomposition in which the underlying tree is a path. The
pathwidth of a graph G is the minimum width of a path decomposition of G.

For a graph G and A,B ⊆ V (G), an AB-separator is a set S ⊆ V (G) such that every AB-
path in G contains a vertex from S. (Note that we allow A and B to intersect and that all
vertices in A ∩B must be included in any AB-separator.) A pair (G1, G2) is a k-separation
of a graph G if G1 and G2 are induced subgraphs of G such that G = G1 ∪G2, G1 � G2 and
G2 � G1, and |V (G1) ∩ V (G2)| = k.

2.2. Connected induced subgraphs

This subsection contains some elementary results about connected induced subgraphs contain-
ing a given set of vertices. We look in detail at so-called lexicographic breadth-first search
(LexBFS) trees, since these form a key tool in our methods.

A layering of a graph G is a partition (V0, V1, . . . , V�) of V (G) such that for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i− j| � 1. Each set Vi is called a layer.

Let r be a vertex in a connected graph G. Let � = max{distG(r, v) | v ∈ V (G) }, and for
i ∈ {0, . . . , �} define Vi = { v ∈ V (G) | distG(r, v) = i }. Then V0, V1, . . . , V� is a layering of G,
called the BFS layering of G starting from the root r; each Vi is called a BFS layer of G. A
spanning tree T of G rooted at r is a BFS spanning tree if distG(v, r) = distT (v, r) for every
vertex v in G. A BFS subtree is a subtree of a BFS spanning tree that includes the root. Let S
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be a BFS subtree rooted at r and consider a vertex v ∈ Vi ∩ V (S) for some i � 1. Let Pv be
the vr-path in S. Then Pv has exactly one vertex in each of V0, . . . , Vi. The parent of v is the
neighbour of v (in S) in Vi−1. Every vertex x in G is adjacent to at most three vertices in Pv

(since if x ∈ Vj , then NG(x) ⊆ Vj−1 ∪ Vj ∪ Vj+1). A leaf in a rooted tree is a non-root vertex
of degree 1. If S has p leaves, then every vertex in G is adjacent to at most 3p vertices in S.
This observation can be improved for a special type of BFS (sub)trees.

For our purposes, a BFS spanning tree T of G is a LexBFS spanning tree if each BFS layer Vi

can be linearly ordered such that
(a) each vertex v ∈ Vi with parent w ∈ Vi−1 in T has no neighbour in G that comes before

w in the ordering of Vi−1 (called the priority rule); and
(b) for every edge vw in T with v ∈ Vi and w ∈ Vi−1, there is no edge xy in T with x before v

in the ordering of Vi and y after w in the ordering of Vi−1 (called the non-crossing rule).

It is easily seen that every connected graph has a LexBFS spanning tree rooted at any given
vertex. A LexBFS subtree is a subtree of a LexBFS spanning tree that includes the root.

Throughout this paper we follow the convention that the root of a rooted tree (such as a
BFS or LexBFS (sub)tree) is never a leaf.

Lemma 6. For k � 1, if S is a LexBFS subtree of a connected graph G and S has k leaves,
then every vertex in G has at most 2k neighbours in V (S).

Proof. Let T be a LexBFS spanning tree of G, such that S is a subtree of T . Let V0, . . . , V�

be the BFS layers of T . Let v be a vertex in Vi (which may or may not be in S). If v is on
some leaf-root path P of S, then |NG(v) ∩ V (P )| � 2. Now consider a leaf-root path P in S not
containing v. Suppose on the contrary that there are distinct vertices x, y, z ∈ NG(v) ∩ V (P ),
none of which are on a leaf-root path of T containing v. Without loss of generality, x ∈ Vi−1,
y ∈ Vi and z ∈ Vi+1. Let w be the parent of v in T . So w ∈ Vi−1, but w 	= x (since x is not
on a leaf-root path of T containing v). By the priority rule, w comes before x in the ordering
of Vi−1. By the non-crossing rule, v comes before y in the ordering of Vi, which contradicts the
priority rule for z. Thus |NG(v) ∩ V (P )| � 2. Since there are k leaf-root paths in S, in total
this gives |NG(v) ∩ V (S)| � 2k. �

A graph G has bandwidth at most k if there is a vertex ordering v1, . . . , vn of V (G), such
that |i− j| � k for each edge vivj of G.

Lemma 7. Every connected graph G that has a LexBFS spanning tree T with k leaves has
bandwidth, pathwidth and treewidth at most k.

Proof. Say T is rooted at r. Let V0, . . . , V� be the BFS layers of T . Each Vi is linearly ordered
by LexBFS. We claim that the vertex-ordering of V (G) produced by using the orderings of
V0, . . . , V� in that order has bandwidth at most k. Consider an edge vw where v ∈ Vi and
w ∈ Vi. Since T has at most k leaves, |Vi| � k and at most k − 2 vertices are between v and w
in V0, . . . , V�. Now consider an edge vw where v ∈ Vi and w ∈ Vi+1. Let X be the set of vertices
that come after v in Vi or come before w in Vi+1. Then X is the set of vertices between v and
w in the ordering of V (G). Let p be the parent of w in T . By the priority rule, p /∈ X. By the
non-crossing rule, no vertex in X ∪ {v} is a descendent of another vertex in X ∪ {v}. Hence,
the number of leaves in T is at least |X| + 1, implying |X| � k − 1. Therefore G has bandwidth
at most k.

It is well-known and easy to prove that the pathwidth of a graph is at most its bandwidth
(and hence so is the treewidth). Take the vertex ordering v1, . . . , vn of V (H) that shows H has
bandwidth at most k. For i ∈ [n− k], let Ti = {vi, . . . , vi+k}. Then T1, T2, . . . , Tn−k defines the
desired path decomposition. �
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Lemma 8. For every set A of k � 2 vertices in a connected graph G, every minimal induced
connected subgraph H of G containing A satisfies the following properties:

(1) every (non-rooted) subtree of H has at most k leaves;
(2) H has maximum degree at most k;
(3) H has bandwidth (and hence pathwidth and treewidth) at most k − 1;
(4) H can be 2-coloured with clustering � 1

2k�; and
(5) H can be 2-coloured with {red,blue} such that there are at most k − 2 red vertices and

the blue subgraph consists of at most k − 1 pairwise disjoint paths.

Proof. Let T be a spanning tree of H. By the minimality of H, every leaf of T is in A.
Thus T has at most k leaves. Now let S be any tree in H. Extending S to a spanning tree of H
cannot decrease the number of leaves, hence S also has at most k leaves.

The closed neighbourhood of a vertex v ∈ V (H) contains a tree with degH(v) leaves, proving
degH(v) � k.

Let T be a LexBFS spanning tree of H rooted at a vertex r in A. By the minimality of H,
every leaf of T is in A. Thus T has at most k − 1 leaves (the root does not count as a leaf).
By Lemma 7, H has bandwidth, pathwidth and treewidth at most k − 1.

