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Grid drawings ofk-colourable graphs
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Abstract

It is proved that everyk-colourable graph onn vertices has a grid drawing withO(kn) area, and that this boun
is best possible. This result can be viewed as a generalisation of the no-three-in-line problem. A further are
is established that includes the aspect ratio as a parameter.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V ,E) be a graph. All graphs considered are simple, finite and undirected. Agrid drawing of
G is an injective mappingθ :V → Z

2 such that for all edgesvw ∈ E and verticesx ∈ V , θ(x) ∈ θ(v)θ(w)

implies thatx = v or x = w, whereab denotes the line-segment with endpointsa andb. That is, a grid
drawing of a graph represents each vertex by a distinct gridpoint in the plane, and each edge b
segment between its endpoints, such that the only vertices an edge intersects are its own endp
θ be a grid drawing of a graphG = (V ,E) such thatθ(v) = (X(v), Y (v)) for all verticesv ∈ V . If for
somew,h ∈ Z

+, we have|X(u) − X(v)| < w and|Y (u) − Y (v)| < h for all verticesu, v ∈ V , thenθ is
said to be aw × h grid drawing witharea wh andaspect ratio max{w,h}/min{w,h}.
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This paper studies grid drawings with small area, and with small aspect ratio as a secondary criterion.
In applications such as graph visualisation [2], minimising the area and the aspect ratio are important
considerations. Obviously to view a graph drawing with good resolution on a computer screen (which
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itself has fixed aspect ratio) requires the area and the aspect ratio to be small.
A k-colouring of a graphG = (V ,E) is a partition ofV into colour classes V0, V1, . . . , Vk−1 such that

for every edgevw ∈ E, if v ∈ Vi andw ∈ Vj theni �= j . A graph admitting ak-colouring isk-colourable.
A complete k-partite graph is ak-colourable graph such that there is an edge between any two ve
from distinct colour classes. A completek-partite graph isbalanced if every colour class has the sam
number of vertices. LetK(t, k) denote the balanced completek-partite graph witht vertices in each
colour class.

2. Results

Theorem 1. For all k � 1 and t � 1, the balanced complete k-partite graph K(t, k) has a k × pt grid
drawing, where p is the minimum prime such that p � k.

Proof. Let V0, V1, . . . , Vk−1 be thek-colouring ofK(t, k). For each 0� i � k−1, letVi = {vi,0, vi,1, . . . ,

vi,t−1}, and for each 0� j � t − 1, letθ(vi,j ) = (i,pj + (i2 modp)). If an edge intersects a vertex oth
than its endpoints then the three vertices are collinear. Since the vertices in eachVi are positioned in the
X = i line, to prove thatθ is a valid grid drawing, it is sufficient to prove that any three vertices f
distinct colour classes are not collinear. Three points(x1, y1), (x2, y2) and (x3, y3) are collinear if and
only if the determinant∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣ = 0.

For verticesvi1,j1, vi2,j2 andvi3,j3 from distinct colour classes we have∣∣∣∣∣∣
1 i1 pj1 + (i2

1 modp)

1 i2 pj2 + (i2
2 modp)

1 i3 pj3 + (i2
3 modp)

∣∣∣∣∣∣ ≡
∣∣∣∣∣∣
1 i1 i2

1

1 i2 i2
2

1 i3 i2
3

∣∣∣∣∣∣ ≡ (i1 − i2)(i1 − i3)(i2 − i3) (modp),

which is nonzero sincep is a prime and 1� iα − iβ � k − 1 � p − 1 for all 1� α < β � 3. Thusvi1,j1,
vi2,j2 andvi3,j3 are not collinear. Therefore the only vertices an edge intersects are its own endpoin
θ is a valid grid drawing ofK(t, k). For every vertexv, 0� X(v) � k − 1 and 0� Y (v) � p(t − 1) +
(p − 1). Thus the drawing is ak × tp grid drawing. �

An example of a grid drawing produced by Theorem 1 is shown in Fig. 1. By Bertrand’s Postula
the Prime Number Theorem we have the following corollary of Theorem 1.

