Grid drawings of k-colourable graphs

David R. Wood ${ }^{1}$
School of Computer Science, Carleton University, Ottawa, Canada

Received 16 July 2003; received in revised form 1 June 2004; accepted 1 June 2004
Available online 7 August 2004
Communicated by J. Pach

Abstract

It is proved that every k-colourable graph on n vertices has a grid drawing with $\mathcal{O}(k n)$ area, and that this bound is best possible. This result can be viewed as a generalisation of the no-three-in-line problem. A further area bound is established that includes the aspect ratio as a parameter.

© 2004 Elsevier B.V. All rights reserved.
Keywords: Graph drawing; Grid drawing; Area; Aspect ratio; No-three-in-line problem

1. Introduction

Let $G=(V, E)$ be a graph. All graphs considered are simple, finite and undirected. A grid drawing of G is an injective mapping $\theta: V \rightarrow \mathbb{Z}^{2}$ such that for all edges $v w \in E$ and vertices $x \in V, \theta(x) \in \overline{\theta(v) \theta(w)}$ implies that $x=v$ or $x=w$, where $\overline{a b}$ denotes the line-segment with endpoints a and b. That is, a grid drawing of a graph represents each vertex by a distinct gridpoint in the plane, and each edge by a linesegment between its endpoints, such that the only vertices an edge intersects are its own endpoints. Let θ be a grid drawing of a graph $G=(V, E)$ such that $\theta(v)=(X(v), Y(v))$ for all vertices $v \in V$. If for some $w, h \in \mathbb{Z}^{+}$, we have $|X(u)-X(v)|<w$ and $|Y(u)-Y(v)|<h$ for all vertices $u, v \in V$, then θ is said to be a $w \times h$ grid drawing with area $w h$ and aspect ratio $\max \{w, h\} / \min \{w, h\}$.

[^0]0925-7721/\$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.06.001

This paper studies grid drawings with small area, and with small aspect ratio as a secondary criterion. In applications such as graph visualisation [2], minimising the area and the aspect ratio are important considerations. Obviously to view a graph drawing with good resolution on a computer screen (which itself has fixed aspect ratio) requires the area and the aspect ratio to be small.

A k-colouring of a graph $G=(V, E)$ is a partition of V into colour classes $V_{0}, V_{1}, \ldots, V_{k-1}$ such that for every edge $v w \in E$, if $v \in V_{i}$ and $w \in V_{j}$ then $i \neq j$. A graph admitting a k-colouring is k-colourable. A complete k-partite graph is a k-colourable graph such that there is an edge between any two vertices from distinct colour classes. A complete k-partite graph is balanced if every colour class has the same number of vertices. Let $K(t, k)$ denote the balanced complete k-partite graph with t vertices in each colour class.

2. Results

Theorem 1. For all $k \geqslant 1$ and $t \geqslant 1$, the balanced complete k-partite graph $K(t, k)$ has a $k \times p t$ grid drawing, where p is the minimum prime such that $p \geqslant k$.

Proof. Let $V_{0}, V_{1}, \ldots, V_{k-1}$ be the k-colouring of $K(t, k)$. For each $0 \leqslant i \leqslant k-1$, let $V_{i}=\left\{v_{i, 0}, v_{i, 1}, \ldots\right.$, $\left.v_{i, t-1}\right\}$, and for each $0 \leqslant j \leqslant t-1$, let $\theta\left(v_{i, j}\right)=\left(i, p j+\left(i^{2} \bmod p\right)\right)$. If an edge intersects a vertex other than its endpoints then the three vertices are collinear. Since the vertices in each V_{i} are positioned in the $X=i$ line, to prove that θ is a valid grid drawing, it is sufficient to prove that any three vertices from distinct colour classes are not collinear. Three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear if and only if the determinant

$$
\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|=0
$$

For vertices $v_{i_{1}, j_{1}}, v_{i_{2}, j_{2}}$ and $v_{i_{3}, j_{3}}$ from distinct colour classes we have

