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Minimising the Number of Bends and Volume in
3-Dimensional Orthogonal Graph Drawings

with a Diagonal Vertex Layout1

David R. Wood2

Abstract. A 3-dimensional orthogonal drawing of a graph with maximum degree at most 6, positions the
vertices at grid-points in the 3-dimensional orthogonal grid, and routes edges along grid-lines such that edge
routes only intersect at common end-vertices. Minimising the number of bends and the volume of 3-dimensional
orthogonal drawings are established criteria for measuring the aesthetic quality of a given drawing. In this
paper we present two algorithms for producing 3-dimensional orthogonal graph drawings with the vertices
positioned along the main diagonal of a cube, so-called diagonal drawings. This vertex-layout strategy was
introduced in the 3-BENDS algorithm of Eades et al. [Discrete Applied Math. 103:55–87, 2000]. We show
that minimising the number of bends in a diagonal drawing of a given graph is NP-hard. Our first algorithm
minimises the total number of bends for a fixed ordering of the vertices along the diagonal in linear time. Using
two heuristics for determining this vertex-ordering we obtain upper bounds on the number of bends. Our second
algorithm, which is a variation of the above-mentioned 3-BENDS algorithm, produces 3-bend drawings with
n3 + o(n3) volume, which is the best known upper bound for the volume of 3-dimensional orthogonal graph
drawings with at most three bends per edge.

Key Words. Graph drawing, Orthogonal, 3-Dimensional, Diagonal layout, Vertex-ordering, Book
embedding.

1. Introduction. The aim of graph drawing is to display a given graph so that the
inherent relational information of the graph is clear to the user. There has been substantial
research into automatically drawing graphs in two dimensions [11], [17]. Motivated by
experimental evidence suggesting that displaying a graph in three dimensions is better
than in two [32], [33], [26], there is a growing body of research in 3-dimensional graph
drawing. In this paper we are interested in 3-dimensional orthogonal graph drawing;
here the edges of the graph are drawn as polygonal chains composed of axis-parallel
segments. This style of drawing has applications in VLSI circuit design; see for example
[1] and [20].

Throughout this paper we consider n-vertex m-edge undirected graphs G, possibly
with parallel edges but no loops, with vertex set V (G) and edge set E(G). The 3-
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dimensional orthogonal grid consists of grid-points in 3-dimensional space with integer
coordinates, together with the axis-parallel grid-lines determined by these points. The
I = k plane, for some I ∈ {X, Y, Z} and integer k, is called a grid-plane. A 3-dimensional
orthogonal drawing of a graph positions each vertex at a unique grid-point, and routes
each edge as a polygonal chain composed of contiguous sequences of axis-parallel
segments contained in grid-lines, such that (a) the end-points of an edge route are the
grid-points representing the end-vertices of the edge, and (b) no two edge routes cross
(that is, distinct edge routes only intersect at a common end-vertex). For brevity we refer
to a 3-dimensional orthogonal drawing as a drawing. At a vertex v the six directions,
or ports, the edges incident with v can use are denoted by X+v , X−v , Y+v , Y−v , Z+v and
Z−v . Clearly, drawings can only exist for graphs with maximum degree at most 6, so-
called 6-graphs. To construct orthogonal drawings of graphs with degree greater than 6,
vertices can be represented by grid-boxes [5], [7], [16], [28] [34], [36] or by points in a
multidimensional grid [35].

Every 6-graph has an infinite number of drawings. Various criteria have been proposed
in the literature to evaluate the aesthetic quality of a particular drawing. Firstly, the volume
of the drawing should be small. The volume of a drawing is the volume of the smallest
axis-aligned box, called the bounding box, that encloses the drawing. For convenience,
we consider the dimensions of the bounding box to be the number of grid-points along
each side (which is one more than the actual side length). This enables a 2-dimensional
drawing to have positive volume.

Drawings with many bends in the edges appear cluttered and are difficult to visualise,
and in VLSI circuits, many bends increase the cost of production and the chance of
circuit failure. Therefore minimising the number of bends is an important aesthetic
criterion for orthogonal drawings. In this paper we consider bounds on both the maximum
number of bends per edge and the total number of bends in 3-dimensional orthogonal
graph drawings. A drawing with no more than b bends per edge is called a b-bend
drawing.

Using straightforward extensions of the corresponding 2-dimensional NP-hardness
results, minimising either the volume or the total number of bends in a drawing of a
given 6-graph is NP-hard [13]. Other proposed aesthetic criteria include the length of
edges and whether the drawing is “truly 3-dimensional”. A number of tradeoffs between
aesthetic criteria, most notably between the maximum number of bends per edge route
and the bounding box volume [14], have been observed in existing algorithms.

A lower bound of�(n3/2) for the volume of a drawing was established by Kolmogorov
and Barzdin [19] (also see [6] and [30]). This lower bound is asymptotically matched by
algorithms of Biedl [6] and Eades and co-workers [13], [14], which all produce drawings
with O(n3/2) volume. The COMPACT algorithm of Eades et al. [14], which routes each
edge with at most seven bends, uses the least number of bends out of these algorithms.
Other algorithms for 3-dimensional orthogonal graph drawing have been proposed by
Biedl et al. [4], Closson et al. [10], Eades et al. [14], Di Battista et al. [12], Papakostas
and Tollis [28] and Wood [39]. Wood [38] establishes lower bounds for the number of
bends, and Lynn et al. [23] introduce a number of postprocessing techniques for the
refinement of drawings.

