DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS INTO COMPLETE GRAPHS

RUY FABILA-MONROY AND DAVID R. WOOD

Abstract

Let $k \geq \ell \geq 1$ and $n \geq 1$ be integers. Let $G(k, n)$ be the complete k-partite graph with n vertices in each colour class. An ℓ-decomposition of $G(k, n)$ is a set X of copies of K_{k} in $G(k, n)$ such that each copy of K_{ℓ} in $G(k, n)$ is a subgraph of exactly one copy of K_{k} in X. This paper asks: when does $G(k, n)$ have an ℓ-decomposition? The answer is well known for the $\ell=2$ case. In particular, $G(k, n)$ has a 2-decomposition if and only if there exists $k-2$ mutually orthogonal Latin squares of order n. For general ℓ, we prove that $G(k, n)$ has an ℓ-decomposition if and only if there are $k-\ell$ Latin cubes of dimension ℓ and order n, with an additional property that we call mutually invertible. This property is stronger than being mutually orthogonal. An ℓ-decomposition of $G(k, n)$ is then constructed whenever no prime less than k divides n.

1. Introduction

Let $G(k, n)$ be the complete k-partite graph with n vertices in each colour class. Formally, $G(k, n)$ has vertex set $[k] \times[n]$ where (c, u) is adjacent to (d, v) if and only if $c \neq d$. Here $[n]:=\{1,2, \ldots, n\}$. Sometimes we use a vector $\left(v_{1}, \ldots, v_{k}\right)$ to denote the clique with vertex set $\left\{\left(i, v_{i}\right): i \in[k]\right\}$.

For $k \geq \ell \geq 2$, an ℓ-decomposition of $G(k, n)$ is a set X of copies of K_{k} in $G(k, n)$, such that each copy of K_{ℓ} in $G(k, n)$ is a subgraph of exactly one copy of K_{k} in X. Here K_{k} is the complete graph on k vertices. This paper considers the question:

When does $G(k, n)$ have an ℓ-decomposition?
First note that every ℓ-decomposition of $G(k, n)$ contains exactly n^{ℓ} copies of K_{k} (since K_{k} contains $\binom{k}{\ell}$ copies of K_{ℓ}, and $G(k, n)$ contains $\binom{k}{\ell} n^{\ell}$ copies of $\left.K_{\ell}\right)$.

The $\ell=2$ case of our question corresponds to a proper partition of the edge-set of $G(k, n)$, called a 'decomposition'. It is well known that this case can be answered in terms

Date: September 19, 2011.
MSC Classification: 05B15 Orthogonal arrays, Latin squares, Room squares; 05C51 Graph designs and isomomorphic decomposition.
R.F.-M. is supported by an Endeavour Fellowship from the Department of Education, Employment and Workplace Relations of the Australian Government. D.W. is supported by a QEII Research Fellowship from the Australian Research Council.
of the existence of mutually orthogonal Latin squares (Theorem 1). These connections are explored in Section 2.

Given this relationship, it is natural to consider the relationship between ℓ-decompositions and mutually orthogonal Latin cubes, which are a higher dimensional analogue of Latin squares. However, the situation is not as simple as the $\ell=2$ case. The first contribution of this paper is a characterisation of ℓ-decompositions in terms of Latin cubes of dimension ℓ, with an additional property that we call mutually invertible (Theorem 7). This property is stronger than being mutually orthogonal. For $\ell=2$ these two properties are equivalent. These results are presented in Section 3.

Then in Section 4, we construct an ℓ-decomposition whenever no prime less than k divides n (Theorem 10). Finally we relax the definition of ℓ-decomposition to allow each K_{ℓ} to appear in at least one copy of K_{k}. Results are obtained for all n (Theorem 13).

2. Latin Squares and the $\ell=2$ Case

A Latin square of order n is an $n \times n$ array in which each row and each column is a permutation of $[n]$. Two Latin squares are orthogonal if superimposing them produces each element of $[n] \times[n]$ exactly once. Two or more Latin squares are mutually orthogonal (MOLS) if each pair is orthogonal. If L_{1}, \ldots, L_{k-2} are mutually orthogonal Latin squares of order n, then it is easily verified that the n^{2} copies of K_{k} defined by the vectors

$$
\begin{equation*}
\left(L_{1}(x, y), \ldots, L_{k-2}(x, y), x, y\right) \tag{1}
\end{equation*}
$$

where $(x, y) \in[n]^{2}$, form an edge-partition of $G(k, n)$. In fact, the following well-known converse result holds; see [1, page 162].