We now prove (4). We proceed by induction on |V (H)|. In the base case, |V (H)| = |A| =
k and the result is trivial. Now assume that |V (H)| > k. Thus V (H −A) 	= ∅, and by the
minimality of H, every vertex in H −A is a cut-vertex of H. Consider a leaf-block L of H.
Every vertex in L, except the one cut-vertex in L, is in A. There are at least two leaf-blocks.
Thus |V (L− v)| � 1

2k for some leaf block L, where v is the one cut-vertex of H in L. Let H ′ =
H − V (L− v) and A′ = (A \ V (L)) ∪ {v}. Then H ′ is a minimal induced connected subgraph
of G containing A′, and |A′| � k. By induction, H ′ has a 2-colouring with clustering � 1

2k�.
Colour every vertex in L \ {v} by the colour not assigned to v in H ′. Now H is 2-coloured with
clustering � 1

2k�.
It remains to prove (5). We proceed by induction on k. If k = 2, then H is a path between

the two vertices in A. Colour every vertex in H blue, and we are done. So assume k � 3 and the
result holds for k − 1. Let x be a vertex in A. By induction, every minimal induced connected
subgraph H ′ of H containing A \ {x} can be 2-coloured with {red,blue} such that there are at
most k − 3 red vertices and the blue subgraph consists of at most k − 2 pairwise disjoint paths.
If x is in H ′, then we are done. Otherwise, let P be a shortest path between x and H ′ in H.
Say P = x, . . . , u, v, w, where w is in H ′. Then v is the only vertex in P − w adjacent to H ′.
Colour v red, and colour x, . . . , u blue. (It is possible that x = v, in which case {x, . . . , u} = ∅.)
Then {x, . . . , u} induces a path in H that is not adjacent to H ′. By the minimality of H, we
have V (H) = V (H ′) ∪ {x, . . . , u, v}. Thus H is 2-coloured with {red,blue} such that there are
at most k − 2 red vertices and the blue subgraph consists of at most k − 1 pairwise disjoint
paths. �

We now prove the main result of this section.

Lemma 9. For every set A of k � 2 vertices in a connected graph G, there is an induced
connected subgraph H of G containing A, such that

(1) H has maximum degree at most k;
(2) H has bandwidth (and hence pathwidth and treewidth) at most k − 1;
(3) H can be 2-coloured with clustering � 1

2k�;
(4) H can be 2-coloured with {red,blue} such that there are at most k − 2 red vertices and

the blue subgraph consists of at most k − 1 pairwise disjoint paths; and
(5) every vertex in G has at most 2k − 2 neighbours in V (H).
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Proof. Let T be a LexBFS spanning tree of G rooted at some vertex r ∈ A. Let S be the
LexBFS subtree of T consisting of all ar-paths in T , where a ∈ A. Every leaf of S is in A \ {r},
implying that S has at most k − 1 leaves. By Lemma 6, every vertex in G has at most 2k − 2
neighbours in V (S). Let H be a minimal induced connected subgraph of G[V (S)] containing A.
The first four claims follow from Lemma 8. Since V (H) ⊆ V (S), Lemma 6 means that every
vertex in G has at most 2k − 2 neighbours in V (H). �

3. Decompositions of Kt-minor-free graphs

Van den Heuvel et al. [27] introduced the following definition and proved the following
decomposition theorem. A connected partition H1, . . . , H� has width k if for each i ∈ [�− 1],
each component of G− (V (H1) ∪ · · · ∪ V (Hi)) is adjacent to at most k of the subgraphs
H1, . . . , Hi. Note that this implies that Hi+1 is adjacent to at most k of the subgraphs
H1, . . . , Hi (since Hi+1 is contained in some component of G− (V (H1) ∪ · · · ∪ V (Hi))).

Theorem 10 (Van den Heuvel et al. [27]). Every Kt-minor-free graph G has a connected
partition H1, . . . , H� with width t− 2, such that each subgraph Hi is induced by a BFS subtree
of G− (V (H1) ∪ · · · ∪ V (Hi−1)) with at most t− 3 leaves.

The following similar decomposition theorem implies Theorem 3.

Theorem 11. For t � 4, every Kt-minor-free graph G has a connected partition H1, . . . , H�

with width t− 2, such that for i ∈ [�] the following holds.
(1) The subgraph Hi has the following properties:

(a) Hi has maximum degree at most t− 2;
(b) Hi has bandwidth, pathwidth and treewidth at most t− 3;
(c) Hi can be 2-coloured with clustering � 1

2 (t− 2)�; and
(d) Hi can be 2-coloured with {red,blue} such that there are at most t− 4 red vertices
and the blue subgraph consists of at most t− 3 pairwise disjoint paths.

(2) Each component C of G− (V (H1) ∪ · · · ∪ V (Hi)) has the following properties.
(a) At most t− 2 subgraphs in H1, . . . , Hi are adjacent to C, and these subgraphs are
pairwise adjacent. (This implies that at most t− 2 subgraphs in H1, . . . , Hi are adjacent
to Hi+1, and these subgraphs are pairwise adjacent.)
(b) Every vertex in C is adjacent to at most 2t− 6 vertices in each of H1, . . . , Hi.
(This implies that every vertex in Hi+1 is adjacent to at most 2t− 6 vertices in each
of H1, . . . , Hi.)

Proof. We may assume that G is connected. We construct H1, . . . , H� iteratively, maintain-
ing properties (1) and (2). Let H1 be the subgraph induced by a single vertex in G. Then (1)
and (2) hold for i = 1.

Assume that H1, . . . , Hi satisfy (1) and (2) for some i � 1, but V (H1), . . . , V (Hi) do not
partition V (G). Let C be a component of G− (V (H1) ∪ · · · ∪ V (Hi)). Let Q1, . . . , Qk be the
subgraphs in H1, . . . , Hi that are adjacent to C. By (2a), Q1, . . . , Qk are pairwise adjacent and
k � t− 2. Since G is connected, k � 1.

For j ∈ [k], let vj be a vertex in C adjacent to Qj . If k = 1, then let Hi+1 be the
subgraph induced by v1. It is easily seen that (1) is satisfied. For k � 2, by Lemma 9 with
k � t− 2, there is an induced connected subgraph Hi+1 of C containing v1, . . . , vk that
satisfies (1).

Consider a component C ′ of G− (V (H1) ∪ · · · ∪ V (Hi+1)). Either C ′ is disjoint from C, or C ′

is contained in C. If C ′ is disjoint from C, then C ′ is a component of G− (V (H1) ∪ · · · ∪ V (Hi))
and C ′ is not adjacent to Hi+1, implying (2) is maintained for C ′.
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Now assume C ′ is contained in C. Since every vertex in C has at most 2t− 6 neighbours
in each of H1, . . . , Hi, every vertex in C ′ has at most 2t− 6 neighbours in each of H1, . . . , Hi.
By Lemma 9 (5), every vertex in C ′ also has at most 2t− 6 neighbours in Hi+1. Thus (2b)
is maintained for C ′. The subgraphs in H1, . . . , Hi+1 that are adjacent to C ′ are a subset
of Q1, . . . , Qk, Hi+1, which are pairwise adjacent. Suppose that k = t− 2 and C ′ is adjacent
to all of Q1, . . . , Qt−2, Hi+1. Then C is adjacent to all of Q1, . . . , Qt−2. Contracting each of
Q1, . . . , Qt−2, Hi+1, C

′ into a single vertex gives Kt as a minor of G, a contradiction. Hence C ′

is adjacent to at most t− 2 of Q1, . . . , Qt−2, Hi+1, and property (2a) is maintained for C ′. �

Property (1d) in Theorem 11, along with a greedy (t− 1)-colouring of the subgraphs
H1, . . . , H�, gives the following results.

