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a b s t r a c t

Consider the following relaxation of the Hadwiger Conjecture:
For each t there exists Nt such that every graph with no Kt -
minor admits a vertex partition into dαt + βe parts, such that
each component of the subgraph induced by each part has at
most Nt vertices. The Hadwiger Conjecture corresponds to the
case α = 1, β = −1 and Nt = 1. Kawarabayashi and Mo-
har [K. Kawarabayashi, B. Mohar, A relaxed Hadwiger’s conjecture
for list colorings, J. Combin. Theory Ser. B 97 (4) (2007) 647–651.
URL: http://dx.doi.org/10.1016/j.jctb.2006.11.002] proved this re-
laxation with α = 31

2 and β = 0 (and Nt a huge function of t).
This paper proves this relaxation with α = 7

2 and β = −
3
2 . The

main ingredients in the proof are: (1) a list colouring argument
due to Kawarabayashi and Mohar, (2) a recent result of Norine and
Thomas that says that every sufficiently large (t + 1)-connected
graph contains a Kt -minor, and (3) a new sufficient condition for a
graph to have a set of edges whose contraction increases the con-
nectivity.
© 2010 David Wood. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In 1943, Hadwiger [5] made the following conjecture, which is widely considered to be one of the
most important open problems in graph theory; see Ref. [25] for a survey.1

Hadwiger Conjecture. Every graph with no Kt-minor is (t − 1)-colourable.

E-mail address:woodd@unimelb.edu.au.
1 All graphs in this paper are undirected, simple and finite. Let G be a graph. The vertex set and edge set of G are denoted by
V (G) and E(G). For v ∈ V (G), let NG(v) := {w ∈ V (G) : vw ∈ E(G)}. If X ⊆ V (G) then G[X] denotes the subgraph induced by X .
If vw is an edge of G then G/vw is the graph obtained from G by contracting vw; that is, the edge vw is deleted and the vertices
v andw are identified. Aminor of G is a graph that can be obtained from a subgraph of G by contracting edges. A k-colouring of
G is a function that assigns one of at most k colours to each vertex of G, such that adjacent vertices receive distinct colours. G is
k-colourable if G admits a k-colouring.
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TheHadwiger Conjecture holds2 for t ≤ 6. Kostochka [11,12] and Thomason [22,23] independently
proved that for some constant c , every graph G with no Kt-minor has a vertex of degree at most
ct
√
log t (and this bound is best possible). It follows that G is ct

√
log t-colourable. This is the best

known such upper bound. In particular, the following conjecture is unsolved:

Weak Hadwiger Conjecture. For some constant c , every graph with no Kt-minor is ct-colourable.

This conjecture motivated Kawarabayashi and Mohar [8] to prove the following relaxation; see
Ref. [7] for a recent extension to graphs with no odd Kt-minor.

Theorem 1.1 ([8]). For each t ∈ Z+ there exists Nt ∈ Z+ such that every graph with no Kt-minor admits
a vertex partition into

⌈ 31
2 t

⌉
parts, and each connected component of the subgraph induced by each part

has at most Nt vertices.

With Nt = 1 the vertex partition in Theorem 1.1 is a colouring. So Theorem 1.1 is a relaxation of
the Weak Hadwiger Conjecture. It would be interesting to improve the bound of 312 t in Theorem 1.1.
Indeed, Kawarabayashi and Mohar [8] write:

‘‘The 312 t bound can be improved slightly by fine-tuning parts of the proof in [1]. However, new
methods would be needed to go below 10t .’’

The main contribution of this paper is to improve 312 in Theorem 1.1 to
7
2 .

Theorem 1.2. For each t ∈ Z+ there exists Nt ∈ Z+ such that every graph with no Kt-minor admits a
vertex partition into

⌈ 7t−3
2

⌉
parts, and each connected component of the subgraph induced by each part

has at most Nt vertices.

There are threemain ingredients to the proof of Theorem 1.2. The first ingredient is a list colouring
argument due to Kawarabayashi andMohar [8], which is described in Section 2. The second ingredient
is a sufficient condition for a graph to have a set of edgeswhose contraction increases the connectivity.
This condition generalises previous results given byMader [16], and is presented in Section 3. The third
ingredient, the ‘‘newmethods’’ alluded to in the above quote, is the following recent result by Norine
and Thomas [18].