Theorem 1. $G(k, n)$ has a 2-decomposition if and only if there exists $k-2$ mutually orthogonal Latin squares of order n.

There are at most $n-1$ MOLS of order n; see [1, page 162]. On the other hand, MacNeish [13] proved that if p is the least prime factor of n then there exists $p-1$ MOLS of order n. With Theorem 1 this implies:

Proposition 2. If p is the least prime factor of n and $k=p+1$, then there exists an edge-partition of $G(k, n)$ into n^{2} copies of K_{k}.

Bose, Shrikhande and Parker [7, 8] proved that for all n except 2 and 6 there exists a pair of MOLS of order n. With Theorem 1 this implies:

Proposition 3. For all n except 2 and 6 there is an edge-partition of $G(4, n)$ into n^{2} copies of K_{4}.

Other values of k and n for which there is a 2-decomposition of $G(k, n)$ are immediately obtained by applying Theorem 1 with known results about the existence of MOLS; see [1].

3. Latin Cubes

A d-dimensional Latin cube of order n is a function $L:[n]^{d} \rightarrow[n]$ such that each row is a permutation of $[n]$; that is, for all $i \in[d]$ and $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d} \in[n]$,

$$
\left\{L\left(x_{1}, \ldots, x_{i-1}, j, x_{i+1}\right): j \in[n]\right\}=[n] .
$$

If L_{1}, \ldots, L_{d} are d-dimensional Latin cubes of order n, and for every $\left(v_{1}, \ldots, v_{d}\right) \in[n]^{d}$ there exists x_{1}, \ldots, x_{d} such that $L_{i}\left(x_{1}, \ldots, x_{d}\right)=v_{i}$ for all $i \in[d]$, then L_{1}, \ldots, L_{d} are said to be orthogonal. Thus superimposing L_{1}, \ldots, L_{d} produces each element of $[n]^{d}$ exactly once. If every d-tuple of a set \mathcal{L} of d-dimensional Latin cubes of order n are orthogonal then \mathcal{L} is mutually orthogonal. For results on mutually orthogonal Latin cubes and related concepts see $[2-6,12,14,15]$.

From an ℓ-decomposition of $G(k, n)$, it is possible to construct a set of $k-\ell$ mutually orthogonal ℓ-dimensional Latin cubes (see Theorem 7). However, the natural analogue of (1) does not hold. Consider the following set $\left\{L_{1}, L_{2}, L_{3}\right\}$ of three mutually orthogonal 3-dimensional Latin cubes of order 4.

111	233	344	422	222	144	433	311	333	411	122	244	444	322	211	133
343	421	112	234	434	312	221	143	121	243	334	412	212	134	443	321
424	342	231	113	313	431	$\underline{142}$	224	242	124	413	331	131	213	324	442
232	114	423	341	$\underline{141}$	223	314	432	414	332	241	123	323	441	132	214

In this example, the Latin cubes are superimposed so that L_{1} is:

The natural analogue of (1) would be to construct copies of K_{6} in $G(6,4)$ of the form

$$
\left(L_{1}(x, y, z), L_{2}(x, y, z), L_{3}(x, y, z), x, y, z\right),
$$

where $x, y, z \in[4]$. However, in this case not every copy of K_{3} in $G(6,4)$ is covered. For example, $\{(1,1),(2,2),(6,2)\}$ is not covered (since $z=2$ and $L_{1}(x, y, 2)=1$ implies $L_{2}(x, y, 2)=4$, as shown by the underlined entries above).

Below we introduce a stronger condition than orthogonality so that this construction does provide an ℓ-decomposition.

We consider k-tuples in $[n]^{k}$ to be functions from $[k]$ to $[n]$. So that for $t:=\left(t_{1}, \ldots, t_{k}\right)$, we use the notation $t(i)=t_{i}$. A set X of k-tuples in $[n]^{k}$ is said to be ℓ-extendable if for
all indices $s_{1}<s_{2}<\cdots<s_{\ell}$ (where $s_{i} \in[k]$) and for every element $\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}$, there exists a unique $t \in X$ such that $t\left(s_{i}\right)=x_{i}$ for all $i \in[\ell]$.