That every 6-graph has a 3-bend drawing was established by the 3-BENDS algorithm
of Eades et al. [14] and the INCREMENTAL algorithm of Papakostast and Tollis [28]. The
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INCREMENTAL algorithm,3 which supports the on-line insertion of vertices in constant
time, produces drawings with 4.63n3 volume. The 3-BENDS algorithm produces drawings
with 27n3 volume4 by positioning each vertex vi at (3i, 3i, 3i) for some arbitrary vertex-
ordering (v1, v2, . . . , vn). A similar vertex layout strategy is employed in this paper.

DEFINITION 1. For a graph G, a total order < on V (G) induces a numbering (v1, v2,

. . . , vn) of V (G) and vice versa. We refer to both < and (v1, v2, . . . , vn) as a vertex-
ordering of G. A 3-dimensional orthogonal drawing of a graph G is diagonal if there
exists a vertex-ordering of G such that for all vertices v,w ∈ V (G) with v < w, and for
each dimension I ∈ {X, Y, Z}, the I -coordinate of v is less than the I -coordinate of w.
The vertex-ordering associated with a diagonal drawing is called the diagonal ordering.

Diagonal drawings are examples of the wider class of general position 3-dimensional
orthogonal drawings, in which no two vertices are in a common grid-plane.5 This model,
introduced by Papakostas and Tollis [28] and Biedl [7] in the context of 3-dimensional
orthogonal box-drawings, has also been used in the quadratic-time algorithm of [39],
which produces general position 4-bend drawings of simple 6-graphs with at most 16

7 m
bends and at most 2.13n3 volume. This algorithm moves the vertices from an initial
diagonal layout with the aim of reducing bends.

Our aim in this paper is to study the minimisation of bends and volume in diagonal
drawings. We make the following contributions. First, we prove that it is NP-hard to
minimise the number of bends in a diagonal drawing of a given 6-graph, and remains
NP-hard for bipartite 6-graphs. The main result of this paper is an algorithm which,
given a fixed diagonal ordering of a 6-graph, determines a diagonal drawing with the
minimum number of bends in O(n) time. This algorithm is described in Section 3.
In Section 4 we analyse two heuristics for determining an appropriate vertex-ordering.
Using st-orderings our algorithm produces drawings of 6-regular graphs with 8

3 m bends.
The second heuristic produces drawings of simple 6-regular graphs with at most 31

12 m
bends. The final contribution of this paper, described in Section 5, is a variant of the
3-BENDS algorithm of Eades et al. [14], which, using a particular diagonal ordering and
a modified edge routing strategy, produces diagonal drawings with n3 + o

(
n3
)

volume,
which is the best known upper bound for the volume of 3-bend drawings.

2. Notation. Let (v1, v2, . . . , vn) be a vertex-ordering of a graph G with correspond-
ing total order <. For each edge e = vw ∈ E(G) with v < w we define R(e) =
w and L(e) = v; e is called a successor edge of v and a predecessor edge of w.
The number of successor and predecessor edges of a vertex v are denoted by succ(v)

3 The INCREMENTAL algorithm, as stated in [28], only works for simple graphs, however, with a suitable
modification it also works for multigraphs [A. Papakostas, private communication, 1998].
4 By deleting grid-planes not containing a vertex or a bend the volume is reduced to 8n3.
5 In the computational geometry literature, a set of points in 3-space are in general position if no three are
collinear and no four are coplanar. Therefore general grid position may be a better term to describe a set of
grid-points with no two in a common grid-plane. However, the former term has been adopted as standard in
the orthogonal graph drawing literature [7], [5], [34], [39].
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v[1] = w[−1]

v[2] = w[−2]

v[3] = w[−3]

u[1] = v[−1] w[1] = x[−1]

u[2] = w[−4] v[4] = x[−2]

x[1]

x[2]

u[−1]

u[−2]

u v w x

Fig. 1. Numbering edges in a vertex-ordering.

and pred(v), respectively. That is, pred(v) = |{vw ∈ E(G) : w < v}| and succ(v)=
|{vw ∈ E(G) : v < w}|. The successor edges ofv are denoted byv[1], v[2], . . . , v[succ](v),
where

R(v[1]) ≤ R(v[2]) ≤ . . . ≤ R(v[succ(v)]).

The predecessor edges of v are denoted by v[−1], v[−2], . . . , v[−pred(v)], where

L(v[−pred(v)]) ≤ L(v[−pred(v)+ 1]) ≤ . . . ≤ L(v[−1]).

Furthermore, we require the following consistent numbering of parallel edges. If e1 =
{v,w} and e2 = {v,w} are parallel edges with e1 = v[i] = w[ j], then we require that
if e2 = v[i + 1], then e2 = w[ j − 1], as illustrated in the example of Figure 1.

Associated with a graph G is the arc set A(G) = {(v,w), (w, v) : vw ∈ E(G)}
consisting of two anti-parallel directed arcs for each edge of G. An arc (v,w) ∈ A(G)
is denoted by −→vw, and is called the reversal of −→wv. Given a vertex-ordering of G, for
each edge e ∈ E(G), if e = v[i] = w[ j], then the arcs−→vw and−→wv associated with e are
denoted by

−→
v[i] and

−−→
w[ j], respectively.