Theorem 12. For t � 4, every Kt-minor-free graph has a (2t− 2)-colouring such that for
t− 1 colours each monochromatic component has at most t− 4 vertices, and for the other t− 1
colours each monochromatic component is a path.

Corollary 13. For t � 4, every Kt-minor-free graph has a (3t− 3)-colouring such that for
t− 1 colours, each monochromatic component has at most t− 4 vertices, and the other 2t− 2
colour classes are independent sets.

The same greedy (t− 1)-colouring of the subgraphs H1, . . . , H�, together with Theo-
rem 11 (1b), gives the following result.

Theorem 14. For t � 4, every Kt-minor-free graph has a (t− 1)-colouring such that each
monochromatic component has treewidth at most t− 3.

Note that DeVos et al. [8] proved that for every proper minor-closed class of graphs, every
graph in that class has a 2-colouring such that each monochromatic component has bounded
treewidth. Their proof again uses the Graph Minor Structure Theorem, leading to a very large
bound on the treewidth.

Property (2a) in Theorem 11 means that if Q is the graph obtained G by contracting each
subgraph Hi to a single vertex, then Q is chordal with no Kt-subgraph, and thus with treewidth
at most t− 2. Indeed, H1, . . . , H� defines an elimination ordering of Q. In the language of Reed
and Seymour [42], H1, . . . , H� is a chordal decomposition with touching pattern Q. We only
need that Q is (t− 2)-degenerate for Theorems 1 and 2, but it is interesting that, in fact, Q
has treewidth at most t− 2.

Even though we do not use it explicitly in this paper, it is an interesting aspect of our
decomposition that the superstructure (that is, Q) has bounded treewidth, as does each piece
of the decomposition. There are several other properties in Theorem 11 we do not use, but we
mention them since they might be useful for other applications.

4. Excluding a complete bipartite minor

This section presents decomposition results analogous to Theorem 11 for Ks,t-minor-
free graphs, leading to bounds on the defective and clustered chromatic number. Those
decomposition results and the more technical proofs can be found towards the end of the
section.

In fact, for most of this section we will consider the larger classes of K∗
s,t-minor-free graphs,

where K∗
s,t is the complete join of Ks and Kt. We start with s ∈ {1, 2, 3} before considering

the general case. Graphs with no K1,t minor (note that K1,t = K∗
1,t) are easily coloured. Every
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such graph has maximum degree at most t− 1, and is therefore 1-colourable with defect t− 1.
Moreover, every BFS layer has at most t− 1 vertices, so alternately colouring the BFS layers
gives a 2-colouring with clustering t− 1.

Next consider the s = 2 case. Ossona de Mendez et al. [40] proved that every K∗
2,t-minor-

free graph is 2-colourable with defect O(t3). Our decomposition results imply the following
improvement.

Theorem 15. Every K∗
2,t-minor-free graph is 2-colourable with defect 2t− 2.

The decomposition results for K∗
2,t-minor-free graphs also imply that every is 4-colourable

with clustering t− 1. This result can be improved as follows. The proof is inspired by a method
of Gonçalves [22].

Theorem 16. Every K∗
2,t-minor-free graph G is 3-colourable with clustering t− 1. More-

over, for each edge vw of G, there is such a 3-colouring in which v and w are both isolated in
their respective monochromatic subgraphs.

Now consider K∗
3,t-minor-free graphs. Ossona de Mendez et al. [40] proved that the defective

chromatic number of K∗
3,t-minor-free graphs equals 3. In particular, every K∗

3,t-minor-free graph
is 3-colourable with defect O(t4). Our decomposition results again imply an improvement.

Theorem 17. Every K∗
3,t-minor-free graph is 3-colourable with defect 4t, and is 6-colourable

with clustering 2t.

It follows from Euler’s Formula that graphs with Euler genus g exclude K3,2g+3 as a minor.
Thus the second part of Theorem 17 is related to the results of Esperet and Ochem [18] and
Kawarabayashi and Thomassen [31] that every graph of Euler genus g can be 5-coloured with
clustering O(g). Kleinberg et al. [33] constructed planar graphs that cannot be 3-coloured
with bounded clustering. We conjecture that every K3,t-minor-free graph is 4-colourable with
clustering f(t), for some function f .

It is possible to improve the bound on the cluster size for the 6-colouring result in Theorem 17.
In a K∗

3,t-minor-free graph, every BFS layer induces a K∗
2,t-minor-free graph, which is

3-colourable with clustering t− 1 by Theorem 16. Using disjoint sets of three colours for
alternate BFS layers gives a 6-colouring with clustering t− 1.

Finally, in this section we consider general Ks,t-minor-free graphs. Ossona de Mendez
et al. [40] proved that the defective chromatic number of Ks,t-minor-free graphs equals s.
We show that the clustered chromatic number of Ks,t-minor-free graphs is at least s + 1, thus
generalising the above-mentioned lower bound of Kleinberg et al. [33].

Proposition 18. For every s � 1, t � max{s, 3} and c � 1, there is a Ks,t-minor-free
graph Gs such that every s-colouring of Gs has a monochromatic component of order greater
than c.

Proof. Define Gs recursively as follows. Let G1 be the path on c + 1 vertices. For s � 2,
let Gs be the graph obtained from c disjoint copies of Gs−1 by adding one dominant vertex.

We claim that Gs is not s-colourable with clustering c. We prove this claim by induction on
s � 1. Obviously, G1 is not 1-colourable with clustering c. Now assume that s � 2 and Gs−1 is
not (s− 1)-colourable with clustering c. Suppose that Gs has an s-colouring with clustering c.
Say the dominant vertex in Gs is coloured black. At most c− 1 copies of Gs−1 contain a
black vertex, which implies that at least one copy has no black vertex. Thus Gs−1 has an
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(s− 1)-colouring with clustering c, which is a contradiction. Hence Gs is not s-colourable with
clustering c, as claimed.

It remains to show that Gs is Ks,t-minor-free with t � max{s, 3}. We do so by induction on
s � 1. G1 is a path, and therefore contains no K1,3 minor. G2 is outerplanar, and therefore
contains no K2,3 minor. G3 is planar, and therefore contains no K3,3 minor.