Lemma 4. Let X be an ℓ-extendable set of k-tuples in $[n]^{k}$, and let $s_{1}<s_{2}<\cdots<s_{\ell}$, where $s_{i} \in[k]$. Let t be the unique k-tuple such that $t\left(s_{i}\right)=x_{i}$ for all $i \in[\ell]$. For every $j \in[k] \backslash\left\{s_{1}, s_{2}, \ldots, s_{\ell}\right\}$, let L_{j} be the function defined by $L_{j}\left(x_{1}, \ldots, x_{\ell}\right):=t(j)$. Then L_{j} is an ℓ-dimensional Latin cube.

Proof. Let $\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}$ and $h \in[\ell]$. Suppose that for some $x_{h}^{\prime} \in[n]$,

$$
L_{j}\left(x_{1}, \ldots, x_{h-1}, x_{h}, x_{h+1}, \ldots, x_{\ell}\right)=y=L_{j}\left(x_{1}, \ldots, x_{h-1}, x_{h}^{\prime}, x_{h+1}, \ldots, x_{\ell}\right)
$$

Then there is a tuple t^{\prime} in X such that $t^{\prime}\left(s_{i}\right)=x_{i}$ for $s_{i} \in\left\{s_{1}, \ldots, s_{\ell}\right\} \backslash\left\{s_{h}\right\}$ and $t(j)=y$. Since X is ℓ-extendable, this tuple is unique. Therefore $x_{h}=x_{h}^{\prime}$ and L_{j} is a Latin cube.

A set L_{1}, \ldots, L_{k} of ℓ-dimensional Latin cubes of order n is said to be mutually invertible if

$$
\left\{\left(L_{1}\left(x_{1}, \ldots, x_{\ell}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{\ell}\right), x_{1}, \ldots, x_{\ell}\right):\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}\right\}
$$

is ℓ-extendable.
Proposition 5. Every set L_{1}, \ldots, L_{k} of mutually invertible ℓ-dimensional Latin cubes is mutually orthogonal.

Proof. Let $s_{1}<s_{2}<\cdots<s_{\ell}$ with $s_{i} \in[k]$ and let $\left(y_{1}, \ldots, y_{\ell}\right) \in[n]^{\ell}$. It remains to show that there exists a unique $\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{d}$ such that

$$
\left(L_{s_{1}}\left(x_{1}, \ldots, x_{\ell}\right), \ldots, L_{s_{\ell}}\left(x_{1}, \ldots, x_{\ell}\right)\right)=\left(y_{1}, \ldots, y_{\ell}\right) .
$$

This follows from the fact that

$$
\left\{\left(L_{1}\left(x_{1}, \ldots, x_{\ell}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{\ell}\right), x_{1}, \ldots, x_{\ell}\right):\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}\right\}
$$

is ℓ-extendable.
In the case of 2-dimensional Latin cubes, mutual orthogonality is equivalent to mutual invertibility.

Proposition 6. Every set L_{1}, \ldots, L_{k} of mutually orthogonal Latin squares is mutually invertible.

Proof. We prove that

$$
X:=\left\{\left(L_{1}(x, y), \ldots, L_{k}(x, y), x, y\right):(x, y) \in[n]^{2}\right\}
$$

is 2-extendable. Let $z_{1}, z_{2} \in[k+2]$ with $z_{1}<z_{2}$. We claim that for each $\left(x_{1}, x_{2}\right) \in[n]$ there is a unique tuple $t \in X$ such that $t\left(z_{1}\right)=x_{1}$ and $t\left(z_{2}\right)=x_{2}$. Consider the following cases.

- $z_{1}=k+1$ and $z_{2}=k+2$: The claim immediately follows from the definition of X.
- $z_{1} \leq k$ and $z_{2} \in\{k+1, k+2\}$: The claim follows from the fact that $L_{z_{1}}$ is a Latin square.
- $z_{1} \leq k$ and $z_{2} \leq k$: The claim follows from the fact that $L_{z_{1}}$ and $L_{z_{2}}$ are orthogonal. Therefore X is 2 -extendable and L_{1}, \ldots, L_{k} is a set of mutually invertible Latin squares.

