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COLOURING THE TRIANGLES DETERMINED BY A POINT SET

Ruy Fabila-Monroy,∗David R. Wood †

Abstract. Let P be a set of n points in general position in the plane. We study the
chromatic number of the intersection graph of the open triangles determined by P . It is
known that this chromatic number is at least n3

27 + O(n2), and if P is in convex position,

the answer is n3

24 + O(n2). We prove that for arbitrary P , the chromatic number is at most
n3

19.259 + O(n2).

1 Introdution
Let P be a set of n points in general position in the plane (that is, no three points are
collinear). A triangle with vertices in P is said to be determined by P . Let GP be the
intersection graph of the set of all open triangles determined by P . That is, the vertices of
GP are the triangles determined by P , where two triangles are adjacent if and only if they
have an interior point in common. This paper studies the chromatic number of GP .

Consider a colour class X in a colouring of GP . Then X is a set of triangles
determined by P , no two of which have an interior point in common. If P ′ ⊆ P is the
union of the vertex sets of the triangles in X, then there is a triangulation of P ′ in which
each triangle in X is an internal face. The converse also holds: the set of internal faces in
a triangulation of a subset of P can all be assigned the same colour in a colouring of GP .
Thus χ(GP ) can be considered to be the minimum number of triangulations of subsets of P

that cover all the triangles determined by P , where a triangulation T is said to cover each
of its internal faces.

First consider χ(GP ) for small values of n. If n = 3 then χ(GP ) = 1 trivially. If
n = 4 then χ(GP ) = 2, as illustrated in Figure 1. If n = 5 then χ(GP ) = 5, as illustrated
in Figure 2. Here ω(GP ) denotes the maximum order of a clique in GP .
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Figure 2: Colouring the triangles determined by five points: (a) three boundary points,
(b) four boundary points, (c) five boundary points. In each case, χ(GP ) = ω(GP ) = 5.

(a) (b)

Figure 1: Colouring the triangles determined by four points: (a) non-convex position, (b)
convex position. In both cases, χ(GP ) = ω(GP ) = 2.

For n = 6, we used the database of 16 distinct order types of 6 points in general
position [1], and calculated χ(GP ) exactly for each such set using sage [14]. As shown in
Appendix B, χ(GP ) = 8 for each 6-point set P . This result will also be used in the proof
of Theorem 1 below.

It is interesting that χ(GP ) is invariant for sets of n points, for each n ≤ 6. However,
this property does not hold for n = 7. If P consists of 7 points in convex position, then
χ(GP ) = 14, whereas we have found a set P of 7 points in general position for which
χ(GP ) = 13; see Appendix C.

Now consider χ(GP ) for arbitrarily large values of n. If P is in convex position then
the problem is solved: results of Cano et al. [8] imply that

χ(GP ) =

{

1
24 (n − 1)n(n + 1) if n is odd
1
24 (n − 2)n(n + 2) if n is even .
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See Appendix A for a proof of this and other related results.

Our main contribution is to prove the following bound for arbitrary point sets.

Theorem 1. For every set P of n points in general position in the plane,

1
27n3 ≤ χ(GP ) ≤ 27

520n3 + O(n2) = 1
19.259...n

3 + O(n2) .

It is an interesting open problem whether the lower bound on χ(Gp) in Theorem 1

is tight. That is, are there infinitely many n-point-sets P for which χ(GP ) = n3

27 + O(n2)?

Note that all computer code used in this project is available from the first author
upon request.2 Proof of Theorem 1
The lower bound in Theorem 1 follows immediately from a theorem by Boros and Füredi
[5], who proved that for every set P of n points in general position, there is a point q in

the plane such that q is in the interior of at least n3

27 + O(n2) triangles determined by P .

These triangles form a clique in GP , implying χ(GP ) ≥ ω(Gp) ≥ n3

27 + O(n2). This result
is called the ‘first selection lemma’ by Matoušek [12, Section 9.1]. See [6] for an alternative
proof and see [3, 11] for generalisations.

Note that Boros and Füredi’s theorem is stronger than simply saying that ω(Gp) ≥
n3

27 + O(n2). For example, for sets of n points in convex position, GP is invariant. Moving
the points around a circle does not change the graph, which is not true for the question of
a point in many triangles. Indeed, Bukh et al. [7] proved that there is a set P of n points in

convex position, such that every point in the plane is in the interior of at most n3

27 + O(n2)
triangles determined by P (thus proving that the Boros-Füredi bound is best possible).