Theorem 1.3 ([18]). For each t ∈ Z+ there exists Nt ∈ Z+ such that every (t + 1)-connected graph with
at least Nt vertices has a Kt-minor.

2. List colouring

A key tool in the proofs of Theorems 1.1 and 1.2 is the notion of list colouring, independently
introduced by Vizing [26] and Erdős et al. [3]. A list assignment of a graph G is a function L that assigns
to each vertex v of G a set L(v) of colours. G is L-colourable if there is a colouring of G such that the
colour assigned to each vertex v is in L(v). G is k-choosable if G is L-colourable for every list assignment
L with |L(v)| ≥ k for each vertex v of G. If G is k-choosable then G is also k-colourable—just use the
same set of k colours for each vertex. See Ref. [29] for a survey on list colouring.
As well as being of independent interest, list colourings enable inductive proofs about ordinary

colourings thatmight be troublesomewithout using lists.Most notable is the proof by Thomassen [24]
that every planar graph is 5-choosable. This proof, unlike most proofs of the 5-colourability of planar
graphs, does not use the fact that every planar graph has a vertex of degree at most 5. Given that

2 If G has no K1-minor then V (G) = ∅ and G is 0-colourable. If G has no K2-minor then E(G) = ∅ and G is 1-colourable. If
G has no K3-minor then G is a forest, which is 2-colourable. Hadwiger [5] and Dirac [2] independently proved that if G has no
K4-minor (so-called series-parallel graphs) then G is 3-colourable. The Hadwiger Conjecture with t = 5 implies the Four-Colour
Theorem, since planar graphs contain no K5-minor. In fact, Wagner [27] proved that the Hadwiger Conjecture with t = 5 is
equivalent to the Four-Colour Theorem, and therefore holds [4,19]. Robertson et al. [20] proved that the Hadwiger Conjecture
with t = 6 also is a corollary of the Four-Colour Theorem.

Please cite this article in press as: D.R.Wood, Contractibility and theHadwiger Conjecture, European Journal of Combinatorics
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there are graphs with no Kt-minor andminimumdegreeΩ(t
√
log t), this suggests that list colourings

might provide an approach for attacking the Hadwiger Conjecture. List colourings also provide a way
to handle small separators—first colour one side of the separator, and then colour the second sidewith
the vertices of the separator precoloured. This idea is central in the proofs of Theorems 1.1 and 1.2.
We need the following definitions. Let G be a graph. For A, B ⊆ V (G), the pair {A, B} is a separation

of G if G = G[A] ∪ G[B] and A − B 6= ∅ and B − A 6= ∅. In particular, there is no edge between A − B
and B − A. The set A ∩ B is called a separator, and each of A − B and B − A are called fragments. If
|A∩B| ≤ t then {A, B} is called a t-separation and A∩B is called a t-separator. By Menger’s Theorem, G
is t-connected if and only if G has no (t−1)-separation and |V (G)| ≥ t+1. For Z ⊆ V (G), a separation
{A, B} of G is Z-good if {A− Z, B− Z} is also a separation of G− Z; otherwise it is Z-bad. Observe that
{A, B} is Z-bad if and only if A− B ⊆ Z or B− A ⊆ Z .
Theorem 1.2 follows from the next lemma (with Z = ∅ and L(v) = {1, . . . ,

⌈ 7t−3
2

⌉
} for each v ∈

V (G)).

Lemma 2.1. Let G be a graph containing no Kt-minor. Let Z ⊆ V (G) with |Z | ≤ 2t − 1. Let L be a list
assignment of G such that:
• |L(v)| = 1 for each vertex v ∈ Z (said to be ‘‘precoloured’’),
• |L(w)| ≥ 7t−3

2 for each vertexw ∈ V (G)− Z.
Then there is a function f such that:
(C1) f (v) ∈ L(v) for each vertex v ∈ V (G),
(C2) for each colour i, if Vi := {v ∈ V (G) : f (v) = i} then each component of G[Vi] has at most

Nt + 2t − 1 vertices (where Nt comes from Theorem 1.3), and
(C3) f (v) 6= f (w) for all v ∈ Z andw ∈ NG(v)− Z.