3. Bend-Minimum Algorithm. We now describe an algorithm which, given a fixed
diagonal ordering of a 6-graph G, determines a bend-minimum drawing of G. First,
we establish an elementary lower bound for the number of bends in a diagonal draw-
ing. Consider a diagonal drawing of a 6-graph G with corresponding vertex-ordering
(v1, v2, . . . , vn). Since any two vertices differ in all three coordinates, every edge has
at least two bends. Furthermore, if an edge vivj with i < j uses a negative port at vi

or a positive port at vj , then the edge needs at least three bends. If vivj uses a negative
port at vi and a positive port at vj , then the edge needs at least four bends. Each vertex
v ∈ V (G) has at least max {max {succ(v), pred(v)} − 3, 0} incident edges that must use
a port at v which points away from the destination of the edge. Therefore the number of
bends in a diagonal drawing of an m-edge graph G is at least

2m +
∑

v∈V (G)

max {max {succ(v), pred(v)} − 3, 0}.(1)

Algorithm BEND-MINIMUM DIAGONAL DRAWING below, given a fixed diagonal or-
dering (v1, v2, . . . , vn), determines a diagonal drawing with precisely this number of
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Table 1. Definition of v[A], v[B], . . . , v[F] for each type of vertex v.

v[A] v[B] v[C] v[D] v[E] v[F]

succ(v) = 6 v[4] v[5] v[6] v[1] v[2] v[3]
succ(v) = 5 v[-1] v[4] v[5] v[1] v[2] v[3]
succ(v) = 4 v[-2] v[-1] v[4] v[1] v[2] v[3]
succ(v), pred(v) ≤ 3 v[-3] v[-2] v[-1] v[1] v[2] v[3]
pred(v) = 4 v[-3] v[-2] v[-1] v[-4] v[1] v[2]
pred(v) = 5 v[-3] v[-2] v[-1] v[-5] v[-4] v[1]
pred(v) = 6 v[-3] v[-2] v[-1] v[-6] v[-5] v[-4]

bends. The algorithm employs the following notation defined in Table 1. For each vertex
v ∈ V (G), label the edges incident to v by v[A], v[B], . . . , v[F], depending on pred(v)
and succ(v), where {A, B, . . . , F} ⊆ {−pred(v), . . . , succ(v)}. Note that if deg(v) < 6,
then some of v[A], v[B], . . . , v[F] will not be defined.

The algorithm will assign negative ports at v to the edges {v[A], v[B], v[C]}, and
positive ports at v to {v[D], v[E], v[F]}. The assignment of edges to ports is modelled
by a 3-colouring of A(G)with colours {X, Y, Z}. If the arc−→vw is coloured I ∈ {X, Y, Z},
then the edge vw will use an I -port at v.

LEMMA 1. Given a vertex-ordering (v1, v2, . . . , vn) of a 6-graph G there is a 3-
colouring of A(G) that can be determined in O(n) time, such that:

(a) reversal arcs are coloured differently; that is, for every edge vw ∈ E(G), col(−→vw) �=
col(−→wv), and

(b) for every vertex v ∈ V (G), col(v[A]), col(v[B]) and col(v[C]) are pairwise distinct,
and col(v[D]), col(v[E]) and col(v[F]) are pairwise distinct.

PROOF. Construct a graph H with V (H) = A(G) as follows. We refer to a ver-
tex of H by the corresponding arc in A(G). For each vertex v ∈ V (G), add cliques
{−−→v[A],

−−→
v[B],

−−→
v[C]} and {−−→v[D],

−−→
v[E],

−−→
v[F]} to E(H). These edges are called “c” edges.

Note that the above-mentioned cliques may be empty or consist of a single edge. For each
edge vw ∈ E(G), add the edge {−→vw,−→wv}, called an “r”-edge, to E(H), as illustrated in
the example of Figure 2.

A vertex of H is incident with one “r”-edge and at most two “c”-edges. Hence H has
maximum degree at most 3, and is not K4; thus by Brooks’s theorem [9], H is vertex
3-colourable. The proof of Brooks’s theorem due to Lovász [22] describes an algorithm
for vertex 3-colouring H in O(|E(H)|) ⊆ O(n) time [2]. A vertex 3-colouring of H
defines a 3-colouring of A(G) with the claimed properties.

Each edge constructed by our algorithm consists of three consecutive perpendicular
segments possibly with unit length segments attached at either end. If an edge vw has
such a unit length segment attached at v, then we say the edge vw is anchored at v, and
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−−→
v[4]

−−−→
v[−1]

−−−→
v[−2]

“r”

“r”

“r” −−→
v[1]

−−→
v[2]

−−→
v[3]

“r”

“r”

“r”

Fig. 2. Subgraph of H corresponding to a vertex v with pred(v) = 2 and succ(v) = 4.

the arc −→vw is anchored. (See [39] for analogous definitions in the context of arbitrary
general position drawings.)

Algorithm 1. BEND-MINIMUM DIAGONAL DRAWING

Input: vertex-ordering (v1, v2, . . . , vn) of a 6-graph G
Output: diagonal drawing of G

1. Initially position each vertex vi , 1 ≤ i ≤ n, at (3i, 3i, 3i).
2. Determine a 3-colouring of A(G) with colours {X, Y, Z}, as described in

Lemma 1.
3. Construct an edge route for each edge e = vivj ∈ E(G) as follows. Suppose

i < j , e = vi [α] = vj [β], col(−→vivj ) = I and col(−→vjvi ) = J , for some
α, β ∈ {A, B, . . . , F} and I, J ∈ {X, Y, Z}. By Lemma 1(a), I �= J . In
what follows we use (I, J, K )-coordinates, where K ∈ {X, Y, Z}\{I, J }.
(a) If α ∈ {D, E, F} and β ∈ {A, B,C}, then, as illustrated in Figure 3(a),

route vivj with the 2-bend edge route (3i, 3i, 3i) → (3 j, 3i, 3i) →
(3 j, 3i, 3 j)→ (3 j, 3 j, 3 j) using the I+vi

and J−vj
ports.