Now assume that s � 4 and Gs−1 contains no Ks−1,s−1 minor, but Gs contains a Ks,s minor.
Let v be the dominant vertex in Gs. We may assume that v is the entire image of one vertex
in the Ks,s minor in G. Since Ks,s is 2-connected, the Ks,s minor is contained in one copy
of Gs−1 plus v. Deleting any one vertex from Ks,s gives a subgraph that contains a Ks−1,s−1

subgraph. Thus Gs−1 contains a Ks−1,s−1 minor, which is a contradiction. We conclude that
for s � 4, Gs has no Ks,s minor, so certainly no Ks,t minor with t � s (= max{s, 3}). �

Determining the clustered chromatic number of Ks,t-minor-free graphs is an open problem.
Proposition 18 provides a lower bound of s + 1. Since Ks,t-minor-free graphs are defectively
s-colourable [40], Lemma 5 implies an upper bound of 3s. In general, for every graph H, it is
possible that the clustered chromatic number of H-minor-free graphs is at most one more than
the defective chromatic number of H-minor-free graphs.

We now give the structural results and proofs of the above statements in this section. All the
results in this section are based on LexBFS, so we first present the following general lemma.
Recall the definition of the width of a connected partition from the beginning of Section 3.

Lemma 19. Suppose that a graph G has a connected partition H1, . . . , H� with width k.
If each subgraph Hi is induced by a BFS subtree of G− V (V (H1) ∪ · · · ∪ V (Hi−1)) with at
most p leaves, then G is (k + 1)-colourable with defect 3p− 1, and G is (2k + 2)-colourable
with clustering p.

If, in addition, each subgraph Hi is induced by a LexBFS subtree of G− (V (H1) ∪ · · · ∪
V (Hi−1)) with at most p leaves, then G is (k + 1)-colourable with defect 2p.

Proof. Colour the subgraphs H1, . . . , H� greedily in this order, such that adjacent subgraphs
receive distinct colours. Since the partition has width k, k + 1 colours suffice. Colour each vertex
in Hi by the colour assigned to Hi. In each subgraph Hi each BFS layer has at most p vertices.
Since a vertex in a BFS subtree has neighbours in its own layer and in the two layers below
and above its own layer only, Hi has maximum degree at most 3p− 1. Hence G is (k + 1)-
colourable with defect 3p− 1. Moreover, if each subgraph Hi is induced by a LexBFS subtree
of G− (V (H1) ∪ · · · ∪ V (Hi−1)) with at most p leaves, then by Lemma 6, Hi has maximum
degree 2p.

For the clustering claim, alternately 2-colour the BFS layers in each Hi, and take the
product with the (k + 1)-colouring of H1, . . . , H� to produce a (2k + 2)-colouring of G with
clustering p. �

As an aside, note that Van den Heuvel et al. [27] proved that every planar graph has a
connected partition H1, . . . , Hn with width 2, such that each subgraph Hi is a shortest path
in G− (V (H1) ∪ · · · ∪ V (Hi−1)). Thus, Lemma 19 with k = 2 and p = 1 implies that planar
graphs are 3-colourable with defect 2, which is the best possible result for defective 3-colouring
of planar graphs, first proved by Cowen et al. [6]. In fact, each monochromatic component is
a path, which was previously proved by Goddard [21] and Poh [41].

For K∗
2,t-minor-free graphs we have the following.

Lemma 20. Every K∗
2,t-minor-free graph G has a connected partition H1, . . . , H� with width

1, such that each subgraph Hi is induced by a LexBFS subtree of G− (V (H1) ∪ · · · ∪ V (Hi−1))
with at most t− 1 leaves.
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Proof. We may assume that G is connected. We construct H1, . . . , H� iteratively. Let H1

be the subgraph induced by a single vertex in G.
Assume that H1, . . . , Hi are defined for some i � 1, and C is a component of G− (V (H1)

∪ · · · ∪ V (Hi)) adjacent to one of H1, . . . , Hi. (Since G is connected, C is adjacent to at least
one of those subgraphs.) So C is adjacent to Ha, for some a ∈ [i], and to no other subgraph in
H1, . . . , Hi; let A be the set of vertices in C adjacent to Ha, and let r be a vertex in A. Let S
be a LexBFS subtree of C rooted at r, such that every vertex in A is in S, and subject to this
property, |V (S)| is minimal. Thus every leaf of S is in A. Let S0 be the subtree of S obtained by
deleting the leaves. If S has at least t leaves, then a K∗

2,t minor is obtained by contracting Ha

to a vertex and contracting S0 to a vertex. Thus S has at most t− 1 leaves. Let Hi+1 be
the subgraph of C induced by V (S). Since every vertex in A is in S, every component of
G− (V (H1) ∪ · · · ∪ V (Hi+1)) is adjacent to at most one of H1, . . . , Hi+1. Iterating this process
gives the desired partition. �

Lemmas 19 and 20 immediately imply Theorem 15 and show that K∗
2,t-minor-free graphs

are 4-colourable with clustering t− 1. As expressed in Theorem 16, this can be improved to a
3-colouring with the same clustering bounds, as we now prove.

Proof of Theorem 16. We proceed by induction on |V (G)|. The claim is trivial if |V (G)| �
t + 1. Now assume that vw is an edge in a K∗

2,t-minor-free graph G, and the result holds for
K∗

2,t-minor-free graphs with fewer vertices than G. If degG(v) = 1, then by induction G− v
has a 3-colouring in which w is isolated in its monochromatic subgraph. Assign v a colour not
assigned to w. We obtain the desired colouring of G.

Now assume that degG(v) � 2 and, similarly, degG(w) � 2. Let A and B be disjoint sets of
vertices in G such that v ∈ A and w ∈ B, G[A] and G[B] are connected, and vw is the only
edge between A and B, and subject to these properties, |A ∪B| is maximum. The sets A and B
are well-defined, since A = {v} and B = {w} satisfy the conditions. Let Z be the set of vertices
in V (G) \ (A ∪B) adjacent to both A and B, and let Y = V (G) \ (A ∪B ∪ Z).

If |Z| � t, then contracting A and B into single vertices gives a K∗
2,t minor. Thus |Z| � t− 1.

Since G[A] is connected and every vertex in Z is adjacent to A, G[A ∪ Z] is connected. Similarly,
G[B ∪ Z] is connected.

Let G1 be obtained from G by contracting G[B ∪ Z] into a single vertex x. Note that vx is
an edge of G1. Let G2 be obtained from G by contracting G[A ∪ Z] into a single vertex y. Note
that wy is an edge of G2. Since G1 and G2 are minors of G, they both contain no K∗

2,t minor.
Since degG(v) � 2 and degG(w) � 2, both G1 and G2 have fewer vertices than G.

By induction, G1 is 3-colourable with clustering t− 1 such that v and x are both isolated in
their respective monochromatic subgraphs, and G2 is 3-colourable with clustering t− 1 such
that w and y are both isolated in their respective monochromatic subgraphs. Permute the
colours in G2 so that x ∈ V (G1) and y ∈ V (G2) receive the same colour, and v ∈ V (G1) and
w ∈ V (G2) receive distinct colours.

