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Geometric thickness in a grid
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Abstract

The geometric thickness of a graph is the minimum number of layers such that the graph can
be drawn in the plane with edges as straight-line segments, and with each edge assigned to a
layer so that no two edges in the same layer cross. We consider a variation on this theme in
which each edge is allowed one bend. We prove that the vertices of an n-vertex m-edge graph
can be positioned in a �√n �×�√n � grid and the edges assigned to O(

√
m) layers, so that each

edge is drawn with at most one bend and no two edges on the same layer cross. The proof is a
2-dimensional generalisation of a theorem of Malitz (J. Algorithms 17(1) (1994) 71–84) on book
embeddings. We obtain a Las Vegas algorithm to compute the drawing in O(m log3 n log log n)
time (with high probability).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let G=(V; E) be a simple graph with n=|V | vertices, m=|E| edges, maximum degree
:, and genus �. The geometric thickness of G, denoted by ;�(G), is the minimum
number of layers such that G can be drawn in the plane with edges as straight-line
segments, and with each edge assigned to a layer so that no two edges in the same layer
cross. Geometric thickness was <rst introduced under the name of real linear thickness
by Kainen [19], and has recently been studied by Dillencourt et al. [12]. Applications
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Fig. 1. A drawing of K9 in the 3× 3 grid with 4 layers and at most 1 bend per edge.

of geometric thickness include multilayer VLSI [1,2] and graph visualisation where
layers correspond to colours in a drawing.
Geometric thickness is related to the (graph-theoretic) thickness of a graph, de<ned

to be the minimum number of subgraphs in a partition of the edges into planar sub-
graphs, denoted by �(G). See [24] for a survey of results concerning this well-studied
parameter. A graph G has a drawing in the plane with an arbitrary set of preas-
signed vertex locations with edges assigned to �(G) layers such that no two edges in
the same layer cross [19]. Thus, the key diKerence between geometric thickness and
graph-theoretic thickness is that geometric thickness requires the edges to be drawn
as straight line-segments, whereas the graph-theoretic thickness allows edges to bend
arbitrarily.
In this paper, we consider a variation of geometric thickness which lies between

thickness and geometric thickness in which vertices are placed in a grid and each edge
has at most one bend. In VLSI circuit design, each edge typically has a small number
of bends (called jogs) (see [20, p. 222]). We are also interested in drawings with small
area, which is an important consideration in VLSI and visualisation. To consistently
measure the area of a drawing we assume a vertex resolution rule; that is, pairs of
vertices are at least unit-distance apart.
Our main result is a 2-dimensional generalisation of the randomized algorithm of

Malitz [22] for producing book embeddings (see Section 1.1). We prove that the
vertices of a graph can be positioned in a �√n � × �√n � grid, such that the edges
can be partitioned into O(

√
m) layers, with each edge drawn with at most one bend,

so that no two edges in the same layer cross. We obtain a Las Vegas algorithm to
produce the drawing in O(m log3 n log log n) time (with high probability). An example
of the drawings produced by our algorithm is shown in Fig. 1. As a by-product our
algorithm constructs a drawing of a book embedding in the plane with O(n) area and
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with each edge having at most one bend, such that edges in the same page do not
cross.
In the following section we review related work. Section 2 introduces notation and

some preliminary results required to prove the main result in Section 3.

1.1. Related work

Since every planar graph has a drawing in the plane with straight-line edges [15,27],
the graphs with geometric thickness 1 are precisely the planar graphs. Graphs with
geometric thickness 2, called doubly linear graphs, are studied in [6,18]. Hutchinson
et al. [18] prove that every doubly linear graph has at most 6n−18 edges, and present
doubly linear graphs with 6n− 20 edges for all n¿ 8.
Dillencourt et al. [12] establish lower and upper bounds for the geometric thickness of