(b) If α ∈ {A, B,C} and β ∈ {A, B,C}, then, as illustrated in Figure 3(b),
route vivj with the 3-bend edge route (3i, 3i, 3i)→ (3i − 1, 3i, 3i)→
(3i − 1, 3i, 3 j) → (3 j, 3i, 3 j) → (3 j, 3 j, 3 j) using the I−vi

and J−vj

ports.
(c) If α ∈ {D, E, F} and β ∈ {D, E, F}, then, as illustrated in Figure 3(c),

route vivj with the 3-bend edge route (3i, 3i, 3i) → (3 j, 3i, 3i) →
(3 j, 3 j + 1, 3i)→ (3 j, 3 j + 1, 3 j)→ (3 j, 3 j, 3 j) using the I+vi

and
J+vj

ports.

vi

vj

(a)

1
vi

vj

(b) anchored at vi

1

vi

vj

(c) anchored at vj

I

K
J

Fig. 3. 2-Bend and 3-bend edge routes.
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1

1

vi

vj

I

K
J

Fig. 4. 4-Bend edge route anchored at vi and at vj .

(d) If α ∈ {A, B,C} and β ∈ {D, E, F}, then, as illustrated in Figure 4,
route vivj with the 4-bend edge route (3i, 3i, 3i)→ (3i − 1, 3i, 3i)→
(3i − 1, 3 j + 1, 3i) → (3i − 1, 3 j + 1, 3 j) → (3 j, 3 j + 1, 3 j) →
(3 j, 3 j, 3 j) using the I−vi

and J+vj
ports.

4. For each pair of vertices v,wwith more than one 2- or 3-bend edge between
v and w, reroute such edges as illustrated in Figure 5 depending on the set
of ports at v andw assigned to these edges. Existing 4-bend edge routes vw
are left as is. It is easily checked that the cases shown in Figure 5 suffice
(due symmetry between v and w, the numbering of edges in Section 2 and
Table 1, and the fact that reversal arcs are coloured differently).

5. Delete grid-planes not containing a vertex or a bend.

THEOREM 1. The BEND-MINIMUM DIAGONAL DRAWING algorithm determines, inO(n)
time, a diagonal drawing of G with 2m + k bends and (n + k/3)3 volume, where

k =
∑

v∈V (G)

max {max {succ(v), pred(v)} − 3, 0}

is the number of anchored arcs.

PROOF. We first show that each edge is assigned a unique port at its end-vertices. Before
parallel edges are rerouted in Step 4, the edges v[A], v[B] and v[C] use negative ports at
a vertex v. In particular, v[A] (respectively, v[B] and v[C]) is assigned the I−v port where

the arc
−−→
v[A] (respectively,

−−→
v[B] and

−−→
v[C]) is coloured I ∈ {X, Y, Z}. By Lemma 1(b),−−→

v[A],
−−→
v[B] and

−−→
v[C] receive distinct colours. Hence v[A], v[B] and v[C] use distinct

negative ports at v. Similarly, the edges v[D], v[E] and v[F] use distinct positive ports
at v. Therefore all edges incident to v are assigned distinct ports at v, which clearly also
holds after Step 4.

For each vertex v ∈ V (G), if succ(v) > pred(v), then an edge v[α] is anchored at
v if and only if α ∈ {A, B,C}; hence the arcs

−−→
v[α], 4 ≤ α ≤ succ(v), are anchored

(refer to Table 1). If pred(v) > succ(v), then an edge v[α] is anchored at v if and only if
α ∈ {D, E, F}; hence the arcs

−−−→
v[−α], 4 ≤ α ≤ pred(v), are anchored (refer to Table 1).

Therefore the number of anchored arcs

k =
∑

v∈V (G)

max {max {succ(v), pred(v)} − 3, 0}.
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w
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I, J

K

I, J, K

v

w
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I, J, K I, J, K

I

K
J

Fig. 5. Rerouting parallel 2-bend and 3-bend edge routes.

Each edge vw has two bends if neither of−→vw and−→wv is anchored, three bends if exactly
one of−→vw and−→wv is anchored, and four bends if both of−→vw and−→wv are anchored. Thus
the total number of bends before Step 4 of the algorithm is

2m +
∑

v∈V (G)

max {max {succ(v), pred(v)} − 3, 0}.

Step 4 preserves the total number of bends. Thus the final drawing has the claimed
number of bends.

We now prove that there are no edge crossings. For each vertex vi and dimension
I ∈ {X, Y, Z}, we say that the (I = 3i − 1)-plane, the (I = 3i)-plane and the (I =
3i + 1)-plane (and the grid-points contained in these planes) belong to vi . Clearly, all
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vi

vj

vk

(a)

vi

vk

vj

(b)
vi

vk

vj

(c)

Fig. 6. Non-crossing edge routes.

grid-points contained in an edge route vw belong to both v and w. Suppose the edges
vw and xy cross. Then the grid-point of intersection must belong to each of v, w, x and
y. Since each grid-plane belongs to a single vertex, each grid-point belongs to at most
three vertices. Therefore two of {v,w, x, y} are equal; that is, intersecting edges must
be incident to a common vertex. Suppose for the sake of contradiction that before Step
5 of the algorithm, the edges e1 = vivj and e2 = vivk cross.

