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number of vertices in a bag. The tree-partition-width of G is the
minimum width of a tree-partition of G. An anonymous referee
of the paper [Guoli Ding, Bogdan Oporowski, Some results on tree
decomposition of graphs, ]. Graph Theory 20 (4) (1995) 481-499]
proved that every graph with tree-width k > 3 and maximum
degree A > 1 has tree-partition-width at most 24kA. We prove
that this bound is within a constant factor of optimal. In particular,
for all k > 3 and for all sufficiently large A, we construct a graph
with tree-width k, maximum degree A, and tree-partition-width at
least (% — €)kA. Moreover, we slightly improve the upper bound
to 2 (k + 1)(Z A — 1) without the restriction that k > 3.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A graph! H is a partition of a graph G if:

e each vertex of H is a set of vertices of G (called a bag),

e every vertex of G is in exactly one bag of H, and

e distinct bags A and B are adjacent in H if and only if there is an edge of G with one endpoint in A
and the other endpoint in B.

The width of a partition is the maximum number of vertices in a bag. Informally speaking, the graph
H is obtained from a proper partition of V(G) by identifying the vertices in each part, deleting loops,
and replacing parallel edges by a single edge. H is sometimes called the touching pattern or quotient
graph of the partition of V(G).

E-mail address: woodd@unimelb.edu.au.

T Al graphs considered are undirected, simple, and finite. Let V(G) and E(G) respectively be the vertex set and edge set of a
graph G. Let A(G) be the maximum degree of G.
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If a forest T is a partition of a graph G, then T is a tree-partition of G. The tree-partition-width?
of G, denoted by tpw(G), is the minimum width of a tree-partition of G. Tree-partitions were
independently introduced by Seese [2] and Halin [3], and have since been widely investigated [4,1,
5-8]. Applications of tree-partitions include graph drawing [9-13], graph colouring [ 14], partitioning
graphs into subgraphs with only small components [15], monadic second-order logic [16], and
network emulations [17-20]. Planar-partitions and other more general structures have also been
studied [21,22,13].

What bounds can be proved on the tree-partition-width of a graph? Let tw(G) denote the tree-
width? of a graph G. [2] proved the lower bound,

2tpw(G) > tw(G) + 1.

In general, tree-partition-width is not bounded from above by any function solely of tree-width. For
example, wheel graphs have bounded tree-width and unbounded tree-partition-width [1]. However,
tree-partition-width is bounded for graphs of bounded tree-width and bounded degree [5,6]. The best
known upper bound is due to an anonymous referee of the paper by Ding and Oporowski [5], who
proved that

tpw(G) < 24tw(G) A(G)
whenever tw(G) > 3 and A(G) > 1. Using a similar proof, we make the following improvement to
this bound without the restriction that tw(G) > 3.
Theorem 1. Every graph G with tree-width tw(G) > 1 and maximum degree A(G) > 1 has tree-
partition-width

tpw(G) < 2 (tw(G) + 1) (3 A(G) — 1).

Theorem 1 is proved in Section 2. Note that Theorem 1 can be improved in the case of chordal

graphs. In particular, a simple extension of a result by Dujmovic et al. [11] implies that

tpw(G) = tw(G) (A(G) — 1)
for every chordal graph G with A(G) > 2; see [8] for a simple proof. Nevertheless, the following
theorem proves that @ (tw(G) A(G)) is the best possible upper bound, even for chordal graphs.

Theorem 2. For every ¢ > 0 and integer k > 3, for every sufficiently large integer A > A(k, €), for
infinitely many values of N, there is a chordal graph G with N vertices, tree-width tw(G) < k, maximum
degree A(G) < A, and tree-partition-width

tpw(G) = (3 — €) tw(G) A(G).

Theorem 2 is proved in Section 3. Note that Theorem 2 is for k > 3. For k = 1, every tree is a
tree-partition of itself with width 1. For k = 2, we prove that the upper bound ©(A(G)) is again best
possible; see Section 4.