complete and complete bipartite graphs. It is shown that �n+1=5:646�6 ;�(Kn)6 �n=4�.
Note that their construction has O(n6) area under the vertex resolution rule (D. Eppstein,
personal communication). Since �(Kn)=n=6+O(1) [3,5,4,23], ;�(Kn)¿�(Kn) for large
enough n. On the other hand, ;�(Ka;b) = �(Ka;b) when a�b [12].
Another parameter closely related to geometric thickness is that of book thickness,

introduced independently by Cottafava and D’Antona [9] and Bernhart and Kainen [7].
A book consists of a line in 3-space, called the spine, and some number of pages, each
a half-plane with the spine as boundary. A book embedding of a graph consists of a
linear ordering of the vertices, called the spine ordering, along the spine of a book
and an assignment of edges to pages so that edges assigned to the same page can be
drawn on that page without crossings. The book thickness of a graph G, denoted by
bt(G), is the minimum number of pages in a book embedding of G. Book thickness
has also been called pagenumber and stacknumber in the literature. Book thickness is
equivalent to the geometric thickness with the additional requirement that each layer
induces an outerplanar subgraph; hence ;�(G)6 bt(G). To see this, position the vertices
on a circle in the plane according to their order along the spine, and draw the edges
as straight line-segments [7, Lemma 2.1]. Note that this construction has O(n2) area
under the vertex resolution rule.
Upper bounds for the thickness of an arbitrary graph G include �(G)6 �√m=3 +

3=2� by Dean et al. [11], �(G)6 6 +
√
2�− 2 by Dean and Hutchinson [10], and

�(G)6 �:=2� by Halton [16]. Of these three upper bounds, the <rst two are asymp-
totically matched by the book thickness. In particular, Malitz [21] proved that bt(G)∈
O(

√
�), and since �6m, bt(G)∈O(

√
m), a result proved independently by Malitz [22].

It is an open problem to decide if the third of these upper bounds is asymptotically
matched by the geometric thickness; that is, is ;�(G)∈O(:)?

2. Drawings in a grid

The N ×N grid is the set of gridpoints {(x; y)∈N×N: 16 x; y6N} in the plane.
The x0-column of the N × N grid is the set of gridpoints {(x0; y): 16y6N}. The
y0-row of the N × N grid is the set of gridpoints {(x; y0): 16 x6N}. Assuming
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N is a power of 2, for each a = 1; 2; : : : ; logN , partition the gridpoints into 2a sets
of N=2a consecutive columns, called the vertical a-strips, which we alternately label
L, R, L, R, etc. from left to right. (Unless stated otherwise, all logarithms are base
2.) For b = 1; 2; : : : ; logN , partition the gridpoints into 2b sets of N=2b consecutive
rows, called the horizontal b-strips, which we alternately label D, U , D, U , etc. from
bottom to top. The intersection of a vertical a-strip and a horizontal b-strip is called
an (a; b)-region. Note that a (logN; b)-region is contained within a single column, and
an (a; logN )-region is contained within a single row.
Each (a; b)-region P labelled L and D is coupled with the (a; b)-region Q labelled R

and U immediately above and to the right of P; (P;Q) is called a positive pair of re-
gions. Similarly, each (a; b)-region P labelled R and D is coupled with the (a; b)-region
Q labelled L and U immediately above and to the left of P; (P;Q) is called a neg-
ative pair of regions. In addition, for each b, 16 b6 logN , each (logN; b)-region
P labelled D is coupled with the (logN; b)-region Q labelled U immediately above
it; (P;Q) is called a column pair of regions. Similarly, for each a, 16 a6 logN ,
each (a; logN )-region P labelled L is coupled with the (a; logN )-region Q labelled R
immediately to the right it; (P;Q) is called a row pair of regions.
An N × N grid layout of a graph G (with N not necessarily a power of 2) is a

