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DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS

INTO COMPLETE GRAPHS

RUY FABILA-MONROY AND DAVID R. WOOD

Abstract. Let k ≥ ℓ ≥ 1 and n ≥ 1 be integers. Let G(k, n) be the complete k-partite

graph with n vertices in each colour class. An ℓ-decomposition of G(k, n) is a set X of

copies of Kk in G(k, n) such that each copy of Kℓ in G(k, n) is a subgraph of exactly one

copy of Kk in X. This paper asks: when does G(k, n) have an ℓ-decomposition? The

answer is well known for the ℓ = 2 case. In particular, G(k, n) has a 2-decomposition if

and only if there exists k − 2 mutually orthogonal Latin squares of order n. For general

ℓ, we prove that G(k, n) has an ℓ-decomposition if and only if there are k− ℓ Latin cubes

of dimension ℓ and order n, with an additional property that we call mutually invertible.

This property is stronger than being mutually orthogonal. An ℓ-decomposition of G(k, n)

is then constructed whenever no prime less than k divides n.

1. Introduction

Let G(k, n) be the complete k-partite graph with n vertices in each colour class. For-

mally, G(k, n) has vertex set [k]× [n] where (c, u) is adjacent to (d, v) if and only if c 6= d.

Here [n] := {1, 2, . . . , n}. Sometimes we use a vector (v1, . . . , vk) to denote the clique with

vertex set {(i, vi) : i ∈ [k]}.

For k ≥ ℓ ≥ 2, an ℓ-decomposition of G(k, n) is a set X of copies of Kk in G(k, n), such

that each copy of Kℓ in G(k, n) is a subgraph of exactly one copy of Kk in X. Here Kk is

the complete graph on k vertices. This paper considers the question:

When does G(k, n) have an ℓ-decomposition?

First note that every ℓ-decomposition of G(k, n) contains exactly nℓ copies of Kk (since

Kk contains
(

k
ℓ

)

copies of Kℓ, and G(k, n) contains
(

k
ℓ

)

nℓ copies of Kℓ).

The ℓ = 2 case of our question corresponds to a proper partition of the edge-set of

G(k, n), called a ‘decomposition’. It is well known that this case can be answered in terms
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of the existence of mutually orthogonal Latin squares (Theorem 1). These connections are

explored in Section 2.

Given this relationship, it is natural to consider the relationship between ℓ-decompositions

and mutually orthogonal Latin cubes, which are a higher dimensional analogue of Latin

squares. However, the situation is not as simple as the ℓ = 2 case. The first contribution of

this paper is a characterisation of ℓ-decompositions in terms of Latin cubes of dimension ℓ,

with an additional property that we call mutually invertible (Theorem 7). This property

is stronger than being mutually orthogonal. For ℓ = 2 these two properties are equivalent.

These results are presented in Section 3.

Then in Section 4, we construct an ℓ-decomposition whenever no prime less than k

divides n (Theorem 10). Finally we relax the definition of ℓ-decomposition to allow each

Kℓ to appear in at least one copy of Kk. Results are obtained for all n (Theorem 13).

2. Latin Squares and the ℓ = 2 Case

A Latin square of order n is an n × n array in which each row and each column is a

permutation of [n]. Two Latin squares are orthogonal if superimposing them produces

each element of [n]× [n] exactly once. Two or more Latin squares are mutually orthogonal

(MOLS) if each pair is orthogonal. If L1, . . . , Lk−2 are mutually orthogonal Latin squares

of order n, then it is easily verified that the n2 copies of Kk defined by the vectors

(1) (L1(x, y), . . . , Lk−2(x, y), x, y) ,

where (x, y) ∈ [n]2, form an edge-partition of G(k, n). In fact, the following well-known

converse result holds; see [1, page 162].

Theorem 1. G(k, n) has a 2-decomposition if and only if there exists k − 2 mutually

orthogonal Latin squares of order n.

There are at most n − 1 MOLS of order n; see [1, page 162]. On the other hand,

MacNeish [13] proved that if p is the least prime factor of n then there exists p− 1 MOLS

of order n. With Theorem 1 this implies:

Proposition 2. If p is the least prime factor of n and k = p + 1, then there exists an

edge-partition of G(k, n) into n2 copies of Kk.

Bose, Shrikhande and Parker [7, 8] proved that for all n except 2 and 6 there exists a

pair of MOLS of order n. With Theorem 1 this implies:

Proposition 3. For all n except 2 and 6 there is an edge-partition of G(4, n) into n2

copies of K4.