Proof. We proceed by induction on |V (G)|.
Case I: First suppose that |V (G)| ≤ Nt + 2t − 1. For each vertex v ∈ Z , let f (v) be the element

of L(v). For each vertex w ∈ V (G) − Z , choose f (w) ∈ L(w) such that f (w) 6= f (v) for every vertex
v ∈ Z . This is possible since |L(w)| ≥ 7t−3

2 > 2t − 1 ≥ |Z |. Thus (C1) and (C3) are satisfied. (C2) is
satisfied since |V (G)| ≤ Nt + 2t − 1. Now assume that V (G) ≥ Nt + 2t − 1.
Case II: Suppose that some vertex x ∈ V (G)−Z has degree less than 7t−32 in G. Let f be the function

obtained by induction applied to G− xwith Z precoloured. Choose f (x) ∈ L(x) such that f (x) 6= f (y)
for each y ∈ NG(x). This is possible since |L(x)| ≥ 7t−3

2 > deg(x). Thus x is in its own monochromatic
component. Hence (C1), (C2) and (C3) are maintained. Now assume that every vertex in V (G)− Z has
degree at least 7t−32 .
Case III: Suppose that G has a Z-good t-separation {A, B}. Let P := Z − B and Q := Z ∩ A ∩ B and

R := Z − A and X := (A ∩ B)− Z . Thus P,Q , R, Z are pairwise disjoint. Since Z = P ∪ Q ∪ R, we have
|P| + |Q | + |R| ≤ 2t − 1. Since A ∩ B = Q ∪ X , we have |Q | + |X | ≤ t and |Q | + 2|X | ≤ 2t . Thus
|P|+|R|+2|Q |+2|X | = (|P|+|Q |+|R|)+(|Q |+2|X |) ≤ 4t−1.Without loss of generality, |P| ≤ |R|.
Thus 2|P| + 2|Q | + 2|X | ≤ 4t − 1, implying |P| + |Q | + |X | ≤ 2t − 1. That is, |A∩ (B∪ Z)| ≤ 2t − 1.
Now B ∪ Z 6= V (G), as otherwise A − B ⊆ Z and {A, B} would be Z-bad. Thus the induction

hypothesis is applicable to G[B∪ Z]with Z precoloured. (This is why we need to consider Z-good and
Z-bad separations.) Hence there is a function f such that:

(C1
′

) f (v) ∈ L(v) for each vertex v ∈ B ∪ Z ,
(C2

′

) for each colour i, if V ′i := {v ∈ B ∪ Z : f (v) = i} then each component of G[V
′

i ] has at most
Nt + 2t − 1 vertices, and

(C3
′

) f (v) 6= f (w) for all v ∈ Z andw ∈ (B ∩ NG(v))− Z .

Let L′(w) := {f (w)} for each vertexw ∈ A∩(B∪Z). Let L′(v) := L(v) for each vertex v ∈ A−(B∪Z).
Now apply induction to G[A]with list assignment L′, and A∩ (B∪Z) precoloured. This is possible since
|A ∩ (B ∪ Z)| ≤ 2t − 1. Hence there is a function f such that:

(C1
′′

) f (v) ∈ L′(v) for each vertex v ∈ A,
(C2

′′

) for each colour i, if V ′′i := {v ∈ A : f (v) = i} then each component of G[V
′′

i ] has at most
Nt + 2t − 1 vertices, and

(C3
′′

) f (v) 6= f (w) for all neighbours v ∈ A− (B− Z) andw ∈ A ∩ (B ∪ Z).

Please cite this article in press as: D.R.Wood, Contractibility and theHadwiger Conjecture, European Journal of Combinatorics
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Since L′(v) ⊆ L(v), conditions (C1′) and (C1′′) imply (C1). Since there is no edge between A − B
and B− A in G, (C3′) and (C3′′) imply that every component of G[Vi] is a component of G[V ′i ] or G[V

′′

i ]

or G[Z]. Since Nt + 2t − 1 ≥ |Z |, conditions (C2′) and (C2′′) imply (C2). Hence (C1), (C2) and (C3) are
satisfied. Now assume that every t-separation of G is Z-bad.
Case IV: Every vertex in V (G)− Z has degree at least 7t−32 ≥

3
2k+ |Z | − 2, where k := t + 1. Thus

Theorem 3.3 below implies that G has a (t + 1)-connected minor H with at least |V (G)| − |Z | ≥ Nt
vertices. By Theorem 1.3, H , and thus G, has a Kt-minor. This contradiction completes the proof. �

3. Contractibility

Themain result in this section is Theorem 3.3, whichwas used in the proof of Lemma 2.1. The proof
reduces to questions about contractibility that are of independent interest. Mader [16] proved the
following sufficient condition for a given vertex to be incident to an edgewhose contractionmaintains
connectivity.3 See Refs. [14,17] for surveys of results in this direction.