Theorem 7. $G(k, n)$ has an ℓ-decomposition if and only if there are $k-\ell$ mutually invertible Latin ℓ-dimensional cubes of order n.

Proof. ($\Longleftarrow)$ Let $L_{1}, \ldots, L_{k-\ell}$ be $k-\ell$ mutually invertible ℓ-dimensional Latin cubes of order n. For each $\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}$, let $K\left(x_{1}, \ldots, x_{\ell}\right)$ be the copy of K_{k} defined by the vector $\left(v_{1}, \ldots, v_{k-\ell}, x_{1}, \ldots, x_{\ell}\right)$ where $v_{i}:=L_{i}\left(x_{1}, \ldots, x_{\ell}\right)$. This defines n^{ℓ} copies of K_{k}. That each copy of K_{ℓ} in $G(k, n)$ is in one such copy of K_{k} follows immediately from the fact that

$$
\left\{\left(v_{1}, \ldots, v_{k-\ell}, x_{1}, \ldots, x_{\ell}\right):\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}\right\}
$$

is ℓ-extendable.
(\Longrightarrow) Consider an ℓ-decomposition X of $G(k, n)$. Thus X is a set of copies of K_{k} in $G(k, n)$ such that each copy of K_{ℓ} is in exactly one copy of K_{k} in X. Consider each copy of K_{k} in X to be a k-tuple in $[n]^{k}$. We now show that X is ℓ-extendable. Let $s_{1}<\cdots<s_{\ell}$ be elements of $[k]$ and $\left(x_{1}, \ldots, x_{\ell}\right) \in[n]^{\ell}$. There is a unique tuple $\left(t_{1}, \ldots, t_{k}\right)$ in X containing the copy of K_{ℓ} with vertex set $\left\{\left(s_{1}, x_{1}\right), \ldots,\left(s_{\ell}, x_{\ell}\right)\right\}$. Thus $t\left(s_{i}\right)=x_{i}$ for all $i \in[\ell]$. Therefore X is ℓ-extendable. By Lemma 4, we obtain $k-\ell$ mutually invertible Latin cubes.

Note that Proposition 6 and Theorem 7 provide a long-winded proof of Theorem 1.

4. Construction of an ℓ-Decomposition

This section describes a construction of an ℓ-decomposition.
Lemma 8. If $n \geq k \geq \ell \geq 2$ and n is prime, then $G(k, n)$ has an ℓ-decomposition.
Proof. Given $\left(a_{1}, \ldots, a_{\ell}\right) \in[n]^{\ell}$, let $K\left(a_{1}, \ldots, a_{\ell}\right)$ be the set of vertices

$$
K\left(a_{1}, \ldots, a_{\ell}\right):=\left\{\left(c,\left(\sum_{j=0}^{\ell-1} c^{j} a_{j}\right) \bmod n\right): c \in[k]\right\}
$$

in $G(k, n)$. Observe that $K\left(a_{1}, \ldots, a_{\ell}\right)$ induces a copy of K_{k} in $G(k, n)$, and we have n^{ℓ} such copies. We claim that each copy of K_{ℓ} is in some $K\left(a_{1}, \ldots, a_{\ell}\right)$. Let $S=\left\{\left(c_{i}, v_{i}\right): i \in[\ell]\right\}$
be a set of vertices inducing K_{ℓ}. Thus $c_{i} \neq c_{j}$ for all $i \neq j$. We need to show that $S \subseteq K\left(a_{1}, \ldots, a_{\ell}\right)$ for some a_{1}, \ldots, a_{ℓ}. That is, for all $i \in[\ell]$,

$$
\sum_{j=0}^{\ell-1} c_{i}^{j} a_{j} \equiv v_{i} \quad(\bmod n)
$$

Equivalently,

$$
\left[\begin{array}{ccccc}
1 & c_{1} & c_{1}^{2} & \ldots & c_{1}^{\ell-1} \tag{2}\\
1 & c_{2} & c_{2}^{2} & \ldots & c_{2}^{\ell-1} \\
& & & \vdots & \\
1 & c_{\ell} & c_{\ell}^{2} & \ldots & c_{\ell}^{\ell-1}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{\ell}
\end{array}\right] \equiv\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\ell}
\end{array}\right] \quad(\bmod n)
$$