2. Upper bound

In this section we prove Theorem 1. The proofrelies on the following separator lemma by Robertson
and Seymour [25].

2 Tree-partition-width has also been called strong tree-width [1,2].

3a graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer
k such that G is a subgraph of a chordal graph with no clique on k + 2 vertices. This parameter is particularly important in
algorithmic and structural graph theory; see [23,24] for surveys.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
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Fig. 1. Illustration of Case 4.

Lemma 1 ([25]). For every graph G with tree-width at most k, for every set S C V(G), there are
edge-disjoint subgraphs G, and G, of G such that G{ U G, = G, |V(G1)) N V(Gy)| < k + 1, and
IS — V(G| < 31S — (V(G1) NV(Gy))| for eachi € {1,2}.

Theorem 1 is a corollary of the following stronger result.

Lemma?2. [eta =1+ 1/ﬁ andy =1+ V2. Let Gbea graph with tree-width at most k > 1 and
maximum degree at most A > 1. Then G has tree-partition-width

tpw(G) < y(k+1(@ByA —1).
Moreover, for each set S C V(G) such that
(y +Dk+1) =S| =3(y + Dk+ DA,
there is a tree-partition of G with width at most
yk+1)3Bya—-1),
such that S is contained in a single bag containing at most «|S| — y (k 4+ 1) vertices.

Proof. We proceed by induction on |V (G)|.

Case 1. [V(G)| < (y 4+ 1)(k 4+ 1): Then no set S is specified, and the tree-partition in which all
the vertices are in a single bag satisfies the lemma. Now assume that |V (G)| > (y + 1)(k + 1), and
without loss of generality, S is specified.

Case 2. |V(G) — S| < (y + 1)(k + 1): Then the tree-partition in which S is one bag and V(G) — S
is another bag satisfies the lemma. Now assume that |V(G) — S| > (y + 1)(k+ 1).

Case 3.|S| < 3(y + 1)(k+ 1): Let N be the set of vertices in G that are adjacent to some vertex in S
butarenotinS.Then |N| < A|S| < 3(y+1)(k+1)A.If|[N| < (y+1)(k+1) then add arbitrary vertices
from V(G) — (SUN) to N until [N| > (y + 1)(k+ 1). This is possible since |V (G) —S| > (y +1)(k+1).

By induction, there is a tree-partition of G — S with width at most y(k + 1)(3yA — 1), such
that N is contained in a single bag. Create a new bag only containing S. Since all the neighbours
of S are in a single bag, we obtain a tree-partition of G. (S corresponds to a leaf in the touching
pattern.) Since |S| > (y + 1)(k + 1), it follows that |S| < «|S| — y(k + 1) as desired. Now
IS| < 3(y + 1Dk +1) < yk+ 1)(3yA — 1). Since the other bags do not change we have the
desired tree-partition of G.

Case 4.|S| > 3(y + 1)(k+ 1): By Lemma 1, there are edge-disjoint subgraphs G; and G, of G such
that GiUG, = G, |V(G1)NV(Gy)| < k+1,and [S—V(Gy)| < %|S—(V(Gl)ﬁV(Gz))| foreachi € {1, 2}.
LetY := V(G)NV(Gy).Leta := |SNY|and b := |Y —S|.Thusa+b < k+1.Letp; := |(SNV(G))—Y].
Then p; < 2p, and p, < 2p;.LetS; ;= (SN V(G;)) U Y. Note that |S;| = p; + a + b (see Fig. 1).

Nowp; +p;+a=1S| > 3(y + 1)(k+ 1). Thus 3p; +a > 3(y + 1)(k+ 1) and 3p; + 3a + 3b >
3(y + 1)(k+ 1).Thatis, |S;| > (y + 1)(k+ 1) foreachi € {1, 2}.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
doi:10.1016/j.ejc.2008.11.010
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Now p;+p2+a < 3(y +1)(k+1)A.Thus %p,——ka <3(y+1Dk+1)Aandp; < 2(y+1)(k+1)A.
Thusp;+a+b <2(y +1)(k+ 1)A+ (k+ 1).Hence |S;| =p; +a+ b < 3(y + 1)(k+ 1) A.