Let G3 be obtained from G by contracting G[A ∪B ∪ Z] into a single vertex z. Note that
V (G3) = Y ∪ {z}. By induction, G3 is 3-colourable with clustering t− 1 such that z is isolated
in its colour class. Permute the colours in G3 so that z receives the same colour as x ∈ V (G1),
which is the same colour assigned to y ∈ V (G2).

Colour each vertex in Z by the colour assigned to x and y. Colour each vertex in A by its
colour in G1. Colour each vertex in B by its colour in G2. Finally, colour each vertex in Y by
its colour in G3.

Since x is isolated in its monochromatic subgraph in G1, y is isolated in its monochromatic
subgraph in G2, and z is isolated in its monochromatic subgraph in G3, every monochromatic
component intersecting Z is contained in Z, and thus has at most t− 1 vertices. Since vw is the
only edge between A and B, and v and w are assigned distinct colours, every monochromatic
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component that intersects A is contained in A, and therefore by induction has at most t− 1
vertices. Similarly, every monochromatic component that intersects B is contained in B, and
therefore by induction has at most t− 1 vertices. �

The following lemma is used in our decomposition result for K∗
3,t-minor-free graphs.

Lemma 21. For every connected graph G, non-empty sets A,B ⊆ V (G), and integer t � 1,
(1) G has a LexBFS subtree T with at most 2t + 1 leaves, such that T intersects both A

and B, and V (T ) separates A and B; or
(2) G has a K1,t minor with every branch set intersecting both A and B.

Proof. Let r be a vertex in A. Let X be a LexBFS spanning tree of G rooted at r. For a
set L ⊆ V (G), let TL be the subtree of X consisting of the union of all paths in X between L
and r. Choose L ⊆ V (G) so that V (TL) is an AB-separator, and subject to this property, |L|
is minimum. This is well defined since if L = V (G), then V (TL) = V (G). By the minimality
of |L|, every vertex in L is a leaf of TL. And by the definition of TL, every leaf of TL is
in L.

For each x ∈ L, let px be the vertex closest to x in TL, such that degT (px) � 3 or px = r.
Let Qx be the path in TL between x and px not including px. We call Qx the leaf path at x.
Let T0 = TL −⋃

x∈L V (Qx). Let H be the graph obtained from G− V (T0) by contracting the
leaf path Qx corresponding to each x ∈ L into a single vertex yx. We consider A to also be a
set of vertices in H, where a vertex yx is in A if any vertex of Qx is in A, and similarly for B.
Let S be a minimum AB-separator in H.

First suppose that |S| � t + 1. By Menger’s Theorem, there are t + 1 pairwise disjoint
AB-paths Z1, . . . , Zt+1 in H. Since V (TL) is an AB-separator in G, each Zi contains yx for
some x ∈ L, and each vertex yx is on at most one path Zi. For i ∈ [t], if Zi contains yx, then
contract Zi ∪Qx into a single vertex. If Zt+1 contains yx, then contract Zt+1 ∪Qx ∪ T0 into a
single vertex. We obtain a K1,t minor with every branch set intersecting both A and B (since
each Qx is adjacent to T0), and (2) holds.

Now assume that |S| � t. Let S1 be the set of vertices x ∈ L such that yx is in S. Let S2

be the set of vertices in G− S1 that correspond to vertices in S. Thus |S| = |S1| + |S2|. Let
Z be the set of vertices z ∈ V (T0) such that z = px for some x ∈ L \ S1, and z 	= px for all
x ∈ S1. Let T ′ = TL′ , where L′ = S1 ∪ S2 ∪ Z. Since S separates A and B in H, and T ′

contains T0 ∪ S1 ∪ S2 along with Qx for each x ∈ S1, it follows that V (T ′) separates A and B
in G.

By the definition of px, for each vertex z ∈ Z there are at least two vertices x and
x′ in L \ S1 for which z = px = px′ . Thus |L \ S1| � 2|Z|. By the choice of L, we can
argue

|L| � |L′| = |S1| + |S2| + |Z| � |S| + 1
2 |L \ S1| � t + 1

2 |L|.

Hence |L| � 2t. Thus TL is a LexBFS subtree with at most 2t leaves, such that V (TL)
separates A and B. Let T be obtained from TL by adding a shortest path in X from TL

to B. Then T is a LexBFS subtree with at most 2t + 1 leaves, such that T intersects both A
and B, and V (T ) separates A and B. �

We are now ready to prove the following structural lemma.

Lemma 22. Every K∗
3,t-minor-free graph G has a connected partition H1, . . . , H� with width

2, such that each subgraph Hi is induced by a LexBFS subtree of G− (V (H1) ∪ · · · ∪ V (Hi−1))
with at most 2t + 1 leaves.
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Proof. We again may assume that G is connected. We construct H1, . . . , H� iteratively,
maintaining the property that for each i ∈ [�− 1], each component C of G− (V (H1) ∪ · · · ∪
V (Hi)) is adjacent to at most two of H1, . . . , Hi, and if C is adjacent to Ha and Hb, for some
distinct a, b ∈ [i], then Ha and Hb are adjacent. Call this property (�).

Assume that H1, . . . , Hi is defined, and C is a component of G− (V (H1) ∪ · · · ∪ V (Hi)).
(Hence C satisfies property (�).)

Suppose C is adjacent to Ha, for some a ∈ [i], and to no other subgraph in H1, . . . , Hi.
Let Hi+1 be a subgraph of C induced by one vertex adjacent to Ha. Let C ′ be a component of
G− (V (H1) ∪ · · · ∪ V (Hi+1)). If C ′ is a component of G− (V (H1) ∪ · · · ∪ V (Hi)), then C ′ is
not adjacent to Hi, and (�) is maintained for C ′. Otherwise C ′ is a component of C − V (Hi+1),
and C ′ is adjacent to Hi+1 and possibly Ha. Since Hi+1 and Ha are adjacent, (�) holds for C ′.

Now assume that C is adjacent to Ha and Hb, for some distinct a, b ∈ [i], and to no other
subgraph in H1, . . . , Hi. Let A be the set of vertices in C adjacent to Ha, and let B be the
set of vertices in C adjacent to Hb. By Lemma 21 above we have the following: (1) C has a
LexBFS subtree T separating A and B, such that T intersects both A and B, and T has at
most 2t + 1 leaves, or (2) C has a K1,t minor with every branch set intersecting both A and
B. In case (1), let Hi+1 be the subgraph of C induced by V (T ). Since T intersects both A and
B, the subgraph Hi+1 is adjacent to both Ha and Hb. Let C ′ be a component of G− (V (H1)
∪ · · · ∪ V (Hi+1)). If C ′ is a component of G− (V (H1) ∪ · · · ∪ V (Hi)), then C ′ is not adjacent
to Hi+1, and (�) is maintained for C ′. Otherwise, C ′ is a component of C − V (Hi+1). Then
C ′ is adjacent to Hi+1 and at most one of Ha and Hb (since V (T ) separates A and B). Thus
property (�) holds for C ′ (since Hi+1 is adjacent to both Ha and Hb).