Corollary 2. For all k � 1 and t � 1, the balanced complete k-partite graph K(t, k) on n = kt vertices
has a k × 2n grid drawing. For all ε > 0, there exists kε such that for all k � kε and t � 1, K(t, k) has a
k × (1+ ε)n grid drawing.

We now prove that the upper bound in Theorem 1 is asymptotically optimal.
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Fig. 1. The (rotated and scaled) grid drawing ofK(5,3) produced by Theorem 1.

Theorem 3. Every grid drawing of K(k, t) has area at least 1
4k

2t = 1
4kn.

Proof. Consider aw×h grid drawing ofK(t, k). Let they-row be the set of vertices with aY -coordinate
of y, and thex-column be the set of vertices with anX-coordinate ofx. For each colour 0� i � k −1, let
ri be the number of rows containing a vertex colouredi, and letci be the number of columns containin
a vertex colouredi. Then the arithmetic and harmonic means of{ci: 0� i � k − 1} satisfy the following
(see [1] for example):(

1

k

∑
i

ci

)(
1

k

∑
i

1

ci

)
� 1.

Clearly t � ciri for each 0� i � k − 1. Thus 1
ci

� ri
t

and
(∑

i

ci

)(∑
i

ri

)
� k2t.

In each row and column there is at most two distinct colours, as otherwise there would be a
contained in that row or column. Hence

∑
i ci � 2w and

∑
i ri � 2h, which implies that 4wh � k2t .

Thuswh � 1
4k

2t . �
In the following result we generalise Theorem 1 for arbitraryk-colourable graphs, and introduce t

aspect ratio as a parameter. This result suggests a trade-off between small area and small aspec

Theorem 4. Let G be a k-colourable graph with n vertices. For every integer r such that 1 � r � n
k
, G

has a 2n
r

× 4n grid drawing, which has area 8n2

r
and aspect ratio 2r .

Proof. Consider ak-colouring ofG. Partition each colour class into sets each with exactlyr vertices
except for one set with at mostr vertices. There are at mostn

r
sets of sizer , and at mostk smaller sets

one for each colour class. Sincer � n
k
, the total number of sets is at most2n

r
. Thus we have a�2n

r
�-

colouring ofG such that each colour class has at mostr vertices. HenceG is a subgraph ofK(r, �2n
r
�).

By Corollary 2,G has a2n
r

× 4n grid drawing. �
Observe that withr = �n

k
� the drawing in Theorem 4 isO(k) ×O(n) with areaO(kn).
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3. Conclusion

We conclude with some bibliographic remarks and conjectures. Note that a number of ideas in the
-
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proofs of Theorems 1 and 4 are from results by Pach et al. [6] and Dujmović et al. [4] regarding three
dimensional grid drawings (with no crossings). In turn, these proofs date to the seminal construc
Erdős [5] for the no-three-in-line problem. This problem introduced in 1917 by Dudeney [3] asks
is the maximum number of points in then × n grid with no three points collinear? Clearlyθ is a grid
drawing of a complete graphKn = (V ,E) if and only if {θ(v): v ∈ V } is a set of gridpoints with no
three collinear. Thus the problem of producing a grid drawing with small area for any given graph
viewed as a generalisation of the no-three-in-line problem. Note that Theorem 1 applied to a co
graph produces the no-three-in-line construction of Erdős [5].

Conjecture 5. The lower bound in Theorem 3 can be improved to 1
2kn. (This is clearly the minimum area

for a grid drawing of the balanced complete bipartite graph K(n
2,2).)

Conjecture 6. Every grid drawing of anycomplete k-partite graph with n vertices has �(kn) area.

Conjecture 7. Every grid drawing of an n-vertex K(k, t) with aspect ratio r has �(n2

r
) area.

Conjecture 7 would establish a trade-off between small area and small aspect ratio.
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