Thus we can apply induction to the set S; in the graph G; for each i € {1, 2}. We obtain a tree-
partition of G; with width at most y (k + 1)(3y A — 1), such that S; is contained in a single bag T;
containing at most «|S;| — y (k + 1) vertices.

Construct a partition of G by uniting T; and T,. Each vertex of G is in exactly one bag since
V(G) NV(G) = Y C S C T. Since G and G, are edge-disjoint, the touching pattern of this
partition of G is obtained by identifying one vertex of the touching pattern of the tree-partition of
G1 with one vertex of the touching pattern of the tree-partition of G,. Since the touching patterns of
the tree-partitions of G; and G, are forests, the touching pattern of the partition of G is a forest, and
we have a tree-partition of G.

Moreover, S is contained in a single bag T; U T, and

Ty UTy| = |Tqh| + T2 — |Y]

< alSi| —y(k+1) +alS;| — y(k+1) — (a+b)

=aPr+a+b) —yk+1)+ap+a+b)—yk+1) —(a+b)
=api+p2+a)—2yk+1+(@—1a+ Qo —1b

< al|S| —2yk+ 1)+ Qe — 1)(a+b)

< alS|=2yk+1)+Qa—1D(k+1)

alS| —yk+1).

Thus [TiUT,| <a-3(y +Dk+1)A—y((k+1) = y(k+ 1)(3y A — 1). Since the other bags do not
change we have the desired tree-partition of G. O

3. General lower bound

The remainder of the paper studies lower bounds on the tree-partition-width. The graphs
employed are chordal. We first show that tree-partitions of chordal graphs can be assumed to have
certain useful properties.

Lemma 3. Every chordal graph G has a tree-partition T with width tpw(G), such that for every
independent set S of simplicial* vertices of G, and for every bag B of T, either B = {v} for some vertex
v € S, or the induced subgraph G[B — S] is connected.

Proof. Let Tj be a tree-partition of a chordal graph G with width tpw(G). Let T be the partition of G
obtained from Ty by replacing each bag B of Ty by bags corresponding to the connected components
of G[B]. Add an edge between bags A and B of T if and only if there is an edge of G between A and B.
Then T has width at most tpw(G).

To prove that T is a forest, suppose on the contrary that T contains an induced cycle C. Since each
bag in C induces a connected subgraph of G, G contains an induced cycle D with at least one vertex
from each bag in C. Since G is chordal, D is a triangle. Thus C is a triangle, implying that the vertices in
D were in distinct bags in Ty (since the bags of T that replaced each bag of Ty form an independent set).
Hence the bags of Ty that contain D induce a triangle in Ty, which is the desired contradiction since Ty
is a forest. Hence T is a forest.

Let S be an independent set of simplicial vertices of G. Consider a bag B of T. By construction, G[B]
is connected. First suppose that B C S. Since S is an independent set and G[B] is connected, B = {v}
for some vertex v € S.

Now assume that B — S # . Suppose on the contrary that G[B — S] is disconnected. Thus BN S
is a cut-set in G[B]. Let v and w be vertices in distinct components of G[B — S] such that the distance
between v and w in G[B] is minimised. (This is well-defined since G[B] is connected.) Since S is an

4 Avertex is simplicial if its neighbourhood is a clique.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
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Fig. 2. The graph Gwithk =4, A = 15,andn = 8.

independent set, every shortest path between v and w in G[B] has only two edges. That is, v and w
have a common neighbour x in B N S. Since x is simplicial, v and w are adjacent. This contradiction
proves that G[B — S] is connected. O

The next lemma is the key component of the proof of Theorem 2. For integers a < b, let [a, b] :=
{a,a+1,...,b}and [b] .= [1, b].

Lemma 4. For all integers k > 2 and A > 3k + 1, for infinitely many values of N there is a chordal graph
G with N vertices, tree-width tw(G) = 2k — 1, maximum degree A(G) < A, and tree-partition-width
tpw(G) > k(A — 3k).