In all edge routes, before Step 5 there are no consecutive unit length segments, and
an edge crossing involving a unit-length segment must also involve the adjacent non-
unit-length segment. Thus we need only consider crossings between the non-unit-length
segments of e1 and e2. Consider the following cases which depend on the relative values of
i , j and k, and whether−→vivj and−→vivk are anchored. As discussed above, if i < j < k and−→vivj is anchored, then −→vivk will also be anchored. We assume without loss of generality
that succ(vi ) ≥ pred(vi ).

Case 1: j < i < k. By construction, −→vivj is not anchored. Thus, the edge route vivj is
contained within the box with corners at (3 j−1, 3 j−1, 3 j−1) and (3i, 3i, 3i). We can
suppose without loss of generality that col(−→vivk) = X , the edge route vivk is contained
within the box with corners at (3i − 1, 3i, 3i) and (3k+ 1, 3k+ 1, 3k+ 1), as illustrated
in Figure 6(a). Since vivj and vivk use different ports at vi , both vivj and vivk cannot
pass through (3i − 1, 3i, 3i) which is the only grid-point besides vi in both boxes. Thus
e1 and e2 do not cross.

Case 2: i < j < k and both −→vivj and −→vivk are not anchored. As illustrated in Fig-
ure 6(b), since vivj and vivk use different ports at vi the edge routes do not cross.

Case 3: i < j < k and −→vivk is anchored. Suppose without loss of generality that
col(−→vivj ) = X . As illustrated in Figure 6(c), the edge vivj is contained in the box with
corners at (3i − 1, 3i, 3i) and (3 j + 1, 3 j + 1, 3 j + 1). Since vivj and vivk use different
ports at vi , vivk does not enter this box. Hence e1 and e2 do not cross.

Case 4: i < j = k. Thus e1 and e2 are parallel edges. Two parallel 4-bend edges do not
cross as illustrated in Figure 7(a). Parallel edges with at most three bends are rerouted
in Step 4 of the algorithm with no crossings. As illustrated in Figure 7(b), a 4-bend edge
and a parallel edge with at most three bends (which is contained in the shaded region)
do not cross.

Therefore the algorithm produces a drawing with no edge crossings. It should be
noted that the choice of edge numbering in Section 2 is crucial to eliminate problematic
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(a)

vi

vj

(b)

X

Z
Y

Fig. 7. Parallel 4-bend edges do not cross.

cases in Step 4 of the algorithm. For example, given a port assignment for the two parallel
edges illustrated in Figure 8, it is not possible to route the edges using the given ports
without possibly creating a crossing. This case will not arise since this would imply an
inconsistent numbering of the edges, as illustrated in the example of Figure 8.

Finally we measure the volume of the bounding box. A grid-plane containing an edge
segment also contains an end-vertex of the edge or a bend in the edge route. Thus a grid-
plane not containing a vertex or a bend can be removed without affecting the drawing.
Before removing such “empty” grid-planes, for each dimension I ∈ {X, Y, Z}, the
(I = 3i−1)-plane (respectively, (I = 3i+1)-plane) belonging to the vertex vi contains
a bend if and only if there is an anchored edge route using the I−v (I+v ) port. After removing
the empty grid-planes in Step 5, the bounding box is thus (n+kX )× (n+kY )× (n+kZ ),
where kI is the number of anchored arcs coloured I ∈ {X, Y, Z}. It is well known that of
the boxes with fixed sum of side length the cube has maximum volume (see for example
[18]). Hence if k is the total number of anchored arcs, then the bounding box volume
is maximised when kX = kY = kZ = k/3, thus the bounding box volume is at most
(n+ k/3)3. Each step of the BEND-MINIMUM DIAGONAL DRAWING algorithm can easily
be implemented in O(n) time.

By (1) the number of bends in the drawings produced by the BEND-MINIMUM DIAG-
ONAL DRAWING algorithm is optimal for a fixed diagonal ordering. For 6-graphs with
minimum degree 5, max {succ(v), pred(v)} ≥ 3, and hence by Theorem 1, the number
of bends in a drawing produced by the BEND-MINIMUM DIAGONAL DRAWING algorithm
is 2m − 3n +∑v max {succ(v), pred(v)}. Therefore minimising the number of bends

vi

vj

vi[2] = vj [�1] vi[1] = vj [�2]

vi vj
e.g.

Fig. 8. A crossing between parallel edges.



3-Dimensional Orthogonal Graph Drawings 245

in a diagonal drawing of a 6-graph with minimum degree 5 is equivalent to finding a
vertex-ordering that minimises

∑
v∈V (G)

max {succ(v), pred(v)}.(2)

Biedl et al. [3] show that minimising (2) is NP-hard, and remains NP-hard for bipartite
graphs with minimum degree 5 and maximum degree 6. The next result follows.

THEOREM 2. Minimising the number of bends in a diagonal drawing of a given 6-graph
is NP-hard, and remains NP-hard for bipartite 6-graphs.