However, in this case, ω(GP ) = n3

24 +O(n2) by the result of Cano et al. [8] mentioned above.

The proof of the upper bound in Theorem 1 depends on the following lemmas. The
first is a restatement of results from the literature on covering arrays; see [10] for the details.

Lemma 2 ([10]). Let G be a complete k-partite graph with at most m vertices in each part.
Then G contains m3 + O(m2) copies of Kk such that each triangle of G appears in some
copy.

Lemma 3. Let A and B be sets of n points in general position in the plane separated by a
line. Let X be the set of open triangles that are determined by A∪B and have at least one
vertex in each of A and B. Then the chromatic number of the intersection graph of X is at
most 2

5n3 + O(n2)

Proof. We proceed by induction on n. It is easily seen that two colours suffice for n ≤ 2.

If necessary, add a point to A and B so that |A| = |B| = 2m, where m := ⌈n
2 ⌉.

Adding points cannot decrease the chromatic number. By the Ham Sandwich Theorem
there is a line ℓ such that in each open half-plane determined by ℓ, there are exactly m
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points of A and m points of B. Without loss of generality, ℓ is horizontal. Let A1 and A2

respectively be the subsets of A consisting of points above and below ℓ. Define B1 and B2

analogously. Thus |A1| = |A2| = |B1| = |B2| = m. We call A1, A2, B1 and B2 quadrants.

Let G be the complete 4-partite graph with colour classes A1, A2, B1, B2. By
Lemma 2, G contains m3 + O(m2) copies of K4 such that each triangle of G appears
in some copy. Say {a1, a2, b1, b2} induce such a copy of K4, where ai ∈ Ai and bi ∈ Bi. The
intersection graph of the open triangles determined by any set of four points is 2-colourable,
as illustrated in Figure 1. Thus 2m3 + O(m2) colours suffice for the triangles with vertices
in distinct quadrants.

For each i, j ∈ {1, 2}, by induction, 2
5m3 + O(m2) colours suffice for the triangles in

X determined by Ai ∪ Bj. Moreover, the triangles determined by A1 ∪ B1 can share the
same set of colours as the triangles determined by A2 ∪ B2. Thus 6

5m3 + O(m2) colours
suffice for the triangles with vertices in two quadrants. This accounts for all triangles in X.
The total number of colours is (2 + 6

5)m3 + O(m2) = 2
5n3 + O(n2).

Proof of the Upper Bound in Theorem 1. We proceed by induction on n. As shown in Sec-
tion 1, for n = 3, 4, 5, 6 every point set P with |P | = n satisfies χ(GP ) = 1, 2, 5, 8 respec-
tively. Now assume that n ≥ 7.

Ceder [9] proved that there are three concurrent lines that divide the plane into
six parts each containing at least n

6 − 1 points in its interior. So each part has at most
n−5(n

6 −1) = n
6 +5 points. Add points if necessary so that each part contains exactly m :=

⌊n
6 ⌋ + 5 points. Adding points cannot decrease the chromatic number. Let P1, P2, . . . , P6

be the partition of P determined by the six parts, in clockwise order about the point of
concurrency. Each Pi is called a sector. Let G be the complete 6-partite graph, with colour
classes P1, P2, . . . , P6.

By Lemma 2, G contains m3 + O(m2) copies of K6 such that each triangle of G

appears in some copy. Each copy of K6 corresponds to a set of points {x1, . . . , x6} such
that each xi ∈ Pi. The chromatic number of the intersection graph of open triangles
determined by {x1, . . . , x6} is 8; see Appendix B. Thus 8m3 + O(m2) colours suffice for the
triangles determined by P with vertices in distinct sectors, as illustrated in Figure 3(a).

For i, j ∈ {1, . . . , 6}, let Xi,j be the set of triangles determined by Pi ∪Pj that have
at least one endpoint in each of Pi and Pj .