$$
\left|\begin{array}{ccc}
1 & i_{1} & p j_{1}+\left(i_{1}^{2} \bmod p\right) \\
1 & i_{2} & p j_{2}+\left(i_{2}^{2} \bmod p\right) \\
1 & i_{3} & p j_{3}+\left(i_{3}^{2} \bmod p\right)
\end{array}\right| \equiv\left|\begin{array}{ccc}
1 & i_{1} & i_{1}^{2} \\
1 & i_{2} & i_{2}^{2} \\
1 & i_{3} & i_{3}^{2}
\end{array}\right| \equiv\left(i_{1}-i_{2}\right)\left(i_{1}-i_{3}\right)\left(i_{2}-i_{3}\right) \quad(\bmod p),
$$

which is nonzero since p is a prime and $1 \leqslant i_{\alpha}-i_{\beta} \leqslant k-1 \leqslant p-1$ for all $1 \leqslant \alpha<\beta \leqslant 3$. Thus $v_{i_{1}, j_{1}}$, $v_{i_{2}, j_{2}}$ and $v_{i_{3}, j_{3}}$ are not collinear. Therefore the only vertices an edge intersects are its own endpoints, and θ is a valid grid drawing of $K(t, k)$. For every vertex $v, 0 \leqslant X(v) \leqslant k-1$ and $0 \leqslant Y(v) \leqslant p(t-1)+$ $(p-1)$. Thus the drawing is a $k \times t p$ grid drawing.

An example of a grid drawing produced by Theorem 1 is shown in Fig. 1. By Bertrand's Postulate and the Prime Number Theorem we have the following corollary of Theorem 1.

Corollary 2. For all $k \geqslant 1$ and $t \geqslant 1$, the balanced complete k-partite graph $K(t, k)$ on $n=k t$ vertices has a $k \times 2 n$ grid drawing. For all $\varepsilon>0$, there exists k_{ε} such that for all $k \geqslant k_{\varepsilon}$ and $t \geqslant 1, K(t, k)$ has a $k \times(1+\varepsilon) n$ grid drawing.

We now prove that the upper bound in Theorem 1 is asymptotically optimal.

Fig. 1. The (rotated and scaled) grid drawing of $K(5,3)$ produced by Theorem 1.

Theorem 3. Every grid drawing of $K(k, t)$ has area at least $\frac{1}{4} k^{2} t=\frac{1}{4} k n$.
Proof. Consider a $w \times h$ grid drawing of $K(t, k)$. Let the y-row be the set of vertices with a Y-coordinate of y, and the x-column be the set of vertices with an X-coordinate of x. For each colour $0 \leqslant i \leqslant k-1$, let r_{i} be the number of rows containing a vertex coloured i, and let c_{i} be the number of columns containing a vertex coloured i. Then the arithmetic and harmonic means of $\left\{c_{i}: 0 \leqslant i \leqslant k-1\right\}$ satisfy the following (see [1] for example):

$$
\left(\frac{1}{k} \sum_{i} c_{i}\right)\left(\frac{1}{k} \sum_{i} \frac{1}{c_{i}}\right) \geqslant 1
$$

Clearly $t \leqslant c_{i} r_{i}$ for each $0 \leqslant i \leqslant k-1$. Thus $\frac{1}{c_{i}} \leqslant \frac{r_{i}}{t}$ and

$$
\left(\sum_{i} c_{i}\right)\left(\sum_{i} r_{i}\right) \geqslant k^{2} t
$$

In each row and column there is at most two distinct colours, as otherwise there would be a 3 -cycle contained in that row or column. Hence $\sum_{i} c_{i} \leqslant 2 w$ and $\sum_{i} r_{i} \leqslant 2 h$, which implies that $4 w h \geqslant k^{2} t$. Thus $w h \geqslant \frac{1}{4} k^{2} t$.

In the following result we generalise Theorem 1 for arbitrary k-colourable graphs, and introduce the aspect ratio as a parameter. This result suggests a trade-off between small area and small aspect ratio.