Theorem 3.1 ([16]). Let v be a vertex in a k-connected graph G, such that every neighbour of v has degree
at least 32k− 1. Then G/vw is k-connected for some edge vw incident to v.

The following strengthening of Theorem 3.1 describes a scenario when there is an edge whose
contraction increases connectivity.

Theorem 3.2. Let v be a vertex in graph G, such that NG(v) is the only minimal (k − 1)-separator, and
every neighbour of v has degree at least 32k−1. Then G/vw is k-connected for some edge vw incident to v.

The first condition in Theorem 3.2 is equivalent to saying that every (k − 1)-separation of G is
{v}-bad. Thus Theorem 3.2 is a special case of the following theorem (with Z = {v}).

Theorem 3.3. Suppose that G is a graph and for some Z ⊂ V (G),

• every (k− 1)-separation of G is Z-bad, and
• every vertex in ∪{NG(v)− Z : v ∈ Z} has degree at least 32k+ |Z | − 2 in G.

Then G has a set of at most |Z | edges, each with one endpoint in Z, whose contraction gives a k-connected
graph.

Proof. We proceed by induction on |Z |. If Z = ∅, or NG(v) ⊆ Z for each v ∈ Z , then G − Z is
k-connected. Now assume that NG(v) 6⊆ Z for some v ∈ Z . By assumption, every vertex in NG(v)− Z
has degree at least 32k + |Z | − 2 in G. By Lemma 3.4 below there is an edge vw with w ∈ NG(v) − Z
such that every (k − 1)-separation of G/vw is (Z − {v})-bad. For every vertex x ∈ V (G/vw), if
contracting vw decreases the degree of some vertex x, then x is a common neighbour of v and w,
and degG/vw(x) = degG(x)− 1. Thus degG/vw(x) ≥

3
2k+ |Z − {v}| − 2. By induction, G/vw has a set

S of at most |Z − {v}| edges whose contraction gives a k-connected graph. Thus S ∪ {vw} is a set of at
most |Z | edges in Gwhose contraction gives a k-connected graph. �

Lemma 3.4. Suppose that G is a graph and for some Z ⊂ V (G) and for some vertex v ∈ Z with NG(v)
− Z 6= ∅,

• every (k− 1)-separation of G is Z-bad, and
• every vertex in NG(v)− Z has degree at least 32k+ |Z | − 2 in G.

Then there is an edge vw withw ∈ NG(v)− Z, such that

• every (k− 1)-separation of G/vw is (Z − {v})-bad.

3 Theorem 3.1 is a special case of Theorem 1 in [16] with S = {{v,w} : w ∈ NG(v)}. Ref. [16] cites Ref. [15] for the proof of
Theorem 1 in [16]. The proof of our Theorem 3.2 was obtained by following a treatment of Mader’s work by Kriesell [13].

Please cite this article in press as: D.R.Wood, Contractibility and theHadwiger Conjecture, European Journal of Combinatorics
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Fig. 1. Separator S and its fragments A′ and B′ . Separator T and its fragments C ′ and D′ . The induced separator U is shaded.

Proof. Suppose on the contrary that for each w ∈ NG(v) − Z , the contracted graph G/vw has a
(Z − {v})-good (k − 1)-separator. This separator must contain the vertex obtained by contracting
vw. Thus G has a Z-good k-separator containing v and w. Let S be the set of Z-good k-separations
{A, B} of G such that v ∈ A ∩ B and A ∩ B ∩ (NG(v)− Z) 6= ∅. We say {A, B} ∈ S belongs to x for each
x ∈ A∩ B∩ (NG(v)− Z). As proved above, for eachw ∈ NG(v)− Z , some separation in S belongs tow.
For each separation {A, B} ∈ S,

(A− B) ∩ (NG(v)− Z) 6= ∅ and (B− A) ∩ (NG(v)− Z) 6= ∅; (1)

otherwise {A− {v}, B} or {A, B− {v}}would be a Z-good (k− 1)-separation of G.
Say {A, B} ∈ S belongs to x ∈ NG(v) − Z , and {C,D} ∈ S belongs to y ∈ (NG(v) − Z) − {x}. Let