By induction, 27
520 (2m)3 + O(m2) colours suffice for the triangles determined by

P1 ∪ P2. The same set of colours can be used for the triangles determined by P3 ∪ P4, and
for the triangles determined by P5 ∪P6. This accounts for all triangles contained in a single
sector, as well as X1,2 ∪ X3,4 ∪ X5,6, as illustrated in Figure 3(b).

We now colour Xi,j for other values of i, j. Note that Pi and Pj are separated by a
line. Thus, by Lemma 3, 2

5m3 + O(m2) colours suffice for the triangles in Xi,j . Moreover,
X2,3 ∪ X4,5 ∪ X6,1 can use the same set of colours, as can X1,5 ∪ X2,4 and X1,3 ∪ X4,6 and
X3,5 ∪X2,6. These cases are illustrated in Figures 3(c)–(f). Each of X1,4, X2,5 and X3,6 use
their own set of colours, as illustrated in Figures 3(g)–(i). In total the number of colours is

8m3 + O(m2) + 27
520(2m)3 + O(m2) + 14

5 m3 + O(m2) = 27
520n3 + O(n2) .
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Figure 3: Partition of triangles in Theorem 1.
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3):141–152, 1982. doi:10.1016/0012-365X(82)90115-7.
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The following theorem is obtained by combining results by Boros and Füredi [4, 5] and
Cano et al. [8]. In particular, Boros and Füredi [4, 5] proved that (A) = (B) = (F) and
Cano et al. [8] proved that (E) = (F). We include the proof for completeness. See [13] for
other combinatorial objects counted by the same formula. A tournament is an orientation
of a complete graph.

Theorem 4. The following are equal:

(A) the maximum number of directed 3-cycles in a tournament on n vertices,

(B) the maximum number of triangles determined by n points in general position with an
interior point in common,

(C) the maximum number of triangles determined by n points in convex position with an
interior point in common,

(D) the clique number of the intersection graph of the open triangles determined by n points
in convex position,

(E) the chromatic number of the intersection graph of the open triangles determined by n

points in convex position,

(F)
{

1
24 (n − 1)n(n + 1) if n is odd
1
24 (n − 2)n(n + 2) if n is even .

Proof. (A) ≤ (F): (This is an exercise in [2, page 33].) Let G be a tournament on n vertices.
Let deg+(u) be the outdegree of each vertex u of G. Let X be the set of directed 3-cycles in
G. For each triple {u, v,w} of vertices not in X, exactly one of u, v,w, say u, has outdegree

2 in G[{u, v,w}]. Charge this triple to u. Exactly
(deg+(u)

2

)

such triples are charged to u.

Thus the number of triples not in X equals
∑

u

(deg+(u)
2

)

. Hence

|X| =

(

n

3

)

−
∑

u

(

deg+(u)

2

)

, (1)

which is maximised when the outdegrees are as equal as possible (subject to
∑

u deg+(u) =
(

n
2

)

). Thus when n is odd, |X| is maximised when every vertex has outdegree n−1
2 . Hence

|X| ≤
(n
3

)

− n
((n−1)/2

2

)

= 1
24 (n − 1)n(n + 1). When n is even, |X| is maximised when

half the vertices have outdegree n−2
2 and the other half have outdegree n

2 . Hence |X| ≤
(

n
3

)

− n
2

(

(n−2)/2
2

)

− n
2

(

n/2
2

)

= 1
24 (n − 2)n(n + 2).

(B) ≤ (A): Let P be a set of n points in general position. Let X be a set of
triangles determined by P that contain a common interior point q. Let G be the n-vertex
tournament with vertex set P , where the edge vw is directed from v to w whenever w is
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clockwise from v in the triangle vwq. If vwq are collinear then orient vw arbitrarily in G.
A triangle in X is a directed 3-cycle in G. Thus |X| is at most the maximum number of
directed 3-cycles in an n-vertex tournament.

(C) ≤ (B): This follows immediately from the definitions.

(C) ≤ (D): If P is a set of points, and X is a set of triangles determined by P with
an interior point in common, then X is a clique in GP . Thus (D) ≥ (C).

(D) ≤ (E): The chromatic number of every graph is at least its clique number.