1-1 mapping � from the vertices of G to the gridpoints of an N × N grid. Denote
�(v) by (X�(v); Y�(v)) for each vertex v of G. Note that the N ×N grid layouts of an
N 2-vertex graph correspond to the permutations of the vertices. In a grid layout of a
graph G, for each positive (respectively, negative, column, row) pair of regions (P;Q)
the 2-coloured bipartite subgraph H = (VP; VQ; EH ) consisting of edges vw of G with
�(v)∈P and �(w)∈Q is called a (regional) positive (respectively, negative, column,
row) subgraph. Clearly each edge of G appears in precisely one regional subgraph.
The set of edges in some positive (respectively, negative, row, column) subgraph are
denoted by E+ (E−, Er , Ec). The regional subgraph corresponding to a coupled pair
of (a; b)-regions is called an (a; b)-subgraph. See Fig. 2 for an illustration of these
concepts in the case of an 8× 8 grid layout.
If H=(VP; VQ; EH ) is the regional subgraph containing the edge e then P(e) refers to

the end-vertex of e in VP , and Q(e) refers to the end-vertex of e in VQ. We consider
e to be oriented from P(e) to Q(e). An edge vw oriented from v to w is denoted
by

→
vw.

2.1. Edges in row and column subgraphs

We now describe how to draw and assign layers for edges in Er . The case for
edges in Ec can be easily inferred. The method essentially describes how to draw
a book embedding with at most one bend per edge. For each y0, 16y06N , let
Ery0 = {→

vw∈Er: Y�(v) = Y�(w) = y0}. As illustrated in Fig. 3, an edge
→
vw∈Ery0 is

drawn with a bend at(
1
2
(X�(w) + X�(v)); y0 +

(
1
N
(X�(w)− X�(v)− 1)

)2)
:
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Fig. 2. (a; b)-subgraphs in an 8× 8 grid layout.

Fig. 3. 1-bend edges in row subgraphs.

By considering similar triangles, it is easily veri<ed that two edges vw and xy in
Ery0 cross if and only if X�(v)¡X�(x)¡X�(w)¡X�(y) or X�(x)¡X�(v)¡X�(y)
¡X�(w). A set of edges contained in Ery0 is said to be completely crossing if edges
are pairwise crossing. Such a subgraph is a matching; that is, every vertex has degree
one. The following lemma is equivalent to Lemma 2.2 of Malitz [22].
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Lemma 1. Let H = (VP; VQ; EH ) be a row or column subgraph in a grid layout � of
a graph G. If H has n= |VP ∪VQ| vertices and m= |E| edges, and at most k edges in
H are completely crossing, then the edges of H can be partitioned into k layers in
O(m log log n) time such that with the edges drawn as described above, no two edges
in a single layer cross.

Proof. We prove the result for a row subgraph. The proof for a column subgraph is
analogous. De<ne a partial ordering 4 on EH as follows. Let

e1 4 e2
def= (X�(P(e2))6X�(P(e1)) and X�(Q(e1))6X�(Q(e2)):

It is a simple exercise to check that 4 is reQexive, transitive and antisymmetric, and
thus is a partial order. Two edges are incomparable under 4 if and only if they
cross. Thus an antichain is a completely crossing set of edges, and a chain is a set
of pairwise non-crossing edges. By Dilworth’s Theorem [13] there is a decomposition
of the edges of H into k chains where k is the size of the largest antichain. That is,
there is a partition of the edges of H into k layers such that no two edges in a single
layer cross, where k is the maximum number of completely crossing edges in H . The
time complexity can be achieved using a dual form of the algorithm by Heath and
Rosenberg [17, Theorem 2.3] (see [26, Lemma 2.1]).

The following result is an easy consequence of the above construction.

Corollary 2. A graph G = (V; E) has a drawing with O(n) area such that each edge
has at most one bend, and with the edges partitioned into bt(G) layers, so that no
two edges in a single layer cross.