Other values of k and n for which there is a 2-decomposition of G(k, n) are immediately

obtained by applying Theorem 1 with known results about the existence of MOLS; see [1].
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3. Latin Cubes

A d-dimensional Latin cube of order n is a function L : [n]d → [n] such that each row

is a permutation of [n]; that is, for all i ∈ [d] and x1, . . . , xi−1, xi+1, . . . , xd ∈ [n],

{L(x1, . . . , xi−1, j, xi+1) : j ∈ [n]} = [n] .

If L1, . . . , Ld are d-dimensional Latin cubes of order n, and for every (v1, . . . , vd) ∈ [n]d

there exists x1, . . . , xd such that Li(x1, . . . , xd) = vi for all i ∈ [d], then L1, . . . , Ld are said

to be orthogonal. Thus superimposing L1, . . . , Ld produces each element of [n]d exactly

once. If every d-tuple of a set L of d-dimensional Latin cubes of order n are orthogonal

then L is mutually orthogonal. For results on mutually orthogonal Latin cubes and related

concepts see [2–6, 12, 14, 15].

From an ℓ-decomposition of G(k, n), it is possible to construct a set of k − ℓ mutually

orthogonal ℓ-dimensional Latin cubes (see Theorem 7). However, the natural analogue of

(1) does not hold. Consider the following set {L1, L2, L3} of three mutually orthogonal

3-dimensional Latin cubes of order 4.

111 233 344 422

343 421 112 234

424 342 231 113

232 114 423 341

222 144 433 311

434 312 221 143

313 431 142 224

141 223 314 432

333 411 122 244

121 243 334 412

242 124 413 331

414 332 241 123

444 322 211 133

212 134 443 321

131 213 324 442

323 441 132 214

In this example, the Latin cubes are superimposed so that L1 is:

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

2 1 4 3

4 3 2 1

3 4 1 2

1 2 3 4

3 4 1 2

1 2 3 4

2 1 4 3

4 3 2 1

4 3 2 1

2 1 4 3

1 2 3 4

3 4 1 2

The natural analogue of (1) would be to construct copies of K6 in G(6, 4) of the form

(L1(x, y, z), L2(x, y, z), L3(x, y, z), x, y, z) ,

where x, y, z ∈ [4]. However, in this case not every copy of K3 in G(6, 4) is covered.

For example, {(1, 1), (2, 2), (6, 2)} is not covered (since z = 2 and L1(x, y, 2) = 1 implies

L2(x, y, 2) = 4, as shown by the underlined entries above).

Below we introduce a stronger condition than orthogonality so that this construction

does provide an ℓ-decomposition.

We consider k-tuples in [n]k to be functions from [k] to [n]. So that for t := (t1, . . . , tk),

we use the notation t(i) = ti. A set X of k-tuples in [n]k is said to be ℓ-extendable if for
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all indices s1 < s2 < · · · < sℓ (where si ∈ [k]) and for every element (x1, . . . , xℓ) ∈ [n]ℓ,

there exists a unique t ∈ X such that t(si) = xi for all i ∈ [ℓ].

Lemma 4. Let X be an ℓ-extendable set of k-tuples in [n]k, and let s1 < s2 < · · · < sℓ,

where si ∈ [k]. Let t be the unique k-tuple such that t(si) = xi for all i ∈ [ℓ]. For every

j ∈ [k] \ {s1, s2, . . . , sℓ}, let Lj be the function defined by Lj(x1, . . . , xℓ) := t(j). Then Lj

is an ℓ-dimensional Latin cube.

Proof. Let (x1, . . . , xℓ) ∈ [n]ℓ and h ∈ [ℓ]. Suppose that for some x′h ∈ [n],

Lj(x1, . . . , xh−1, xh, xh+1, . . . , xℓ) = y = Lj(x1, . . . , xh−1, x
′
h, xh+1, . . . , xℓ) .

Then there is a tuple t′ in X such that t′(si) = xi for si ∈ {s1, . . . , sℓ} \ {sh} and t(j) = y.

SinceX is ℓ-extendable, this tuple is unique. Therefore xh = x′h and Lj is a Latin cube. �

A set L1, . . . , Lk of ℓ-dimensional Latin cubes of order n is said to be mutually invertible

if

{(L1(x1, . . . , xℓ), . . . , Lk(x1, . . . , xℓ), x1, . . . , xℓ) : (x1, . . . , xℓ) ∈ [n]ℓ}

is ℓ-extendable.

Proposition 5. Every set L1, . . . , Lk of mutually invertible ℓ-dimensional Latin cubes is

mutually orthogonal.