S := A ∩ B and T := C ∩ D be the corresponding separators in G. Let A′ := A− B and B′ := B− A and
C ′ := C−D andD′ := D−C be the corresponding fragments in G. LetU := (S∩C ′)∪(S∩T )∪(T ∩A′).
Thus U separates A′ ∩ C ′ and B′ ∪ D′, as illustrated in Fig. 1.
Suppose that A′ ∩ C ′ 6⊆ Z . Since {A, B} is Z-good, B′ 6⊆ Z . Since B′ ∪ D′ 6⊆ Z ,

U :=
{
(A′ ∩ C ′) ∪ U, B′ ∪ D′ ∪ U

}
is a Z-good separation of G, whose separator is U . Thus |U| ≥ k. That is, |S∩C ′|+|S∩T |+|T ∩A′| ≥ k.
Now |S ∩ C ′| + |S ∩ T | = |S| − |S ∩ D′| ≤ k − |S ∩ D′|. Hence k − |S ∩ D′| + |T ∩ A′| ≥ k, implying
|T ∩ A′| ≥ |S ∩ D′|. Similarly, |S ∩ C ′| ≥ |T ∩ B′|. By symmetry,

A′ ∩ C ′ 6⊆ Z H⇒ |T ∩ A′| ≥ |S ∩ D′| and |S ∩ C ′| ≥ |T ∩ B′| (2)

A′ ∩ D′ 6⊆ Z H⇒ |T ∩ A′| ≥ |S ∩ C ′| and |S ∩ D′| ≥ |T ∩ B′| (3)

B′ ∩ C ′ 6⊆ Z H⇒ |T ∩ B′| ≥ |S ∩ D′| and |S ∩ C ′| ≥ |T ∩ A′| (4)

B′ ∩ D′ 6⊆ Z H⇒ |T ∩ B′| ≥ |S ∩ C ′| and |S ∩ D′| ≥ |T ∩ A′|. (5)

Choose a separation {A, B} ∈ S that minimises min{|A− B|, |B− A|}. Let x be a vertex in NG(v)− Z
such that {A, B} belongs to x. Define the separator S, and the fragments A′ and B′ as above.Without loss
of generality, |A′| ≤ |B′|. By (1), there is a vertex y ∈ (NG(v)− Z) ∩ (A− B). Let {C,D} be a separator
in S that belongs to y. Define the separator T , and the fragments C ′ and D′ as above.
Suppose that A′∩C ′ 6⊆ Z and B′∩D′ 6⊆ Z . By (2) and (5), |T∩A′| = |S∩D′|. DefineU andU as above.

ThusU is a Z-good separation of G, whose separator is U . Now |U| = |S ∩ C ′| + |S ∩ T | + |S ∩ D′| =
|S| ≤ k. ThusU is a Z-good k-separation. Observe that v ∈ S∩T ⊆ U and y ∈ A′∩T ⊆ U . ThusU ∈ S
andU belongs to y. One fragment ofU is A′ ∩ C ′ ⊆ A′ − {y} since y ∈ T . Thus |A′ ∩ C ′| < |A′|, which
contradicts the choice of {A, B}.
Thus A′∩C ′ ⊆ Z or B′∩D′ ⊆ Z . By symmetry, A′∩D′ ⊆ Z or B′∩C ′ ⊆ Z . It follows that A′− Z ⊆ T

or B′ − Z ⊆ T or C ′ − Z ⊆ S or D′ − Z ⊆ S. The choice of {A, B}will not be used in the remainder. So
without loss of generality, A′ − Z ⊆ T .

Please cite this article in press as: D.R.Wood, Contractibility and theHadwiger Conjecture, European Journal of Combinatorics
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Fig. 2. Contracting vwi produces a (k− 1)-separation.

We claim that A′ − Z or B′ − Z or C ′ − Z or D′ − Z has at most 12 max{|S − T |, |T − S|} vertices.
If B′ − Z ⊆ T , then (A′ − Z) ∪ (B′ − Z) ⊆ T − S, implying that A′ − Z or B′ − Z has at most
1
2 |T − S| vertices, as claimed. Now assume that B

′
− Z 6⊆ T . Without loss of generality, B′ ∩ C ′ 6⊆ Z .