2.2. Edges in positive and negative subgraphs

We now describe how to draw and assign layers for edges in E+ and E−. For each
x0; y0, 16 x0; y06N , let

E+x0 ;y0 = {→
vw∈E+: X�(v)¡X�(w) = x0 and y0 = Y�(v)¡Y�(w)};

E−
x0 ;y0 = {→

vw∈E−: y0 = Y�(v)¡Y�(w) and X�(v)¿X�(w) = x0}:

Thus E+x0 ;y0 (respectively, E−
x0 ;y0 ) consists of edges in positive (negative) subgraphs

oriented from a vertex in the y0-row to a vertex in the x0-column. As illustrated in
Fig. 4, for each E±

x0 ;y0 , assign evenly spaced bends along the line-segment

(x0 ∓ 1
2 ; y0 +

1
2)→

(
x0 ∓ 1

2 ∓
1√
2N

; y0 + 1
2 +

1√
2N

)

to the edges
→
vw∈E±

x0 ;y0 in increasing order of |x0−X�(v)|+ |y0−Y�(w)| (breaking ties
arbitrarily).
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Fig. 4. Routing edges in E+x0 ;y0 and E−
x0 ;y0 .

Fig. 5. Adjacent edges in a positive subgraph do not cross.

To enable characterisations of when edges in E+ or E− cross, we de<ne the following
total orderings on gridpoints:

(x1; y1)¡N;E (x2; y2)
def= (y1¡y2) or (y1 = y2 and x1¡x2);

(x1; y1)¡N;W (x2; y2)
def= (y1¡y2) or (y1 = y2 and x1¿x2);

(x1; y1)¡E;S (x2; y2)
def= (x1¡x2) or (x1 = x2 and y1¿y2);

(x1; y1)¡W;S (x2; y2)
def= (x1¿x2) or (x1 = x2 and y1¿y2):

Lemma 3. Let e1 and e2 be edges in a positive subgraph H = (VP; VQ; EH ) in a grid
layout of a graph G. If e1 and e2 are adjacent then e1 and e2 do not cross. If e1
and e2 are non-adjacent and P(e1)¡N;W P(e2) then e1 and e2 cross if and only if
Q(e1)¡E;S Q(e2).

Proof. We <rst prove that adjacent edges in H do not cross. Since bends are assigned
to edges in each E+x0 ;y0 in non-decreasing order of |x0−X�(v)|+ |y0− Y�(w)|, adjacent
edges in the same E+x0 ;y0 do not cross. Let vw be an edge in E+x0 ;y0 with v in the y0-row
and w in the x0-column. Consider the <rst segment of the edge from v to w extended
to intersect the line segment containing the bends for edges in E+x0+1;y0 , as illustrated
in Fig. 5. By considering similar triangles, it is easily veri<ed that the distance from
this point of intersection to (x0 + 1

2 ; y0 +
1
2) is greater than 1=

√
2N . Thus an edge

vx∈E+x0+i;y0 for any i¿ 1 will not cross vw. By symmetry, edges in H incident to a
vertex in an x0-column do not cross.
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(a) (b)

e2

e2

e1

Fig. 6. In a positive subgraph: (a) crossing edges with P(e1)¡N;W P(e2); and (b) a completely crossing
matching.

Now suppose e1 and e2 are not adjacent and P(e1)¡N;W P(e2). Fig. 6(a) shows
the ways in which two edges e1 and e2 in H with P(e1)¡N;W P(e2) can cross.
The shaded region within P shows the possible locations for P(e2) relative to P(e1)
such that P(e1)¡N;W P(e2). The shaded region within Q shows where Q(e2) can be
relative to Q(e1) so that e1 and e2 cross. Clearly e1 and e2 cross if and only if
Q(e1)¡E;S Q(e2).

A set of pairwise crossing edges in a positive or negative subgraph are said to be com-
pletely crossing. By Lemma 3, a completely crossing set of edges is a matching; that
is, every vertex has degree one (see Fig. 6(b)). The following lemma for completely
crossing matchings in a positive or negative subgraph is an analogue of Lemma 1.