This $\ell \times \ell$ matrix is a Vandermonde matrix, which has non-zero determinant

$$
\prod_{1 \leq i<j \leq \ell}\left(c_{i}-c_{j}\right)
$$

Since $c_{i} \neq c_{j}$ and n is a prime greater than any $c_{i}-c_{j}$, this determinant is non-zero modulo n. (This trick of taking a Vandermonde matrix modulo a prime is well known, and at least dates to a 1951 construction by Erdős [10] for the no-three-in-line problem.) Thus in the vector space \mathbb{Z}_{n}^{ℓ} (over the finite field \mathbb{Z}_{n}), the row-vectors of this matrix are linearly independent and (2) has a solution. That is, $S \subseteq K\left(a_{1}, \ldots, a_{\ell}\right)$ for some a_{1}, \ldots, a_{ℓ}.

The next lemma is analogous to a Kronecker product of Latin squares.
Lemma 9. For all integers $k \geq \ell \geq 1$ and $p, q \geq 1$, if both $G(k, p)$ and $G(k, q)$ have ℓ-decompositions, then $G(k, p q)$ has an ℓ-decomposition.

Proof. Let $X_{1}, \ldots, X_{p^{\ell}}$ be the vertex sets of copies of K_{k} in $G(k, p)$ such that each K_{ℓ} subgraph appears in exactly one copy. Similarly, let $Y_{1}, \ldots, Y_{q^{\ell}}$ be the vertex sets of copies of K_{k} in $G(k, q)$ such that each K_{ℓ} subgraph of $G(k, q)$ appears in exactly one copy. For $a \in\left[p^{\ell}\right]$ and $b \in\left[q^{\ell}\right]$, if $X_{a}=\left\{\left(i, v_{i}\right): i \in[k]\right\}$ and $Y_{b}=\left\{\left(i, w_{i}\right): i \in[k]\right\}$, then let $Z_{a, b}$ be the set of vertices $\left\{\left(i,\left(w_{i}-1\right) p+v_{i}\right): i \in[k]\right\}$ in $G(k, p q)$. Thus $Z_{a, b}$ induces a copy of K_{k}.

Let $S=\left\{\left(c_{i}, u_{i}\right): i \in[\ell]\right\}$ be a set of vertices inducing a K_{ℓ} in $G(k, p q)$. Say $u_{i}=$ $\left(w_{i}-1\right) p+v_{i}$ where $v_{i} \in[p]$ and $w_{i} \in[q]$. Since $\left\{\left(c_{i}, v_{i}\right): i \in[k]\right\}$ induces K_{ℓ} in $G(k, p)$, some K_{a} contains $\left\{\left(c_{i}, v_{i}\right): i \in[k]\right\}$. Similarly, some K_{b} contains $\left\{\left(c_{i}, w_{i}\right): i \in[k]\right\}$. By construction, $S \subseteq Z_{a, b}$. Hence the $Z_{a, b}$ are the vertex sets of copies of K_{k} in $G(k, p q)$ such that each K_{ℓ} subgraph of $G(k, p q)$ appears in some copy. There are $(p q)^{\ell}$ such sets $Z_{a, b}$. Thus the $Z_{a, b}$ are an ℓ-decomposition of $G(k, p q)$.

Lemmas 8 and 9 imply the following, which is one of the main results of the paper.

Theorem 10. If $n \geq k \geq \ell \geq 2$ and no prime less than k divides n, then $G(k, n)$ has an ℓ-decomposition.

Theorems 7 and 10 imply:
Theorem 11. If $n \geq k \geq \ell \geq 2$ and no prime less than k divides n, then there exists a set of $k-\ell$ mutually invertible ℓ-dimensional Latin cubes.

To generalise the above results, consider the following definition. For integers $k \geq \ell \geq 1$ and $n \geq 1$, let $f(k, n, \ell)$ be the minimum number of copies of K_{k} in $G(k, n)$ such that each K_{ℓ} subgraph of $G(k, n)$ appears in some copy. Note that $f(k, n, \ell) \geq n^{\ell}$ because no two of the n^{ℓ} copies of K_{ℓ} that are contained in the first ℓ colours classes of $G(k, n)$ are contained in a single copy of K_{k}. And $f(k, n, \ell)=n^{\ell}$ if and only if $G(k, n)$ has an ℓ-decomposition.