Since max {max {succ(v), pred(v)} − 3, 0} = 0 if and only if succ(v) ≤ 3 and
pred(v) ≤ 3, we have the following characterisation of 2-bend diagonal drawings.

COROLLARY 1. A diagonal ordering of a 6-graph G admits a 2-bend 3-dimensional
orthogonal drawing if and only if every vertex v has succ(v) ≤ 3 and pred(v) ≤ 3.

4. Analysis of Heuristics. We now describe and analyse two methods for deter-
mining an appropriate diagonal ordering; that is, a vertex-ordering with bounds on∑

v max {succ(v), pred(v)}.
A vertex-ordering (v1, v2, . . . , vn) of a graph G is an st-ordering if v1 = s, vn = t ,

and for every other vertex vi , 1 < i < n, pred(vi ) ≥ 1 and succ(vi ) ≥ 1. Lempel et
al. [21] show that for a biconnected graph G and for all s, t ∈ V (G), there exists an
st-ordering of G. If we apply the BEND-MINIMUM DIAGONAL DRAWING algorithm with
the diagonal ordering an st-ordering we obtain the following result.

THEOREM 3. An n-vertex m-edge biconnected 6-graph G has a diagonal drawing,
that can be determined in O(n) time, with at most 3m − n + O(1) bends and at most
( 1

3 (2n + m) + O(1))3 volume. If G is 6-regular, then the number of bends is at most
8
3 m +O(1) and the volume is at most 4.63n3 + o

(
n3
)
.

PROOF. Let ni be the number of vertices v ∈ V (G) with deg(v) = i . Since G is
biconnected, n0 = 0 and n1 = 0. Consider an st-ordering of G. For each v ∈ {s, t},
max {succ(v), pred(v)} = deg(v); thus

max {max {succ(v), pred(v)} − 3, 0} =




0, if deg(v) ≤ 3;
1, if deg(v) = 4;
2, if deg(v) = 5;
3, if deg(v) = 6.

For all other vertices v we have

max {max {succ(v), pred(v)} − 3, 0} ≤



0, if deg(v) ≤ 4;
1, if deg(v) = 5;
2, if deg(v) = 6.
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Hence, when applying the BEND-MINIMUM DIAGONAL DRAWING algorithm, by Theo-
rem 1, the number of bends is

2m +
∑

v∈V (G)

max {max {succ(v), pred(v)} − 3, 0} ≤ 2m + n5 + 2n6 + 2.

Now,

0 ≤ n3 + 2n4 + n5,

2n5 + 4n6 ≤ n3 + 2n4 + 3n5 + 4n6,

2n5 + 4n6 ≤ (2n2 + 3n3 + 4n4 + 5n5 + 6n6)− 2n,

2n5 + 4n6 ≤ 2(m − n),

n5 + 2n6 ≤ m − n,

2m + n5 + 2n6 ≤ 3m − n.

Thus the number of bends is at most 3m − n + 2, and by Theorem 1 the volume is at
most (n + 1

3 (m − n + 2))3 = ( 1
3 (2n +m + 2))3. If G is 6-regular, then m = 3n and the

claimed bounds immediately follow. Using the algorithm of [15] and by Theorem 1, the
st-ordering and the drawing itself can be determined in O(n) time.

Note that for a non-biconnected graph G with a constant number of end-blocks, a
similar method to the above (see [3]) establishes the same upper bounds on the number
of bends and the volume of a drawing of G as in Theorem 3.

Our second heuristic for determining a balanced vertex-ordering of a simple graph
inserts each vertex, in turn, midway between its already inserted neighbours, and in
the case of an odd number of already inserted neighbours, minimises the imbalance
of the median neighbour. We call this the MEDIAN PLACEMENT algorithm; see [3] for
details. Similar methods were used for graph drawing in [8] for example. Employing
the MEDIAN PLACEMENT algorithm to determine the diagonal ordering, we obtain the
following result.

THEOREM 4. A simple n-vertex m-edge 6-graph G has a diagonal drawing, that can
be determined in O(n) time, with at most 5

2 m + 1
4 n bends and at most ( 1

6 m + 13
12 n)3

volume. For 6-regular graphs, the number of bends is at most 31
12 m and the volume is at

most 3.97n3.

PROOF. Biedl et al. [3] prove that the MEDIAN PLACEMENT algorithm, inserting the
vertices in an arbitrary order, determines a vertex-ordering (v1, v2, . . . , vn) with

∑
v∈V (G)

max {succ(v), pred(v)} ≤ 3m

2
+ n

4
.(3)

If we determine a diagonal drawing of G using the BEND-MINIMUM DIAGONAL DRAW-
ING algorithm with the vertex-ordering (v1, v2, . . . , vn), by Theorem 1, the number of
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anchored arcs is
∑

v max {max {succ(v), pred(v)} − 3, 0}. A degree 1 or 2 vertex v has
max {succ(v), pred(v)} ≥ 1, thus

max {max {succ(v), pred(v)} − 3, 0} ≤ (max {succ(v), pred(v)} − 3)+ 2.

A degree 3 or 4 vertex v has max {succ(v), pred(v)} ≥ 2, thus

max {max {succ(v), pred(v)} − 3, 0} ≤ (max {succ(v), pred(v)} − 3)+ 1.

A degree 5 or 6 vertex v has max {succ(v), pred(v)} ≥ 3, thus

max {max {succ(v), pred(v)} − 3, 0} = max {succ(v), pred(v)} − 3.