Lemma 4. Let H = (VP; VQ; EH ) be a positive or negative subgraph in a grid layout
� of a graph G. If H has n= |VP ∪ VQ| vertices and m= |EH | edges, and at most k
edges are completely crossing, then the edges of H can be partitioned into k layers
in O(m log log n) time, such that no two edges in a single layer cross, and with the
edges drawn with one bend as described above.

Proof. Suppose H is a positive subgraph. De<ne a partial order 4 on EH by

e1 4 e2
def= P(e1)6N;W P(e2) and Q(e2)6E;S Q(e1):

It is a simple exercise to check that 4 is reQexive, transitive and antisymmetric, and
thus is a partial order. By Lemma 3, two edges are incomparable under 4 if and only
if they cross. Thus, as in Lemma 1, EH can be partitioned in O(m log log n) time into
k crossing-free layers, where k is the maximum number of completely crossing edges
in H .
The case in which H is a negative subgraph is analogous. By symmetry adjacent

edges in H do not cross. Let e1 and e2 be non-adjacent edges in a negative subgraph
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H =(VP; VQ; EH ) such that P(e1)¡N;E P(e2). By a similar argument to that in Lemma
3, e1 and e2 cross if and only if Q(e1)¡W;S Q(e2). De<ne a partial order on EH by
e1 4 e2 if P(e1)6N;E P(e2) and Q(e2)6W;S Q(e1). Again two edges are incomparable
under 4 if and only if they cross, and applying Dilworth’s Theorem we obtain the
desired partition.

Lemmas 1 and 4 together imply that for regional subgraphs there is a polynomial time
algorithm to optimally assign layers to edges. The algorithm presented in the following
section uses diKerent sets of layers for edges in positive, negative, row and column
subgraphs. Note that for each pair a; b (16 a; b6 logN ), the positive (a; b)-subgraphs
can share the same set of layers, and similarly for negative, row and column
subgraphs.

3. Main proof

We are now ready to prove the main result. It is proof is a 2-dimensional generali-
sation of Theorem 2.3 by Malitz [22] for book embeddings, which in turn is based on
ideas from Theorem 4.7 by Chung et al. [8].

Theorem 5. The vertices of a connected graph G = (V; E) can be positioned in a
�√|V | � × �√|V | � grid, such that the edges of G can be partitioned into O(

√|E|)
layers, with each edge drawn with at most one bend, so that no two edges in the
same layer cross.

Proof. Let m= |E| and n=�√|V | �2. Add n−|V | isolated vertices to G. Now G has n
vertices and

√
n is an integer. Clearly �√|V | �6√2|V | and thus n6 2|V |. Since G is

connected, |V |6m+16 2m and n6 4m. A drawing of (the new) G in the
√
n×√

n
grid contains a drawing of the original G in a �√|V | � × �√|V | � grid. Let � be a
random grid layout of G in the

√
n×√

n grid. (Such grid layouts of G correspond to
permutations of the vertices.)
Let N = 2�log

√
n �; that is, N is the minimum power of 2 no less than

√
n. Note

that N ¡ 21+log
√

n = 2
√
n and thus n¿ (N 2=4). We consider the

√
n×√

n grid layout
� to be positioned at the bottom left corner of an N × N grid. Regions and regional
subgraphs are then de<ned with respect to this larger grid, while vertices only lie in
the smaller

√
n×√

n grid.
An (a; b)-subgraph H with a+b=j is said to be in the j-level. This de<nition has the

eKect of grouping regional subgraphs by the number of gridpoints in the corresponding
regions, since an (a; b)-region has N 2=2a+b gridpoints.
We <rst count the number of positive or negative subgraphs in each j-level. For each

a and b, 16 a; b6 logN , there are 2a+b−1 positive or negative (a; b)-subgraphs. For
each j, there are at most j−1 pairs (a; b) with a+b=j and 16 a; b6 logN . Thus each
j-level contains at most (j− 1)2j−1 positive or negative subgraphs. Now we count the
row and column subgraphs. With b= logN , there are 2a+b−1 row (a; b)-subgraphs for
each a, 16 a6 logN , and with a = logN , there are 2a+b−1 column (a; b)-subgraphs
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for each b, 16 b6 logN . Therefore each j-level contains at most (j+1)2j−1 regional
subgraphs.
For each j, 26 j6 2 logN , let Aj

k be the event that there exists a 2-coloured match-
ing M in G with k edges such that M is completely crossing and is contained in a
j-level regional subgraph with respect to �. The probability that Aj

k occurs

P{Aj
k}¡ (

m

k
)2k︸ ︷︷ ︸
(1)