Proof. Let n be an integer with n > max{%k(A — 3k), 2}. Let H be the graph with vertex set
{(x,y) : x € [n],y € [k]}, where distinct vertices (x1, y1) and (x, y,) are adjacent if and only if
|x; — x2| < 1.The set of vertices {(x,y) : y € [k]} is the x-column. The set of vertices {(x, y) : x € [n]}
is the y-row. Observe that each column induces a k-vertex clique, and each row induces an n-vertex
path.

Let C be an induced cycle in H.If (x, y) is a vertex in C with x minimum then the two neighbours of
(x,y) in C are adjacent. Thus C is a triangle. Hence H is chordal. Observe that each pair of consecutive
columns form a maximum clique of 2k vertices in H. Thus H has tree-width 2k — 1. Also note that H
has maximum degree 3k — 1.

An edge of H between vertices (x, y) and (x + 1, y) is horizontal. As illustrated in Fig. 2, construct
a graph G from H as follows. For each horizontal edge vw of H, add [%(A — 3k)] new vertices, each
adjacent to v and w. Since H is chordal and each new vertex is simplicial, G is chordal. The addition
of degree-2 vertices to H does not increase the maximum clique size (since k > 2). Thus G has clique
number 2k and tree-width 2k — 1. Since each vertex of H is incident to at most two horizontal edges,
G has maximum degree 3k — 1 + 2(%(A —3k)] < A.

Observe that V(G) — V(H) is an independent set of simplicial vertices in G. By Lemma 3, G has a
tree-partition T with width tpw(G), such that for every bag B of T, either B = {v} for some vertex v of
G — H, or the induced subgraph H[B] is connected. Since G is connected, T is a (connected) tree. Let U
be the tree-partition of H induced by T. That is, to obtain U from T delete the vertices of G — H from
each bag, and delete empty bags. Since H is connected, U is a (connected) tree. By Lemma 3, each bag
of U induces a connected subgraph of H.

Suppose that U only has two bags B and C. Then one of B and C contains at least %nk vertices. Since

k > 2, we have tpw(G) > %nk > %k(A — 3k), as desired. Now assume that U has at least three bags.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
doi:10.1016/j.ejc.2008.11.010
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Consider a bag B of U. Let £(B) be the minimum integer such that some vertex in B is in the £(B)-
column, and let r(B) be the maximum integer such that some vertex in B is in the r(B)-column. Since
H[B] is connected, there is a path in B from the £(B)-column to the r (B)-column. By the definition of H,
for each x € [£(B), r(B)], the x-column contains a vertex in B. Let I(B) be the closed real interval from
{(B) — % tor(B) + % Observe that two bags B and C of U are adjacent if and only if I(B) N I(C) # @.
Thus {I(B) : Bis abagof U} is an interval representation of the tree U. Every tree that is an interval
graph is a caterpillar®; see [26] for example. Thus U is a caterpillar.

Let < be the relation on the set of non-leaf bags of U defined by A < B if and only if £(A) < £(B)
and r(A) < r(B). We claim that < is a total order. It is immediate that < is reflexive and transitive.
To prove that < is antisymmetric, suppose on the contrary that A < B and B < A for distinct non-leaf
bags A and B. Thus £(A) = £(B) and r(A) = r(B). Since U has at least three bags, there is a third bag C
that contains a vertex in the (£(A) — 1)-column or in the (r(A) 4+ 1)-column. Thus {A, B, C} induce a
triangle in U, which is the desired contradiction. Hence < is antisymmetric. To prove that < is total,
suppose on the contrary that A Z B and B X A for distinct non-leaf bags A and B. Now A £ B implies
that £(A) > £(B) or r(A) > r(B). Without loss of generality, £(A) > £(B). Thus B £ A implies that
r(B) > r(A). Hence the interval [£(A), r(A)] is strictly within the interval [£(B), r(B)] at both ends.
For each x € [£(A), r(A)], every vertex in the x-column is in A U B, as otherwise U would contain a
triangle (since each column is a clique in H). Moreover, every vertex in the (£(A) — 1)-column or in
the (r(A) 4+ 1)-column is in B, as otherwise U would contain a triangle (since the union of consecutive
columns is a clique in H). Thus every neighbour of every vertex in A is in B. That is, A is a leaf in U. This
contradiction proves that < is a total order on the set of non-leaf bags of U.