Theorem 4. Let G be a k-colourable graph with n vertices. For every integer r such that $1 \leqslant r \leqslant \frac{n}{k}$, G has a $\frac{2 n}{r} \times 4 n$ grid drawing, which has area $\frac{8 n^{2}}{r}$ and aspect ratio $2 r$.

Proof. Consider a k-colouring of G. Partition each colour class into sets each with exactly r vertices except for one set with at most r vertices. There are at most $\frac{n}{r}$ sets of size r, and at most k smaller sets, one for each colour class. Since $r \leqslant \frac{n}{k}$, the total number of sets is at most $\frac{2 n}{r}$. Thus we have a $\left\lfloor\frac{2 n}{r}\right\rfloor$ colouring of G such that each colour class has at most r vertices. Hence G is a subgraph of $K\left(r,\left\lfloor\frac{2 n}{r}\right\rfloor\right)$. By Corollary 2, G has a $\frac{2 n}{r} \times 4 n$ grid drawing.

Observe that with $r=\left\lfloor\frac{n}{k}\right\rfloor$ the drawing in Theorem 4 is $\mathcal{O}(k) \times \mathcal{O}(n)$ with area $\mathcal{O}(k n)$.

3. Conclusion

We conclude with some bibliographic remarks and conjectures. Note that a number of ideas in the proofs of Theorems 1 and 4 are from results by Pach et al. [6] and Dujmović et al. [4] regarding threedimensional grid drawings (with no crossings). In turn, these proofs date to the seminal construction by Erdős [5] for the no-three-in-line problem. This problem introduced in 1917 by Dudeney [3] asks, what is the maximum number of points in the $n \times n$ grid with no three points collinear? Clearly θ is a grid drawing of a complete graph $K_{n}=(V, E)$ if and only if $\{\theta(v): v \in V\}$ is a set of gridpoints with no three collinear. Thus the problem of producing a grid drawing with small area for any given graph can be viewed as a generalisation of the no-three-in-line problem. Note that Theorem 1 applied to a complete graph produces the no-three-in-line construction of Erdős [5].

Conjecture 5. The lower bound in Theorem 3 can be improved to $\frac{1}{2} k n$. (This is clearly the minimum area for a grid drawing of the balanced complete bipartite graph $K\left(\frac{n}{2}, 2\right)$.)

Conjecture 6. Every grid drawing of any complete k-partite graph with n vertices has $\Omega(k n)$ area.
Conjecture 7. Every grid drawing of an n-vertex $K(k, t)$ with aspect ratio r has $\Omega\left(\frac{n^{2}}{r}\right)$ area.
Conjecture 7 would establish a trade-off between small area and small aspect ratio.

Acknowledgements

This research was completed at the Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain. Thanks to Ferran Hurtado and Prosenjit Bose for graciously hosting the author.

References

[1] P.S. Bullen, A Dictionary of Inequalities, Longman, 1998.
[2] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice-Hall, Englewood Cliffs, NJ, 1999.
[3] H.E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
[4] V. Dujmović, P. Morin, D.R. Wood, Path-width and three-dimensional straight-line grid drawings of graphs, in: M.T. Goodrich, S.G. Kobourov (Eds.), Proc. 10th International Symp. on Graph Drawing (GD '02), Lecture Notes in Comput. Sci., vol. 2528, Springer, Berlin, 2002, pp. 42-53.
[5] P. Erdős, Appendix. In K.F. Roth, On a problem of Heilbronn, J. London Math. Soc. 26 (1951) 198-204.
[6] J. Pach, T. Thiele, G. Tóth, Three-dimensional grid drawings of graphs, in: B. Chazelle, J.E. Goodman, R. Pollack (Eds.), Advances in Discrete and Computational geometry, in: Contemporary Mathematics, vol. 223, Amer. Math. Soc., Providence, RI, 1999, pp. 251-255.

[^0]: E-mail address: davidw@scs.carleton.ca (D.R. Wood).
 ${ }^{1}$ Research supported by NSERC.