·
(j + 1)2j−1︸ ︷︷ ︸

(2)

·
(

N 2

2j

k

)2

(k!)2(n−2k)!
n!︸ ︷︷ ︸

(3)

·
1
k!︸︷︷︸
(4)

;

where

(1) is an upper bound on the number of 2-coloured k-edge matchings M =
(MP;MQ; EM ),

(2) is an upper bound on the number of j-level regional subgraphs H = (VP; VQ; EH ),
(3) is an upper bound on the probability that M is contained in H with MP ⊆ VP and

MQ ⊆ VQ, and
(4) is the probability that M is completely crossing in �, given <xed gridpoints for

the end-vertices of M .

Since ( ab)6 ab=b!,

P{Aj
k}¡ (2m)k · (j + 1) 2j−1 ·

(
N 2

2j

)2k
(n− 2k)!

n!
· 1
(k!)2

:

The version of Stirling’s formula due to Robbins [25] states that for all s¿ 1, s! =√
2�s(s=e)sers , where 1=(12s + 1)¡rs ¡ 1=12s, and e is the base of the natural loga-

rithm. We can assume that n¿ 2k. Thus,

P{Aj
k}¡ (2m)k · (j + 1) 2j−1 ·

(
N 2

2j

)2k√
n− 2k

n

(
n− 2k
e

)n−2k ( e
n

)n e2k

k2k+1
r
2�

;

where the error term r = e1=12(n−2k)e−1=(12n+1)e−2=(12k+1)¡ e1=12. Hence r=2�¡ 1=4.
Since k6N 2=2j, 2j6N 2=k6 16m=k, and 2j−16 8m=k. Since n− 2k ¡n,

P{Aj
k}¡ (2m)k+1(j + 1)

(
1
2j

)2k
e4k
(
1
k

)2(k+1)

¡


 (j + 1)√2m

k

(
e2

2j

) k
k+1



2(k+1)

:

If j=2 then e2¿ 2j, and hence (e2=2j)k=(k+1)6 e2=2j6 e2=2
√
2j. If j¿ 3 then e2¡ 2j,

and since k¿ 1, (e2=2j)k=(k+1)6
√
e2=2j ¡ e2=2

√
2j. Therefore,

P{Aj
k}¡

(
e2(j + 1)√

2k

√
m
2j

)2(k+1)
: (1)
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De<ne kj = e2(j+ 1)
√

m=2j. Substituting kj into (1), and since m¿ n=4¿N 2=16 and
j¿ 2,

P{Aj
kj}¡

(
1√
2

)2(1+e2( j+1)√m=2j)

6
(
1
2

)1+(3=4)e2√N 2=2j

:

The probability that the event Aj
kj occurs for some j, 26 j6 2 logN ,

P



2 log N⋃
j=2

Aj
kj


¡

1
2

2 log N∑
j=2

(
1
2

)(3=4)e2√N 2=2j

: (2)

By induction on X , the following can be proved.