In Case (2), with Ha and Hb we obtain a K∗
3,t minor in G, which is a contradiction. �

5. Generalised colouring numbers

This section presents bounds on generalised colouring numbers, first introduced by Kierstead
and Yang [32]. Generalised colouring numbers are important because they characterise
bounded expansion classes [54], they characterise nowhere dense classes [23], and have several
algorithmic applications such as the constant-factor approximation algorithm for domination
number by Dvořák [12], and the almost linear-time model-checking algorithm of Grohe et al.
[24]. They also interpolate between degeneracy and treewidth (strong colouring numbers) and
between degeneracy and treedepth (weak colouring numbers). See [27, 36, 39] for more details.

For a graph G, linear ordering � of V (G), vertex v ∈ V (G), and integer r � 1, let Sr(G,�, v)
be the set of vertices x ∈ V (G) for which there is a path v = w0, w1, . . . , wr′ = x of length
r′ ∈ [0, r] such that x � v and v ≺ wi for all i ∈ [r − 1]. Similarly, let Wr(G,�, v) be the set of
vertices x ∈ V (G) for which there is a path v = w0, w1, . . . , wr′ = x of length r′ ∈ [0, r] such that
x � v and x ≺ wi for all i ∈ [r′ − 1]. For a graph G and integer r � 1, the r-strong colouring
number scolr(G) of G is the minimum integer k such that there is a linear ordering � of V (G)
with |Sr(G,�, v)| � k for each vertex v of G. Similarly, the r-weak colouring number wcolr(G)
is the minimum integer k such that there is a linear ordering � of V (G) with |Wr(G,�, v)| � k
for each vertex v of G.

The following lemma is implicitly proved by Van den Heuvel et al. [27].

Lemma 23 (Van den Heuvel et al. [27]). Let H1, . . . , H� be a connected partition of a graph
G with width k, such that there exists p such that for i ∈ [�], V (Hi) = V (Pi,1) ∪ · · · ∪ V (Pi,pi

),
where pi � p and each Pi,j is a shortest path in G− ((V (H1) ∪ · · · ∪ V (Hi−1)) ∪ (V (Pi,1) ∪
· · · ∪ V (Pi,j−1))). Then the generalised colouring numbers of G satisfy for every r � 1:

scolr(G) � p(k + 1)(2r + 1) and wcolr(G) � p

(
r + k

k

)
(2r + 1).
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Note that the conditions on the paths Pi,j in the lemma are implied if Hi is induced by a
BFS subtree with at most p leaves in G− (V (H1) ∪ · · · ∪ V (Hi−1)).

For example, combining Lemma 23 with a variant of Theorem 10, Van den Heuvel et al. [27]
proved that every Kt-minor-free graph G satisfies:

scolr(G) �
(
t− 1

2

)
(2r + 1) and wcolr(G) � (t− 3)

(
r + t− 2
t− 2

)
(2r + 1).

Lemmas 20 and 23 imply:

Theorem 24. For every K∗
2,t-minor-free graph G and every r � 1,

scolr(G) � 2(t− 1)(2r + 1) and wcolr(G) � (t− 1)(r + 1)(2r + 1).

And Lemmas 22 and 23 imply:

Theorem 25. For every K∗
3,t-minor-free graph G and every r � 1,

scolr(G) � 3(2t + 1)(2r + 1) and wcolr(G) � (2t + 1)
(
r + 2

2

)
(2r + 1).

Since graphs with Euler genus g exclude K3,2g+3 as a minor, Theorem 25 implies that for
every graph G with Euler genus g,

scolr(G) � 3(4g + 7)(2r + 1) and wcolr(G) � (4g + 7)
(
r + 2

2

)
(2r + 1).

These result are within a constant factor of the best known bounds for graphs of Euler genus
g, due to Van den Heuvel et al. [27]. Note that Theorem 25 applies to a broader class of graphs
than those with bounded Euler genus. For example, the disjoint union of g + 1 copies of K5 has
Euler genus g + 1, but contains no K3,3 minor. It is easy to construct 3-connected examples as
well.

We conjecture that Theorems 24 and 25 can be generalised as follows:

Conjecture 26. There exists a function f such that for every K∗
s,t-minor-free graph G

and every r � 1,

wcolr(G) � f(s, t) rs.

Conjecture 26 would be implied by Lemma 23 and the following conjecture.

Conjecture 27. For all t � s � 1, there exists an integer p, such that every K∗
s,t-minor-free

graph G has a connected partition H1, . . . , H� with width s− 1, such that for i ∈ [�], V (Hi) =
V (Pi,1) ∪ · · · ∪ V (Pi,pi

), where pi � p and each Pi,j is a shortest path in G− ((V (H1) ∪ · · · ∪
V (Hi−1)) ∪ (V (Pi,1) ∪ · · · ∪ V (Pi,j−1))).

We now show that Conjecture 26 is true with rs replaced by rs+1.

Proposition 28. For every K∗
s,t-minor-free graph G and every r � 1, we have

scolr(G) � s(s + 1)(t− 1)(2r + 1) and wcolr(G) � s(t− 1)
(
r + s

s

)
(2r + 1).

Proposition 28 follows from Lemma 23 and the next lemma.
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Lemma 29. Every K∗
s,t-minor-free graph has a connected partition H1, . . . , H� with width

s, such that for i ∈ [�], V (Hi) = V (Pi,1) ∪ · · · ∪ V (Pi,pi
), where pi � s(t− 1) and each Pi,j is a

shortest path in G− ((V (H1) ∪ · · · ∪ V (Hi−1)) ∪ (V (Pi,1) ∪ · · · ∪ V (Pi,j−1))).

Proof. Once more we may assume that G is connected. We construct H1, . . . , H�, maintain-
ing the property that for each i ∈ [�− 1], each component C of G− (V (H1) ∪ · · · ∪ V (Hi)) is
adjacent to at most s subgraphs in H1, . . . , Hi, and that the subgraphs C is adjacent to are
also pairwise adjacent. Call this property (�).

Assume that H1, . . . , Hi is defined, and C is a component of G− (V (H1) ∪ · · · ∪ V (Hi)).
(Hence C satisfies property (�).) Let Q1, . . . , Qk be the subgraphs in H1, . . . , Hi that are
adjacent to C. Thus Q1, . . . , Qk are pairwise adjacent and k � s.

Since G is connected, k � 1. For j ∈ [k], let Aj be the set of vertices in C adjacent to Qj .
Each Aj is non-empty. Let {F1, . . . , Fm} be a maximal set of pairwise disjoint connected
subgraphs constructed as follows. The subgraph F1 is induced by a minimal BFS subtree
S1 in C rooted at some vertex v ∈ V (C) and with S1 intersecting all of A1, . . . , Ak. For j � 1,
Fj+1 is induced by a minimal BFS subtree Sj+1 in C − (V (F1) ∪ · · · ∪ V (Fj)) rooted at some
vertex v that is adjacent to F1 ∪ · · · ∪ Fj , and with Sj+1 intersecting all of A1, . . . , Ak. By
minimality, each Sj has at most k � s leaves. Thus each Sj is the union of at most s shortest
paths in C − (V (F1) ∪ · · · ∪ V (Fj−1)).