Let ni be the number of vertices with degree i . The number of anchored arcs is thus at
most ∑

v∈V (G)

(max {succ(v), pred(v)} − 3)+ 2n1 + 2n2 + n3 + n4,

which by (3) is at most

3m

2
+ n

4
− 3n + 2n1 + 2n2 + n3 + n4

= m

2
+ 1

2
(n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6)

− 11

4
(n1 + n2 + n3 + n4 + n5 + n6)+ 2n1 + 2n2 + n3 + n4

= m

2
+ 1

4
(−n1 + n2 − n3 + n4 − n5 + n6)

≤ m

2
+ n

4
.

By Theorem 1, the drawing has at most 5
2 m + 1

4 n bends, and at most (n + 1
3 (

1
2 m +

1
4 n))3 = ( 1

6 m + 13
12 n)3 volume. For 6-regular graphs m = 3n, and the claimed bounds

immediately follow. The MEDIAN PLACEMENT algorithm can be implemented in O(n)
time [3], and by Theorem 1, the drawing itself can be determined in O(n) time. Thus
the overall algorithm runs in O(n) time.

5. 3-Bend Algorithm. We now present a modification of the 3-BENDS algorithm of
Eades et al. [14] that produces 3-bend diagonal drawings with n3 + o

(
n3
)

volume. This
is the best known upper bound for the volume of 3-bend drawings. In the drawings pro-
duced the vertices are not “spaced out” as in the BEND-MINIMUM DIAGONAL DRAWING

algorithm; that is, vertex vi is at (i, i, i). The box with corners at (1, 1, 1) and (n, n, n),
which contains all the vertices, is called the inner box. The same type of 2-bend edges
used in the BEND-MINIMUM DIAGONAL DRAWING algorithm are again used here, but
3-bend edges are routed out of the inner box into so-called outer boxes illustrated in
Figure 9.

This approach has the advantage that some edges routed in a particular outer box can
share a grid-plane, thus reducing the volume. A similar edge routing strategy is used in
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X

Y

Z

Y
�

-outer box

X
�

-outer box

Z
�

-outer box

Z
+
-outer box

X
+
-outer box

Y
+
-outer box

Fig. 9. Inner and outer boxes.

the algorithm of Wood [35], which, given a fixed 3-dimensional general position vertex
layout, determines a 3-bend drawing.

The algorithm exploits two well-known tools from graph theory. A cycle cover of a
directed graph is a spanning subgraph consisting of directed cycles. The following result,
which can be considered as a repeated application of the classical result of Petersen [29]
that “every regular graph of even degree has a 2-factor”, has an algorithmic proof by
Eades et al. [14].

LEMMA 2 [14]. If G is an n-vertex 6-graph, then there exists a directed graph G ′

(possibly with loops) such that:

1. G is a subgraph of the underlying undirected graph of G ′.
2. Each vertex of G ′ has in-degree 3 and out-degree 3.
3. The arcs of G ′ can be partitioned into edge-disjoint cycle covers (CX ,CY ,CZ ).

G ′ and the edge-disjoint cycle covers can be computed in O(n) time.

The second tool is that of a book-embedding of a graph. A book consists of a line in
3-space, called the spine, and some number of pages (each a half-plane with the spine as
boundary). A book embedding of a graph is a spatial embedding consisting of a vertex-
ordering, called the spine ordering, along the spine of a book and an assignment of edges
to pages so that edges in the same page can be drawn on that page without crossings; that
is, for any two edges vw and xy, if v < x < w < y in the spine ordering, then vw and
xy are assigned different pages. The minimum number of pages in which a graph can
be embedded is its pagenumber. Malitz [24] proved that the pagenumber of an m-edge
graph is O(

√
m), and presented a Las Vegas algorithm to (almost certainly) compute

the book embedding in O(m log2 n log log m) time (also see [37]). Shahrokhi and Shi
[31] gave a deterministic algorithm to compute, in O(m2n3/2) time, a book-embedding
of a k-colourable graph with O(

√
k · m) pages. 6-Graphs have O(n) edges, and are 7-

colourable inO(n) time using the sequential greedy algorithm. Thus a book-embedding
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of a 6-graph withO(
√

n) pages can be determined inO(n5/2) time or (almost certainly)
in O(n log2 n log log n) time.

The following algorithm uses the same method as the 3-BENDS algorithm of Eades et
al. [14] to determine a port-assignment based on a cycle cover decomposition. It differs
in the choice of a spine ordering as the diagonal ordering and in the routing of 3-bend
edges in the outer boxes.

Algorithm 2. 3-BEND DIAGONAL DRAWING

Input: 6-graph G
Output: 3-bend diagonal drawing of G

1. Determine a book-embedding of G using the algorithm of [24] or [31]. Sup-
pose (v1, v2, . . . , vn) is the spine ordering, and p : E(G)→ {1, 2, . . . , P}
is the page numbering where P ∈ O(√n).

2. Position each vertex vi , 1 ≤ i ≤ n, at (i, i, i).
3. Compute G ′ and a cycle cover decomposition (CX ,CY ,CZ ) of G ′.
4. For dimension I ∈ {X, Y, Z}, for each directed cycle Q ∈ CI , and for each

directed edge vavb ∈ Q in the original graph with vbvc the next edge in Q,
route vavb as follows, depending on the relative values of a, b and c.