Proof. Let s1 < s2 < · · · < sℓ with si ∈ [k] and let (y1, . . . , yℓ) ∈ [n]ℓ. It remains to show

that there exists a unique (x1, . . . , xℓ) ∈ [n]d such that

(Ls1(x1, . . . , xℓ), . . . , Lsℓ(x1, . . . , xℓ)) = (y1, . . . , yℓ) .

This follows from the fact that

{(L1(x1, . . . , xℓ), . . . , Lk(x1, . . . , xℓ), x1, . . . , xℓ) : (x1, . . . , xℓ) ∈ [n]ℓ}

is ℓ-extendable. �

In the case of 2-dimensional Latin cubes, mutual orthogonality is equivalent to mutual

invertibility.

Proposition 6. Every set L1, . . . , Lk of mutually orthogonal Latin squares is mutually

invertible.

Proof. We prove that

X := {(L1(x, y), . . . , Lk(x, y), x, y) : (x, y) ∈ [n]2}

is 2-extendable. Let z1, z2 ∈ [k + 2] with z1 < z2. We claim that for each (x1, x2) ∈ [n]

there is a unique tuple t ∈ X such that t(z1) = x1 and t(z2) = x2. Consider the following

cases.
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• z1 = k + 1 and z2 = k + 2: The claim immediately follows from the definition of

X.

• z1 ≤ k and z2 ∈ {k+1, k+2}: The claim follows from the fact that Lz1 is a Latin

square.

• z1 ≤ k and z2 ≤ k: The claim follows from the fact that Lz1 and Lz2 are orthogonal.

Therefore X is 2-extendable and L1, . . . , Lk is a set of mutually invertible Latin squares.

�

Theorem 7. G(k, n) has an ℓ-decomposition if and only if there are k − ℓ mutually in-

vertible Latin ℓ-dimensional cubes of order n.

Proof. (⇐=) Let L1, . . . , Lk−ℓ be k − ℓ mutually invertible ℓ-dimensional Latin cubes of

order n. For each (x1, . . . , xℓ) ∈ [n]ℓ, let K(x1, . . . , xℓ) be the copy of Kk defined by the

vector (v1, . . . , vk−ℓ, x1, . . . , xℓ) where vi := Li(x1, . . . , xℓ). This defines nℓ copies of Kk.

That each copy of Kℓ in G(k, n) is in one such copy of Kk follows immediately from the

fact that

{(v1, . . . , vk−ℓ, x1, . . . , xℓ) : (x1, . . . , xℓ) ∈ [n]ℓ}

is ℓ-extendable.

(=⇒) Consider an ℓ-decomposition X of G(k, n). Thus X is a set of copies of Kk in

G(k, n) such that each copy of Kℓ is in exactly one copy of Kk in X. Consider each

copy of Kk in X to be a k-tuple in [n]k. We now show that X is ℓ-extendable. Let

s1 < · · · < sℓ be elements of [k] and (x1, . . . , xℓ) ∈ [n]ℓ. There is a unique tuple (t1, . . . , tk)

in X containing the copy of Kℓ with vertex set {(s1, x1), . . . , (sℓ, xℓ)}. Thus t(si) = xi for

all i ∈ [ℓ]. Therefore X is ℓ-extendable. By Lemma 4, we obtain k− ℓ mutually invertible

Latin cubes. �

Note that Proposition 6 and Theorem 7 provide a long-winded proof of Theorem 1.

4. Construction of an ℓ-Decomposition

This section describes a construction of an ℓ-decomposition.

Lemma 8. If n ≥ k ≥ ℓ ≥ 2 and n is prime, then G(k, n) has an ℓ-decomposition.

Proof. Given (a1, . . . , aℓ) ∈ [n]ℓ, let K(a1, . . . , aℓ) be the set of vertices

K(a1, . . . , aℓ) :=







(

c,
(

ℓ−1
∑

j=0

cjaj

)

mod n

)

: c ∈ [k]







inG(k, n). Observe thatK(a1, . . . , aℓ) induces a copy ofKk inG(k, n), and we have nℓ such

copies. We claim that each copy of Kℓ is in some K(a1, . . . , aℓ). Let S = {(ci, vi) : i ∈ [ℓ]}
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be a set of vertices inducing Kℓ. Thus ci 6= cj for all i 6= j. We need to show that

S ⊆ K(a1, . . . , aℓ) for some a1, . . . , aℓ. That is, for all i ∈ [ℓ],

ℓ−1
∑

j=0

c
j
iaj ≡ vi (mod n) .