Suppose that k � s− 1. Let Hi+1 = F1. Then Hi+1 satisfies the claim. Consider a compo-
nent C ′ of G− (V (H1) ∪ · · · ∪ V (Hi+1)). If C ′ is disjoint from C, then C ′ is a component of
G− (V (H1) ∪ · · · ∪ V (Hi)) and C ′ is not adjacent to Hi+1. Otherwise, C ′ is contained in C,
and the subgraphs in H1, . . . , Hi+1 that are adjacent to C ′ are a subset of the at most s
subgraphs Q1, . . . , Qk, Hi+1, which are pairwise adjacent since F1 intersects all of A1, . . . , Ak.
In both cases, property (�) is maintained.

Now assume that k = s. If m � t, then contracting each of Q1, . . . , Qs, F1, . . . , Ft to a single
vertex gives a K∗

s,t minor. So we are left with the case m � t− 1. Let Hi+1 be the subgraph
of C induced by V (F1) ∪ · · · ∪ V (Fm). Hence Hi+1 is induced by the union of pi+1 paths
P1, . . . , Ppi+1 , where pi+1 � ms � s(t− 1) and each Pj is a shortest path in G− ((V (H1) ∪ · · · ∪
V (Hi)) ∪ (V (P1) ∪ · · · ∪ V (Pj−1))). Consider a component C ′ of G− (V (H1) ∪ · · · ∪ V (Hi+1)).
If C ′ is disjoint from C, then C ′ is a component of G− (V (H1) ∪ · · · ∪ V (Hi)) and C ′ is not
adjacent to Hi+1. Otherwise, C ′ is contained in C, and C ′ does not intersect some Aj by the
maximality of m. Thus C ′ is adjacent to a subset of at most s subgraphs in Q1, . . . , Qs, Hi+1,
which are pairwise adjacent (since Hi+1 intersects all of A1, . . . , As). In both cases, property (�)
is maintained. �

6. Excluded immersions

This section studies the defective chromatic number of graphs excluding a fixed immersion. A
graph G contains a graph H as an immersion (also called a weak immersion) if the vertices of H
can be mapped to distinct vertices of G, and the edges of H can be mapped to pairwise edge-
disjoint paths in G, such that each edge vw of H is mapped to a path in G whose endpoints
are the images of v and w. The image in G of each vertex in H is called a branch vertex. A
graph G contains a graph H as a strong immersion if G contains H as an immersion such that
for each edge vw of H, no internal vertex of the path in G corresponding to vw is a branch
vertex.

Inspired no doubt by Hadwiger’s conjecture, Lescure and Meyniel [37] and Abu-Khzam and
Langston [1] independently conjectured that every Kt-immersion-free graph is properly (t− 1)-
colourable. Often motivated by this question, structural and colouring properties of graphs
excluding a fixed immersion have recently been widely studied [9, 10, 13, 15, 20, 43, 51].
The best upper bound, due to Gauthier et al. [19], says that every Kt-immersion-free graph is
properly (3.54t + 3)-colourable.
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We prove that the defective chromatic number of Kt-immersion-free graphs equals 2.

Theorem 30. Every graph not containing Kt as an immersion is 2-colourable with defect
(t− 1)3.

Theorem 31. For every integer t, there is an integer d such that every graph not containing
Kt as a strong immersion is 2-colourable with defect d.

Notice that immersions naturally also appear in the setting of multigraphs, allowing multiple
edges but no loops. It is obvious that if G is a multigraph with edge multiplicity at most m,
then the results of the theorems above hold with defect m(t− 1)3 and md, respectively. On
the other hand, if every edge in a multigraph has multiplicity m + 1, then no two adjacent
vertices get the same colour in a colouring with defect m. In particular, the graph obtained by
replacing the edges in the complete graph Kt−1 by m + 1 parallel edges does not have Kt as
an immersion, but is also not (t− 2)-colourable with defect m.

We leave as an open problem to determine the clustered chromatic number of graphs
excluding a (strong or weak) Kt immersion. It was observed by both Haxell et al. [26] and
Liu and Oum [38] that the results in Alon et al. [2] prove that for every k,N , there exists a
(4k − 2)-regular graph G such that every k-colouring of G has a monochromatic component of
size at least N . In other words, the clustered chromatic number of graphs with maximum degree
Δ is at least � 1

4 (Δ + 6)�. Since every graph with maximum degree at most t− 2 contains no
(strong or weak) Kt immersion, the clustered chromatic number of graphs excluding a (strong
or weak) Kt immersion is at least � 1

4 (t + 4)�.
The proof of Theorem 30 uses the following structure theorem from DeVos et al. [10]. The

theorem is not explicitly proved in [10], but can be derived easily from the proof of [10,
Theorem 1] on page 4 of that paper.

For each edge xy of a tree T , let T (xy) and T (yx) be the components of T − xy, where x
is in T (xy) and y is in T (yx). For a tree T and graph G, a T -partition of G is a partition
(Tx ⊆ V (G) : x ∈ V (T )) of V (G) indexed by the nodes of T . As before, each set Tx is called a
bag. Note that a bag may be empty. For each edge xy ∈ E(T ), let G(T, xy) =

⋃
z∈V (T (xy)) Tz

and G(T, yx) =
⋃

z∈V (T (yx)) Tz. Let E(T, xy) (= E(T, yx)) be the set of edges in G between
G(T, xy) and G(T, yx). The adhesion of a T -partition is the maximum, taken over all edges xy
of T , of |E(T, xy)|. For each node x of T , the torso of x (with respect to a T -partition) is the
graph obtained from G by identifying G(T, yx) into a single vertex for each edge xy incident
to x, deleting resulting parallel edges and loops.

Theorem 32 (following DeVos et al. [10]). For every graph H with t vertices and every
graph G that does not contain H as an immersion, there is a tree T and a T -partition of G
with adhesion less than (t− 1)2, such that each bag has at most t− 1 vertices.

A structural result similar to this theorem was proved by Wollan [51]. We also need the
following lemma.

Lemma 33. Let G be a graph such that for some tree T with vertex set V (G), for each edge
xy of T , the number of edges of G between V (T (xy)) and V (T (yx)) is at most k. Then G is
2-colourable with defect k.

Proof. We use induction on |V (G)|, noting that there is nothing to prove if |V (G)| � 2. So
assume |V (G)| � 3. Call a vertex v of Glarge if degG(v) � k + 1; otherwise v is small.
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If G has no large vertices, then every 2-colouring of G has defect k. Now assume that G has
some large vertex. Thus there is an edge uv of T such that u is large and u is the only large vertex
in V (T (uv)). Set a = |V (T (uv))|. Suppose that every vertex in V (T (uv)) \ {u} has a neighbour
in G in V (T (vu)). Since u has at least k + 1 − (a− 1) neighbours outside V (T (uv)), the number
of edges between V (T (uv)) and V (T (vu)) is at least (k + 1 − (a− 1)) + (a− 1) = k + 1, a
contradiction.