Suppose that U has a 4-vertex path (A, B, C, D) as a subgraph.

Thus B and C are non-leaf bags. Without loss of generality, B < C.If every column contains vertices
in both B and C, then B and C and any other bag would induce a triangle in U (since each column
induces a clique in H). Thus some column contains a vertex in B but no vertex in C, and some column
contains a vertex in C but no vertex in B. Let p be the maximum integer such that some vertex in B is
in the p-column, but no vertex in C is in the p-column. Let g be the minimum integer such that some
vertex in C is in the g-column, but no vertex in B is in the g-column. Now p < g since B < C.

We claim that the (p + 1)-column contains a vertex in C. If not, then the (p + 1)-column contains
no vertex in B by the definition of p. Thus r(B) = p since H[B] is connected. Since B is adjacent to C
inU, £(C) <r(B)+ 1 = p+ 1.In particular, the (p 4+ 1)-column contains a vertex in C. Since H[C]
is connected, for x € [p + 1, q], each x-column contains a vertex in C. In fact, £(C) = p + 1 since the
p-column contains no vertex in C. By symmetry, for x € [p, ¢ — 1], each x-column contains a vertex
inB,andr(C) =q— 1.

The union of the p-column and the (p + 1)-column only contains vertices in BU C, as otherwise U
would contain a triangle (since the union of two consecutive columns is a clique in H). By the definition
of p, no vertex in the p-column is in C. Thus every vertex in the p-column is in B. By symmetry, every
vertex in the g-column is in C. Now for each y € [k], the vertices (p,y), (p+1,y), ..., (q,y) areallin
B U C, the first vertex (p, y) is in B, and the last vertex (g, y) is in C. Thus (x,y) € Band (x+ 1,y) € C
for some x € [p, ¢ — 1]. That is, in every row of H there is a horizontal edge with one endpoint in B
and the other in C.

Thus there are at least k horizontal edges with one endpoint in B and the other in C (now considered
to be bags of T). For each such horizontal edge vw, each vertex of G — H adjacent to v and w isin BUC,
as otherwise T would contain a triangle. There are (%(A — 3k)] such vertices of G — H for each of
the k horizontal edges between B and C. Thus [BU C| > %k(A — 3k). Thus one of B and C has at least
1k(A — 3k) vertices. Hence tpw(G) > k(A — 3k) as desired.

Now assume that U has no 4-vertex path as a subgraph.

Atree is a star if and only if it has no 4-vertex path as a subgraph. Hence U is a star. Let R be the root
bag of U. If R contains a vertex in every column then |R| > n, implying tpw(G) > n > %k(A — 3k), as
desired. Now assume that for some x € [n], the x-column of H contains no vertex in R. Let B be a bag

5a caterpillar is a tree such that deleting the leaves gives a path.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
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containing some vertex in the x-column. The x-column induces a clique in H, the only bag in U that
is adjacent to B is R, and R contains no vertex in the x-column. Thus every vertex in the x-column is
in B. Since R is the only bag in U adjacent to B, there are at least k horizontal edges with one endpoint
in B and the other endpoint in R. As in the case when U contained a 4-vertex path, we conclude that
tpw(G) > k(A — 3k) as desired. O

Proof of Theorem 2. Let ¢ = {%1. Thus £ > 2. By Lemma 4, for each integer A > A(k,€) =

max{3¢ + 1, g}, there are infinitely many values of N for which there is a chordal graph G with N
vertices, tree-width tw(G) = 2¢ — 1 < k, maximum degree A(G) < A, and tree-partition-width
tpw(G) > 1€(A — 3¢), which is at least (3 — €)kAsince A > 2L, O