Equivalently,

(2)













1 c1 c21 . . . cℓ−1
1

1 c2 c22 . . . cℓ−1
2

...

1 cℓ c2ℓ . . . cℓ−1
ℓ

























a1

a2
...

aℓ













≡













v1

v2
...

vℓ













(mod n) .

This ℓ× ℓ matrix is a Vandermonde matrix, which has non-zero determinant

∏

1≤i<j≤ℓ

(ci − cj) .

Since ci 6= cj and n is a prime greater than any ci−cj, this determinant is non-zero modulo

n. (This trick of taking a Vandermonde matrix modulo a prime is well known, and at

least dates to a 1951 construction by Erdős [10] for the no-three-in-line problem.) Thus in

the vector space Z
ℓ
n (over the finite field Zn), the row-vectors of this matrix are linearly

independent and (2) has a solution. That is, S ⊆ K(a1, . . . , aℓ) for some a1, . . . , aℓ. �

The next lemma is analogous to a Kronecker product of Latin squares.

Lemma 9. For all integers k ≥ ℓ ≥ 1 and p, q ≥ 1, if both G(k, p) and G(k, q) have

ℓ-decompositions, then G(k, pq) has an ℓ-decomposition.

Proof. Let X1, . . . ,Xpℓ be the vertex sets of copies of Kk in G(k, p) such that each Kℓ

subgraph appears in exactly one copy. Similarly, let Y1, . . . , Yqℓ be the vertex sets of

copies of Kk in G(k, q) such that each Kℓ subgraph of G(k, q) appears in exactly one copy.

For a ∈ [pℓ] and b ∈ [qℓ], if Xa = {(i, vi) : i ∈ [k]} and Yb = {(i, wi) : i ∈ [k]}, then let Za,b

be the set of vertices {(i, (wi − 1)p+ vi) : i ∈ [k]} in G(k, pq). Thus Za,b induces a copy of

Kk.

Let S = {(ci, ui) : i ∈ [ℓ]} be a set of vertices inducing a Kℓ in G(k, pq). Say ui =

(wi − 1)p + vi where vi ∈ [p] and wi ∈ [q]. Since {(ci, vi) : i ∈ [k]} induces Kℓ in G(k, p),

some Ka contains {(ci, vi) : i ∈ [k]}. Similarly, some Kb contains {(ci, wi) : i ∈ [k]}. By

construction, S ⊆ Za,b. Hence the Za,b are the vertex sets of copies of Kk in G(k, pq) such

that each Kℓ subgraph of G(k, pq) appears in some copy. There are (pq)ℓ such sets Za,b.

Thus the Za,b are an ℓ-decomposition of G(k, pq). �

Lemmas 8 and 9 imply the following, which is one of the main results of the paper.
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Theorem 10. If n ≥ k ≥ ℓ ≥ 2 and no prime less than k divides n, then G(k, n) has an

ℓ-decomposition.

Theorems 7 and 10 imply:

Theorem 11. If n ≥ k ≥ ℓ ≥ 2 and no prime less than k divides n, then there exists a

set of k − ℓ mutually invertible ℓ-dimensional Latin cubes.

To generalise the above results, consider the following definition. For integers k ≥ ℓ ≥ 1

and n ≥ 1, let f(k, n, ℓ) be the minimum number of copies of Kk in G(k, n) such that each

Kℓ subgraph of G(k, n) appears in some copy. Note that f(k, n, ℓ) ≥ nℓ because no two of

the nℓ copies of Kℓ that are contained in the first ℓ colours classes of G(k, n) are contained

in a single copy of Kk. And f(k, n, ℓ) = nℓ if and only if G(k, n) has an ℓ-decomposition.

Lemma 12. For all n and all k, there is an integer n′ such that n ≤ n′ ≤ n+ ek+o(k) and

no prime less than k divides n′.

Proof. Let p be the product of all primes less than k. Let n′ be the minimum integer such

that n′ ≥ n and n′ ≡ 1 (mod p). Thus n′ ≤ n+ p and no prime less than k divides n′. By

the asymptotics of primorials, p ≤ ek+o(k); see [9]. The result follows. �

Theorem 10 and Lemma 12 imply that f(k, n, ℓ) is never much more than nℓ.

Theorem 13. For fixed k ≥ ℓ ≥ 1 and n ≥ 1,

f(k, n, ℓ) ≤ nℓ +O(nℓ−1) .

Finally we mention that Theorem 13 with k = 6 and ℓ = 3 was recently applied to a

problem in combinatorial geometry [11]. Indeed, this problem instigated our research.
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