(E) ≤ (D): For sets P of n points in convex position, GP does not depend on the
particular choice of P . Thus we may assume that P consists of n equally spaced points
around a circle. Below we define a specific point q at or near the centre of the circle. Say
a triangle determined by P is central if it contains q in its interior. Thus the set of central
triangles are a clique in GP . For each central triangle uvw, we define an independent set of
triangles (including uvw) that is said to belong to uvw. We prove that each triangle is in
an independent set belonging to some central triangle. Thus these independent sets define
a colouring of GP , with one colour for each central triangle.

First suppose that n is even. For each point v ∈ P , let v′ be the point on the circle
antipodal to v. Since n is even, v′ ∈ P . A triangle determined by P is long if it contains
an antipodal pair of vertices. Let q be a point near the centre of the circle, such that for all
consecutive points v,w ∈ P , exactly one of the long triangles vv′w and vv′w′ contain q in
their interior. If uvw is a non-long central triangle, then each of uvw′, uv′w and u′vw is not
central, and {uvw, uvw′, uv′w, u′vw} is the independent set that belongs to uvw. If vv′w is
a long central triangle, then vv′w′ is not central, and {vv′w, vv′w′} is the independent set
that belongs to vv′w. We claim that every triangle determined by P is in an independent
set that belongs to a central triangle. Let uvw be a non-central triangle. Without loss of
generality, vw separates u from q, implying u′vw is a central triangle, and uvw is in the
independent set that belongs to u′vw (regardless of whether u′vw is long), as claimed.

Now assume that n is odd. For each point v ∈ P , let v′ be the point in P im-
mediately clockwise from the point on the circle antipodal to v (which is not in P since
n is odd). Let q be the centre of the circle. If uvw is a central triangle, and no two of
u, v,w are consecutive around the circle, then each of uvw′, uv′w and u′vw is not central,
and {uvw, uvw′, uv′w, u′vw} is the independent set in GP that belongs to uvw. If uvw is
a central triangle, and u and v are consecutive, then uv′w and u′vw are not central, and
{uvw, uv′w, u′vw} is the independent set in GP that belongs to uvw. We claim that every
triangle determined by P is in an independent set that belongs to a central triangle. Let
uvw be a non-central triangle. Without loss of generality, vw separates u from q. Let x be
the vertex immediately anticlockwise from u′. Then xvw is a central triangle, and x′ = u.
Thus uvw is in the independent set that belongs to xvw, as claimed.

Since there is one colour for each central triangle in the above colouring, the set of
central triangles are a maximum clique in GP , and χ(GP ) = ω(GP ). That is, (D) = (E).

(F) ≤ (C): Let P be n evenly spaced points on a circle. Let q be the point near
the centre of the circle defined in the proof that (E) ≤ (D). Let X be the set of triangles

JoCG 3(1), 86–101, 2012 93

http://jocg.org/


Journal of Computational Geometry jocg.org

determined by P that contain q in their interior. Thus (C) ≥ |X|. Let G be the n-vertex
tournament with vertex set P , where the edge vw is directed from v to w whenever w is
clockwise from v in the triangle vwq. Observe that if n is odd, then every vertex in G has
outdegree n−1

2 . And if n is even, then half the vertices in G have outdegree n−2
2 and the

other half have outdegree n
2 . The analysis in the proof that (A) ≤ (F) shows that |X| =

(F). Hence (C) ≥ (F).

(E) ≤ (A): Let P be n evenly spaced points on a circle. Let q be the point near the
centre of the circle defined in the proof that (E) ≤ (D). Let G be the n-vertex tournament
with vertex set P , where the edge vw is directed from v to w whenever w is clockwise from
v in the triangle vwq. Three vertices form a directed 3-cycle in G if and only if they form a
central triangle. Thus (A) is at least the number of central triangles, which equals (E) by
the proof that (E) ≤ (D).

We have proved that (F) ≤ (C) ≤ (B) ≤ (A) ≤ (F) and (F) ≤ (C) ≤ (D) ≤ (E) ≤
(A) ≤ (F). Thus (A) = (B) = (C) = (D) = (E) = (F).

We conjecture that the maximum clique number of the intersection graph of the open
triangles determined by n points in general position also equals the number in Theorem 4, as
does the maximum chromatic number. It may even be true that χ(GP ) = ω(GP ) for every
set P of points in general position. We have verified by computer that χ(GP ) = ω(GP ) for
every set P of at most 7 points in general position.
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