A domino tree decomposition® is a tree decomposition in which each vertex appears in at most
two bags. The domino tree-width of a graph G, denoted by dtw(G), is the minimum width of a domino
tree decomposition of G. Domino tree-width behaves like tree-partition-width in the sense that
dtw(G) > tw(G), and dtw(G) is bounded for graphs of bounded tree-width and bounded degree [1].
The best upper bound is

dtw(G) < (9tw(G) +7) A(G) (A(G)+1) —1,
which is due to Bodlaender [4], who also constructed a graph G with
dtw(G) > 5 tw(G) A(G) — 2.
Tree-partition-width and domino tree-width are related in that every graph G satisfies
dtw(G) > tpw(G) — 1,
as observed by Bodlaender and Engelfriet [1]. Thus Theorem 2 provides examples of graphs G with
dtw(G) > (3 — €) tw(G) A(G).

This represents a small constant-factor improvement over the above lower bound by Bodlaender [4].

4. Lower bound for tree-width 2
We now prove a lower bound on the tree-partition-width of graphs with tree-width 2.

Theorem 3. For all odd A > 11 there is a chordal graph G with tree-width 2, maximum degree A, and
tree-partition-width tpw(G) > %(A — 1).
Proof. As illustrated in Fig. 3, let G be the graph with
VG ={r}U{y:ie[Al}U{wi :ie[a—-1],e[3(A-3)]}, and
E(G) = {rvi:ie[Al}U{vjviy1 i€ A —1]}
U {in,"[, Vi1 Wiy - ie [A — ]], le [%(A — 3)]} .

Observe that G has maximum degree A. Clearly every induced cycle of G is a triangle. Thus G is chordal.
Observe that G has no 4-vertex clique. Thus G has tree-width 2.

6 See [27] for an introduction to tree decompositions.

Please cite this article in press as: D.R. Wood, On tree-partition-width, European Journal of Combinatorics (2009),
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Fig. 4. Illustration for Theorem 3 with A = 19and d = 4.

Let T be the tree-partition of G from Lemma 3. Then T has width tpw(G), and every bag induces
a connected subgraph of G. Let R be the bag containing r. Let By, ..., By be the bags, not including
R, that contain some vertex v;. Thus R is adjacent to each B; (since r is adjacent to each v;). Since

{wig:iel[A-1],L € [%(A — 3)]} is an independent set of simplicial vertices, by Lemma 3, for each

j € [d], the vertices {vq, vz, ..., va} N Bj induce a (connected) subpath of G.

First suppose that d = 0. Then the A + 1 vertices {r, vy, ..., vs} are contained in one bag R. Thus
tpw(G) > A+ 1> 2(Aa—1).

Now suppose that d = 1. Thus {r, vy, ..., va} € R U Bj. In addition, at least one edge v;v;;1 has

one endpoint in R and the other endpoint in B;. Thus w;, € RU By for each £ € [%(A — 3)}]. Hence
1+A+ %(A —3) vertices are contained in two bags. Thus one bag contains at least %(3A — 1) vertices,
and tpw(G) > 134 —1) > 2(A—1).

Finally suppose that d > 2. Since {vq, v2, ..., va} N B; induce a subpath in each bag B;, we can
assume that {vy, va, ..., v} N B = {v; : i € [f(j), g()]}, where

1<f()=g) <f2)<g@2)<--<f(d =g = A
Distinct B; bags are not adjacent (since T is a tree). Thus vf;—1 € R for eachj € [2, d]. Similarly,
Vg+1 € Rforeachj € [d — 1]. Thus wyj—1,, € RUB;foreachj € [2,d] and £ € [%(A - 3)}.
Similarly, wg(j), € RUB;foreachj e [d—1]and ¢ € [%(A — 3)}] (see Fig. 4).
Hence the bags R, By, . .., By contain at least

1+A+2d-1)-3(A-3)

vertices. Therefore one of these bags has at least
AI+A4+Wd-1DA=3)/d+1)

vertices, which is at least 2(A — 1). Hence tpw(G) > 2(A —1). O
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