∀b¿ 1√
2− 1

;
X∑

j=2

(
1
2

)b√2X−j

¡
(
1
2

)b−1
:

Applying this fact to (2) with X = 2 logN and b = 3
4e
2 (¿ 1=(

√
2 − 1)), and since

N 2 = 2X ,

P



2 log N⋃
j=2

Aj
kj


¡

(
1
2

)(3=4)e2
: (3)

Thus,

P



2 log N⋂
j=2

Aj
kj


= 1− P



2 log N⋃
j=2

Aj
kj


¿ 1−

(
1
2

)(3=4)e2
¿ 0:9785:

This says that for the random grid layout �, with (high) positive probability, Aj
kj does

not occur for all j, 26 j6 2 logN . Thus, there exists a grid layout �′ of G such that
Aj
kj does not occur for all j. That is, in each (a; b)-subgraph there is no completely
crossing matching with at least ka+b edges (with respect to �′). Now, apply Lemma 1
for each row or column subgraph, and Lemma 4 for each positive or negative subgraph.
We obtain a layer assignment for the edges in each (a; b)-subgraph with at most ka+b

layers.
For each pair a; b (16 a; b6 logN ), edges in diKerent positive (a; b)-subgraphs

cannot intersect, and thus can share the same set of layers. Similarly for negative
(a; b)-subgraphs. For each j, there are at most j − 1 pairs (a; b) with a + b = j and
16 a; b6 logN . Thus the j-level positive and negative subgraphs take up at most
2(j − 1) · kj layers. Similarly the j-level row subgraphs can share the same set of
layers, as can the j-level column subgraphs. Thus the j-level subgraphs take up at
most 2j · kj layers, and the total number of layers is at most

2 log N∑
j=2

2j · kj = 2e2
√
m
2 log N∑
j=2

j(j + 1)√
2j

6 2(19
√
2 + 28)e2

√
m¡ 811

√
m:
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Note that in the proof of Theorem 5, little eKort is made to reduce the constant in the
O(

√
m) bound. With a more judicious choice of kj, for example, the constant can be

improved. Consider the following Las Vegas algorithm to compute the drawing whose
existence is proved in Theorem 5.

Algorithm. COMPUTE DRAWING (input: graph G = (V; E))
0. Let n= |V |, m= |E|, and add �√n �2 − n isolated vertices to G.
repeat at most log n times:

1. Let � be a random �√n � × �√n � grid layout of G.
2. Determine the assignment of edges to layers as described in Theorem 5.
3. If the total number of layers is at most 811

√
m then halt.

Corollary 6. The algorithm COMPUTE DRAWING, given a graph G=(V; E) with n= |V |
vertices and m = |E| edges, will in O(m log3 n log log n) time (with high probability)
position the vertices of G in a �√n � × �√n � grid, and partition the edges of G into
O(

√
m) layers, such that no two edges in a single layer cross, and with each edge

drawn with at most one bend.

Proof. For each iteration of the above algorithm, we say the algorithm fails if the
randomly chosen grid layout � does not admit a drawing with at most 811

√
m layers.

By (3), the probability of failure is at most 2−3e
2=4. Thus the probability of failure

log n times is at most 2(−3e
2=4)log n = n−3e

2=4, which tends to 0 as n → ∞. Thus, with
probability tending to 1 as n → ∞, the above algorithm will determine the required
drawing.
Consider the time taken for Step 2 in one iteration. For each pair a; b (16 a; b

6 logN ), it is easily seen that Lemmas 1 or 4 can be simultaneously applied for
all positive (a; b)-subgraphs, and similarly for all negative, row, and column (a; b)-
subgraphs. Thus the time for one iteration is

∑
a;b O(ma;b log log n), where ma;b is the

number of edges in (a; b)-regional subgraphs, which is O(m log2 n log log n). Thus the
time for log n iterations is O(m log3 n log log n).

As a <nal note we mention two important diKerences between the proof by Malitz
[22] that bt(G)∈O(

√
m) and our proof of Theorem 5. First, we do not assume that

j6 k, as is the case in [22, p. 76] (also see [21, p. 92]). Furthermore, we do not
employ an explicit drawing of a complete graph K√

n for large values of j, as is the
case in [22]. See [28] for a related method.

Note added in proof

Subsequent to this research, Eppstein [14] has shown that (graph-theoretic) thickness
and geometric thickness are asymptotically unrelated. In particular, for every t, there
exists a graph with thickness three and geometric thickness at least t.
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