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Let n be a positive integer. Then × n grid is the set of points in the plane
{(x, y) : 1 ≤ x, y ≤ n}. Let k(n) denote the minimum number of colours in a
colouring of the points of then × n grid such that no three collinear points are
monochromatic. The determination ofk(n) is a natural generalisation of theno-
three-in-lineproblem [1–10], which asks for the maximum number of points in
then× n grid with no three points collinear. Since no three points in a single row
or column can receive the same colour,k(n) ≥ dn

2
e. By the example shown in

Figure 1,k(4) = 2.

Figure 1: A 2-colouring of the4 × 4 grid with no three collinear monochromatic
points.

Theorem 1. Let n be a positive integer. Letp be the minimum prime such that
p ≥ n. Thenk(n) ≤ n + p− 1 ≤ 3n− 2.
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Proof. Three points(x1, y1), (x2, y2) and(x3, y3) are collinear if and only if the
determinant ∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ = 0 .

Let Vi = {(x, (x2 mod p)+ i) : 1 ≤ x ≤ n} for each integeri. For all distinct
1 ≤ x1, x2, x3 ≤ n, ∣∣∣∣∣∣
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≡ (x1 − x2)(x1 − x3)(x2 − x3) (mod p) ,

which is nonzero sincep is a prime and thexi’s are distinct modulop. Hence
no three points in eachVi are collinear. (This construction of points whose test
determinant is congruent to a Vandermonde determinant is due to Erdős [5].)

ClearlyVi1 ∩ Vi2 = ∅ for distincti1 andi2. Each point(x, y) in then× n grid
is in Vi wherei = y − (x2 mod p). Since2 − p ≤ y − (x2 mod p) ≤ n, the set
{Vi : 2−p ≤ i ≤ n} contains a partition of the points inton+p−1 colour classes
such that no three collinear points are monochromatic. By Bertrand’s postulate
p ≤ 2n− 1, and the number of colours is at most3n− 2.

Note thatk(n) ≤ 3n − 6 for n ≥ 3 follows from the stronger form of
Bertrand’s postulate and the construction in Figure 1 forn ∈ {3, 4}. By The-
orem 1 and the prime number theorem we have:

Theorem 2. For all ε > 0, there existsNε such thatk(n) ≤ (2 + ε)n for all
n > Nε.

We conclude with the following questions:

1. What is the minimum constantc such thatk(n) ≤ cn for all n? We know
that 1

2
≤ c ≤ 3.

2. What is the minimum constantc such that for allε > 0, there existsNε such
thatk(n) ≤ (c + ε)n for all n > Nε? We know that1

2
≤ c ≤ 2.
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[5] P. ERDŐS, Appendix, in K. F. ROTH, On a problem of Heilbronn.J. London
Math. Soc., 26:198–204, 1951.

[6] A. FLAMMENKAMP , Progress in the no-three-in-line problem. II.J. Combin.
Theory Ser. A, 81(1):108–113, 1998.

[7] R. K. GUY AND P. A. KELLY , The no-three-in-line problem.Canad. Math.
Bull., 11:527–531, 1968.

[8] R. R. HALL , T. H. JACKSON, A. SUDBERY, AND K. W ILD , Some advances
in the no-three-in-line problem.J. Combinatorial Theory Ser. A, 18:336–341,
1975.

[9] H. HARBORTH, P. OERTEL, AND T. PRELLBERG, No-three-in-line for sev-
enteen and nineteen.Discrete Math., 73(1-2):89–90, 1989.

[10] T. KLØVE, On the no-three-in-line problem. III.J. Combin. Theory Ser. A,
26(1):82–83, 1979.