So there is a vertex w ∈ V (T (uv)) \ {u} with NG(w) ⊆ V (T (uv)). Note that w is small.
Let wz be an edge in T . Form the graphs G′ and T ′, respectively, from G and T by identifying w
and z (deleting loops and parallel edges). For each edge xy of T ′, the number of edges of G′

between V (T ′(xy)) and V (T ′(yx)) is still at most k. Hence by induction, G′ has a 2-colouring
with defect k. This colouring gives a 2-colouring with defect k of all vertices of G except w.
Since all vertices in V (T (uv)) except u are small, u is the only possible large neighbour of w.
Give w the colour different from u. As all other neighbours of w are small, the monochromatic
degree can increase only for small vertices. Thus the defect is at most k, as required. �

Now we are ready to prove our 2-colour result for graphs excluding an immersion.

Proof of Theorem 30. By Theorem 32, there is a tree T and a T -partition of G with adhesion
at most (t− 1)2 − 1, such that each bag has at most t− 1 vertices. Let Q be the graph with
vertex set V (T ), where xy ∈ E(Q) whenever there is an edge of G between Tx and Ty. Any one
edge of Q corresponds to at most t− 1 edges in G. By Lemma 33, the graph Q is 2-colourable
with defect (t− 1)2 − 1. Assign to each vertex v in G the colour assigned to the vertex x in Q
with v ∈ Tx. Since at most t− 1 vertices of G are in each bag, G is 2-coloured with defect at
most (t− 1) · ((t− 1)2 − 1) + (t− 2) < (t− 1)3. �

To prove our result for strong immersions, we employ the following more involved structure
theorem of Dvořák and Wollan [15].

Theorem 34 (Dvořák and Wollan [15]). For every integer t, there is an integer α such
that for every graph G that does not contain Kt as a strong immersion, there is a tree T and
a T -partition of G with adhesion at most α such that the following holds. For each node x
of T with torso Sx, if Wx is the set of vertices in Sx with degree at least α, then there is
a subset Ax ⊆ Wx of size at most α such that Wx \Ax can be enumerated {x1, . . . , xp} and
V (Sx −Wx) can be partitioned B0, B1, . . . , Bp (allowing Bj = ∅), such that

(1) each vertex v ∈ Ax is adjacent to at most α of B0, B1, . . . , Bp and adjacent to at most
α vertices in Wx \Ax; and

(2) for each i ∈ [p], there are at most α edges between B0 ∪ · · · ∪Bi−1 ∪ {x1, . . . , xi−1} and
Bi ∪ · · · ∪Bp ∪ {xi+1, . . . , xp}.

We actually only need the following corollary of Theorem 34.

Corollary 35. For every integer t, there is an integer α such that for every graph G
that does not contain Kt as a strong immersion, there is a tree T and T -partition of G with
adhesion at most α2 such that for each node x of T with torso Sx, Sx[Tx] has degree at most
3α + 2.

Proof. Consider a tree T and T -partition of G in accordance with Theorem 34. Consider a
node x of T with torso Sx. We use the notation from the theorem.

Consider a vertex v ∈ Wx. If v ∈ Ax, then v has at most |Ax| − 1 < α neighbours in Ax and
at most α neighbours in Wx \Ax, and thus has less than 2α neighbours in Wx. If v ∈ Wx \Ax,
then v = xi for some i ∈ [p]. Then v has at most |Ax| � α neighbours in Ax. Furthermore,
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there are at most α edges between {x1, . . . , xi−2} and {xi, . . . , xp}, at most α edges between
{x1, . . . , xi} and {xi+2, . . . , xp}, and at most 2 edges between xi and {xi−1, xi+1}. Thus v has
at most 3α + 2 neighbours in Wx. Hence Sx[Wx] has maximum degree at most 3α + 2.

Apply the following operation for each vertex v ∈ Tx \Wx, for each node x of T with |Tx| � 2.
Since v 	∈ Wx, the degree of v in Sx is at most α− 1. Since there are at most α edges from G
between Tx and each contracted vertex in Sx, v has degree at most (α− 1)α < α2 in G. Now
delete v from Tx, add a new node y in T adjacent only to x, and define Ty = {v}. Note that
the number of edges between Ty and G− Ty is less than α2, and the torso of y is isomorphic to
K2 (hence has degree one). Finally, the torso of x hasn’t changed, since the contraction of the
single-vertex node Ty just gives the vertex v again. In particular, the degree of v in the torso
of x is still at most α− 1, and hence Wx also has not changed.

After having applied the operation from the previous paragraph as long a possible, we obtain
a tree-partition of G on a tree T ′ with adhesion at most α2. Moreover, for each node x of T ′

we have |T ′
x| = 1, and then S′

x[T ′
x] has degree zero, or T ′

x ⊆ W ′
x and S′

x[W ′
x] has degree at most

3α + 2. We immediately get that S′
x[T ′

x] has degree at most 3α + 2 as well. �

Now we are ready to prove our 2-colouring result for graphs excluding a strong immersion.

Proof of Theorem 31. By Corollary 35, there is an integer α, a tree T and a T -partition of
G with adhesion at most α2, such that for each node x of T with torso Sx, Sx[Tx] has degree
at most 3α + 2. Let Q be the graph with vertex set V (T ), where xy ∈ E(Q) whenever there is
an edge of G between Tx and Ty. By Lemma 33 with k = α2, the graph Q is 2-colourable with
defect α2. Assign to each vertex v in G the colour assigned to the vertex x in Q with v ∈ Tx.

If v ∈ V (Tx), then every edge vw in G with w 	∈ Tx gives rise to an edge in Q. Since the
adhesion is at most α2, any one edge of Q corresponds to at most α2 edges in G. As the
monochromatic degree of x in Q is at most α2, this means that v has at most α4 neighbours
outside Tx with the same colour. Adding the at most 3α + 2 neighbours of v in Tx, we obtain
that the monochromatic degree of v in G is at most α4 + 3α + 2. �

Notes and acknowledgements. After publication of the first version of this paper, Dvořák
and Norin [14] proved that every graph embeddable in a fixed surface is 4-colourable with
bounded clustering (cf. the comments after Theorem 17). They also gave an alternative proof
that the clustered chromatic number of Kt-minor-free graphs is at most 2t− 2 (cf. Theorem 1),
and announced that in a sequel they will prove that the clustered chromatic number of Kt-
minor-free graphs equals t− 1.

The authors thank Jacob Fox who first observed that bounded degree graphs give lower
bounds on the clustered chromatic number of graphs excluding a fixed immersion.

The authors would also like to thank an anonymous referee for pointing out some errors in
earlier versions of this paper.
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