In what follows edge routes are expressed as (I, J, K ) coordinates where
(a) J = Y and K = Z if I = X , (b) J = Z and K = X if I = Y and (c)
J = X and K = Y if I = Z :
(a) If a < b < c, then we say vavb is normal increasing; as illustrated in

Figure 10(a), route vavb with the 2-bend edge: (a, a, a)→ (b, a, a)→
(b, b, a)→ (b, b, b).

(b) If a > b > c, then we say vavb is normal decreasing; as illustrated
in Figure 10(b), route vavb with the 2-bend edge: (a, a, a)→ (a, a, b)
→ (a, b, b)→ (b, b, b).

(c) If a < b > c, then we say vavb is increasing to a local maximum; as
illustrated in Figure 11(a), route vavb with the 3-bend edge:

(
a, a, a

)
→ (

p(vavb)+ n, a, a
)→ (

p(vavb)+ n, b, a
)→ (

p(vavb)+ n, b, b
)

→ (
b, b, b

)
.

(d) If a > b < c then we say vavb is decreasing to a local minimum; as
illustrated in Figure 11(b), route vavb with the 3-bend edge:

(
a, a, a

)
→ (

a, a, 1− p(vavb)
)→ (

a, b, 1− p(vavb)
)→ (

b, b, 1− p(vavb)
)

→ (
b, b, b

)
.

THEOREM 5. The algorithm 3-BEND DIAGONAL DRAWING determines a 3-bend draw-
ing of G with n3 + o

(
n3
)

bounding box volume. The running time is O(n5/2) using the
algorithm of Shahrokhi and Shi [31] or (almost certainly)O(n log2 n log log n) using the
algorithm of Malitz [24].

PROOF. A normal increasing edge is followed in its cycle by an increasing edge, a
normal decreasing edge is followed by a decreasing edge, an edge that is increasing to
a local maximum is followed by a decreasing edge, and an edge that is decreasing to a
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va

vb

(a)

va

vb

(b)

I

K
J

Fig. 10. Normal 2-bend edge routes: (a) increasing and (b) decreasing.

local minimum is followed by an increasing edge. Hence it is easily checked that the
two edges incident to a vertex v in the cycle cover CI use the I+v and K−v ports at v.
Therefore each edge is assigned unique ports at its end-vertices.

We call an edge segment incident to a vertex v a v-segment. The segment of a 2-bend
edge not incident to a vertex is called an inner middle segment, and the two segments of
a 3-bend edge not incident to a vertex are called outer middle segments.

Clearly, two v-segments for some vertex v do not cross. A v-segment and aw-segment
for some distinct vertices v andw do not cross as otherwise, as illustrated in Figure 12(a),
v and w would be in a common grid-plane. As illustrated in Figure 12(b), a v-segment
and an inner middle segment of an edge incident to v do not cross. As illustrated in
Figure 12(c), a v-segment and an inner middle segment of an edge uw not incident to
v do not cross as otherwise v would be in a grid-plane containing u or w. In each outer
box there is at most one edge incident to a vertex v. Hence a v-segment does not cross an
outer middle segment of an edge incident to v. As illustrated in Figure 12(d), a v-segment
and an outer middle segment of an edge uw not incident to v do not cross as otherwise
v would be in a grid-plane containing u or w.

By the same argument used in the proof of Theorem 1, no two inner middle segments
cross. An inner middle segment is contained within the inner box, and an outer middle
segment is contained within one of the outer boxes, and hence do not cross. Two outer
middle segments could only cross if routed in the same outer box and with their cor-
responding edges in the same page of the book embedding. However, crossing edges

b b b

b b b

va

vb

(a)

b

b

b

b

b

b

vb

va

(b)

I

K
J

Fig. 11. 3-Bend edge routes: (a) increasing to a local maximum and (b) decreasing to a local minimum.
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v

w

(a)

v

(b)

v

w

u

(c)

v

w

u

(d)

Fig. 12. Intersecting v-segment.

routed in the same page would also intersect in the book embedding, as illustrated in
Figure 13. Hence there are no edge crossings.

The bounding box is (P + n+ P)× (P + n+ P)× (P + n+ P). Since P ∈ O(√n)
the volume is (n +O(√n))3 = n3 +O(n5/2) = n3 + o

(
n3
)
. All steps except for Step 1

run in O(n) time. The claimed running times follow from the previous discussion.

Obviously the volume of a diagonal drawing is at least n3. Hence the 3-BEND DIAG-
ONAL DRAWING algorithm produces diagonal drawings with optimal volume, up to an
additive lower-order term.

6. Conclusion. In this paper we have studied 3-dimensional orthogonal graph draw-
ings with the vertices positioned along the main diagonal of a cube. Minimising the
number of bends in so-called diagonal drawings is NP-hard. We present two algorithms
for producing a diagonal drawing. The first minimises the total number of bends for a
fixed ordering of the vertices along the diagonal. Using two heuristics for determining
this vertex-ordering we obtain upper bounds on the number of bends. For simple graphs
with average degree at least 5, it is easily seen that the upper bound on the number of
bends in a diagonal drawing gained by applying the MEDIAN PLACEMENT algorithm
(see Theorem 4) is lower than the upper bound gained by using an st-ordering (see
Theorem 3). Our second algorithm produces 3-bend drawings with n3 + o

(
n3
)

volume,

Fig. 13. Edges in the same page that are also routed in the same outer box.
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which is the best known upper bound for the volume of 3-dimensional orthogonal graph
drawings with at most three bends per edge.
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