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Let n be a positive integer. The x n grid is the set of points in the plane
{(z,y) : 1 < z,y < n}. Letk(n) denote the minimum number of colours in a
colouring of the points of the x n grid such that no three collinear points are
monochromatic. The determination ofn) is a natural generalisation of thme-
three-in-lineproblem [1-10], which asks for the maximum number of points in
then x n grid with no three points collinear. Since no three points in a single row
or column can receive the same colokifp) > [4]. By the example shown in
Figure 1,k(4) = 2.
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Figure 1: A 2-colouring of the x 4 grid with no three collinear monochromatic
points.

Theorem 1. Letn be a positive integer. Let be the minimum prime such that
p>n. Thenk(n) <n+p—1<3n-—2.
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Proof. Three pointyxy, 11), (x2,y2) and(zs, y3) are collinear if and only if the
determinant
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LetV; = {(z, (x? mod p) +1) : 1 < x < n} for each integef. For all distinct
I <zy,29,23 <,
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= (21 — x2) (21 — 23)(x2 — x3) (mod p) ,

which is nonzero since is a prime and the;’s are distinct modulg. Hence

no three points in each; are collinear. (This construction of points whose test

determinant is congruent to a Vandermonde determinant is due &s [51)
ClearlyV;, n'V;, = 0 for distincti; andi,. Each point(z, y) in then x n grid

isin V; wherei = y — (2% mod p). Since2 — p < y — (22 mod p) < n, the set

{Vi : 2—p <i < n} contains a partition of the points into+ p — 1 colour classes

such that no three collinear points are monochromatic. By Bertrand’s postulate

p < 2n — 1, and the number of colours is at m@st — 2. O

Note thatk(n) < 3n — 6 for n > 3 follows from the stronger form of
Bertrand’s postulate and the construction in Figure Lifog {3,4}. By The-
orem 1 and the prime number theorem we have:

Theorem 2. For all ¢ > 0, there existsV, such thatk(n) < (2 + ¢)n for all
n > N.. O

We conclude with the following questions:

1. What is the minimum constantsuch thatt(n) < cn for all n? We know
that < c < 3.

2. What is the minimum constaasuch that for alk > 0, there existsV, such
thatk(n) < (c+ €)n for all n > N.? We know that < ¢ < 2.
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