Lemma 12. For all n and all k, there is an integer n^{\prime} such that $n \leq n^{\prime} \leq n+e^{k+o(k)}$ and no prime less than k divides n^{\prime}.

Proof. Let p be the product of all primes less than k. Let n^{\prime} be the minimum integer such that $n^{\prime} \geq n$ and $n^{\prime} \equiv 1(\bmod p)$. Thus $n^{\prime} \leq n+p$ and no prime less than k divides n^{\prime}. By the asymptotics of primorials, $p \leq e^{k+o(k)}$; see [9]. The result follows.

Theorem 10 and Lemma 12 imply that $f(k, n, \ell)$ is never much more than n^{ℓ}.
Theorem 13. For fixed $k \geq \ell \geq 1$ and $n \geq 1$,

$$
f(k, n, \ell) \leq n^{\ell}+O\left(n^{\ell-1}\right)
$$

Finally we mention that Theorem 13 with $k=6$ and $\ell=3$ was recently applied to a problem in combinatorial geometry [11]. Indeed, this problem instigated our research.

References

[1] R. Julian R. Abel, Charles J. Colbourn, and Jeffrey H. Dinitz. Mutually orthogonal Latin squares (MOLS). In Charles J. Colbourn and Jeffrey H. Dinitz, eds., Handbook of combinatorial designs, chap. III.3, pp. 160-193. Chapman \& Hall, 2nd edn., 2007.
[2] K. R. Aggarwal. Mutually partially orthogonal Latin rectangles and mutually partially orthogonal Latin cubes of second order. Proc. Indian Nat. Sci. Acad. Part A, 41(3):216-223, 1975.
[3] Joseph Arkin, Verner E. Hoggatt, Jr., and Ernst G. Straus. Systems of magic Latin k-cubes. Canad. J. Math., 28(6):1153-1161, 1976. doi:10.4153/CJM-1976-113-0.
[4] Joseph Arkin, Paul Smith, and Ernst G. Straus. Euler's 36 officers problem in three dimensions-solved. J. Recreational Math., 15(2):81-84, 1982/83.
[5] Joseph Arkin and Ernst G. Straus. Latin k-cubes. Fibonacci Quart., 12(3):288292, 1974. http://www.fq.math.ca/Scanned/12-3/arkin.pdf.
[6] Joseph Arkin and Ernst G. Straus. Orthogonal Latin systems. Fibonacci Quart., 19(4):289-293, 1981. http://www.fq.math.ca/Scanned/19-4/arkin.pdf.
[7] Raj Chandra Bose and Sharadchandra S. Shrikhande. On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc., 95:191-209, 1960. doi:10.2307/1993286.
[8] Raj Chandra Bose, Sharadchandra S. Shrikhande, and Ernest T. Parker. Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture. Canad. J. Math., 12:189-203, 1960. doi:10.4153/CJM-1960-016-5.
[9] Wikipedia contributors. Primorial. Wikipedia, the free encyclopedia, 2011. http://en.wikipedia.org/wiki/Primorial.
[10] Paul Erdős. Appendix, in Klaus F. Roth, On a problem of Heilbronn. J. London Math. Soc., 26:198-204, 1951. doi:10.1112/jlms/s1-26.3.198.
[11] Ruy Fabila-Monroy and David R. Wood. Colouring the triangles determined by a point set. arXiv:????.????, 2011.
[12] John Kerr. The existence of k orthogonal Latin k-cubes of order 6. Fibonacci Quart., 20(4):360-362, 1982. http://www.fq.math.ca/Scanned/20-4/kerr.pdf.
[13] Harris F. MacNeish. Euler squares. Ann. of Math. (2), 23(3):221-227, 1922. doi:10.2307/1967920.
[14] Zoran Stojaković and Mila Stojaković. On sets of orthogonal d-cubes. Ars Combin., 89:21-30, 2008.
[15] Marián Trenkler. On orthogonal Latin p-dimensional cubes. Czechoslovak Math. J., 55(130)(3):725-728, 2005. doi:10.1007/s10587-005-0060-7.

Departamento de Matemáticas
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)
Distrito Federal, México
E-mail address: ruyfabila@math.cinvestav.edu.mx

Department of Mathematics and Statistics
The University of Melbourne
Melbourne, Australia
E-mail address: woodd@unimelb.edu.au