By (4), |S ∩ C ′| ≥ |T ∩ A′| = |A′ − Z |. If |A′ − Z | ≤ 1
2 |S − T | then the claim is proved. Otherwise,

|S ∩ C ′| ≥ |A′− Z | > 1
2 |S− T |. Thus |S ∩D

′
| < 1

2 |S− T | (since S− T is the disjoint union of S ∩ C
′ and

S ∩D′). If D′− Z ⊆ S then |D′− Z | ≤ |D′∩ S| < 1
2 |S− T |. So assume that D

′
− Z 6⊆ S. Thus D′∩B′ 6⊆ Z .

By (5), |S ∩ D′| ≥ |T ∩ A′| = |A′ − Z | > 1
2 |S − T |, which is a contradiction.

Hence |Q − Z | ≤ 1
2 max{|S− T |, |T − S|} for some fragment Q ∈ {A

′, B′, C ′,D′}. Nowmax{|S− T |,
|T − S|} = max{|S|, |T |} − |S ∩ T | ≤ k − 1 since v ∈ S ∩ T . Thus |Q | ≤ 1

2 (k − 1) + |Z |.
By (1), there is a vertex w ∈ (NG(v) − Z) ∩ Q . Then NG(w) ⊆ Q ∪ S or NG(w) ⊆ Q ∪ T .
Since v ∈ S ∩ T ∩ Z and |S − {v}| ≤ k − 1 and |T − {v}| ≤ k − 1 and w ∈ Q , we have
deg(w) ≤ 1

2 (k−1)+|Z |+ (k−1)−1 =
3k−5
2 +|Z |. This contradicts the assumption that each vertex

in NG(v)− Z has degree at least 32k+ |Z | − 2. �

We now show that the degree bound in Theorem 3.2 is best possible. The proof is an adaptation
of a construction by Watkins [28] that shows that the degree bound in Theorem 3.1 is best possible.
For odd k ≥ 5 and n ∈ [4, k − 1], let p := 1

2 (k − 1). Start with the lexicographic product Cn · Kp,
which consists of n disjoint copies H1, . . . ,Hn of Kp, where every vertex in Hi is adjacent to every
vertex in Hi+1, and Hj means Hjmodn. Let G be the graph obtained by adding a new vertex v adjacent
to one vertex wi in each Hi, as illustrated in Fig. 2. It is straightforward to verify that there are k
internally disjoint paths inG between each pair of distinct vertices inV (G)−{v}. ThusNG(v) is the only
minimal (k− 1)-separator in G (since deg(v) = n ≤ k− 1). For each neighbourwi of v, observe that
deg(wi) = (p−1)+2p+1 = 3

2 (k−1), but inG/vwi the set V (Hi)∪V (Hi+2) is a 2p-separator, implying
that G/vwi is not k-connected. Thus the degree bound of 32k− 1 in Theorem 3.2 is best possible.

4. Final remarks

Seymour and Thomas conjectured the following strengthening of Theorem 1.3.

Conjecture 4.1 (Seymour and Thomas). For each t ∈ Z+ there exists Nt ∈ Z+ such that every t-connected
graph Gwith at least Nt vertices and no Kt minor contains a set S of t−5 vertices such that G−S is planar.

Kawarabayashi et al. [9,10] proved this conjecture for t ≤ 6. Recently, Norine and Thomas [18]
proved it for t ≤ 8. If true, Conjecture 4.1 can be used instead of Theorem 1.3 to make small improve-
ments to Theorem 1.2.
Given that list colourings are a useful tool in attacking the Hadwiger Conjecture, it is interesting to

ask what is the least function f such that every graph with no Kt-minor is f (t)-choosable. Since every

Please cite this article in press as: D.R.Wood, Contractibility and theHadwiger Conjecture, European Journal of Combinatorics
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graph with no Kt-minor has a vertex of degree at most ct
√
log t , it follows that f (t) ≤ ct

√
log t , and

this is the best known bound. In particular, the following conjecture of Kawarabayashi and Mohar [8]
is unsolved.

Weak List Hadwiger Conjecture. For some constant c , every graphwith no Kt-minor is ct-choosable.

Kawarabayashi andMohar [8]write that this conjecturemay holdwith c = 1, and that they believe
that it holds with c = 3

2 . We dare to conjecture the following.

List Hadwiger Conjecture. Every graph with no Kt-minor is t-choosable.

This conjecture holds for t ≤ 5 [6,21]. The t = 6 case is open.
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