A SIMPLE PROOF OF THE FÁRY-WAGNER THEOREM

DAVID R. WOOD

The purpose of this note is to give a simple proof of the following fundamental result independently due to Fáry [1] and Wagner [2]. A plane graph is a simple graph embedded in the plane without edge crossings. Combinatorially speaking, there is a circular ordering of the edges incident to each vertex, and a nominated outerface.

Theorem. Every plane graph has a drawing in which every edge is straight.
Proof. A triangulation is a plane graph in which every face is bounded by three edges. Edges can be added to a plane graph to obtain a plane triangulation. Thus it suffices to prove the theorem for plane triangulations G. We proceed by induction on $|V(G)|$. The base case with $|V(G)|=3$ is trivial. Now suppose that $|V(G)| \geq 4$. A separating triangle of G is a 3-cycle that contains a vertex in its interior and in its exterior. If G has no separating triangles, then let $v w$ be any edge of G. Otherwise, let $v w$ be an edge incident to a vertex that is in the interior of an innermost separating triangle of G. Now $v w$ is on the boundary of two faces, say $v w p$ and $v w q$. Since $v w$ is not in a separating triangle, p and q are the only common neighbours of v and w. Let ($\left.v p, v w, v q, v x_{1}, v x_{2}, \ldots, v x_{k}\right)$ and ($\left.w q, w v, w p, w y_{1}, w y_{2}, \ldots, w y_{\ell}\right)$ be the clockwise ordering of the edges incident to v and w respectively ${ }^{1}$.

Let G^{\prime} be the plane triangulation obtained from G by contracting the edge $v w$ into a single vertex s. Replace the pairs of parallel edges $\{v p, w p\}$ and $\{v q, w q\}$ in G by edges $s p$ and $s q$ in G^{\prime}. The clockwise ordering of the edges of G^{\prime} incident to s is $\left(s p, s y_{1}, s y_{2}, \ldots, s y_{\ell}, s q, s x_{1}, s x_{2}, \ldots, s x_{k}\right)$. By induction, G^{\prime} has a drawing in which every edge is straight (and the circular ordering of the edges incident to s are preserved). For all $\epsilon>0$, let $C_{\epsilon}(s)$

[^0]denote the circle of radius ϵ centred at s. For each neighbour t of s in G^{\prime}, let $R_{\epsilon}(t)$ denote the region consisting of the union of all open segments between t and a point in $C_{\epsilon}(s)$. There is an $\epsilon>0$ such that all neighbours t of s are in the exterior of $C_{\epsilon}(s)$ and the only edges of G^{\prime} that intersect $R_{\epsilon}(t)$ are incident to s.

There is a line L through s with p on one side of L and q on the other side, as otherwise the edges $s p$ and $s q$ would overlap. Now $s p$ and $s q$ break $C_{\epsilon}(s)$ into two arcs, one that intersects the edges $\left\{s x_{i}: 1 \leq i \leq k\right\}$, and one that intersects the edges $\left\{s y_{j}: 1 \leq j \leq \ell\right\}$. The set $L \cap C_{\epsilon}(s)$ consists of two points. Position v and w at these two points, with v on the side of $C_{\epsilon}(s)$ that intersects the edges $\left\{s x_{i}: 1 \leq i \leq k\right\}$, and with w on the other side. Delete s and its incident edges. Draw the edges of G incident to v or w straight. Thus $v w$ is contained in L. Since p and q are on different sides of L, the edges incident to v or w do not cross. By the choice of ϵ, edges incident to v or w do not cross other edges of G. Thus we obtain the desired drawing of G.

References

[1] IstVÁn FÁRy. On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math., 11:229-233, 1948.
[2] Klaus Wagner. Bemerkung zum Vierfarbenproblem. Jber. Deutsch. Math.-Verein., 46:26-32, 1936.

Departament de Matemìtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail address: david.wood@upc.edu

[^0]: Date: May 10, 2005.
 1991 Mathematics Subject Classification. 05C62 Graph representations.
 Supported by grant MEC SB2003-0270. Partially completed at McGill University, Montréal, Canada.
 ${ }^{1}$ In fact, for every vertex v there is an edge incident to v whose endpoints have at most two common neighbours. This is because the neighbourhood of v has no K_{4}-minor (it is even outerplanar), and every graph with no K_{4}-minor has a vertex of degree at most two.

