
Operations Research Letters 21 (1997) 211–217

An algorithm for �nding amaximum clique in a graph

David R. Wood ∗

School of Computer Science and Software Engineering, Monash University, Wellington Road, Clayton VIC 3168, Australia

Received 1 August 1995; revised 1 August 1997

Abstract

This paper introduces a branch-and-bound algorithm for the maximum clique problem which applies existing clique �nding
and vertex coloring heuristics to determine lower and upper bounds for the size of a maximum clique. Computational results
on a variety of graphs indicate the proposed procedure in most instances outperforms leading algorithms. c© 1997 Elsevier
Science B.V. All rights reserved.

Keywords: Graph algorithm; Maximum clique problem; Branch-and-bound algorithm; Vertex coloring; Fractional coloring

1. Introduction

A clique of an undirected graph G = (V; E) is a
maximal set of pairwise adjacent vertices. A set of
pairwise nonadjacent vertices is called an independent
set. In this paper we address the following problem:

Maximum Clique Problem: For a given undi-
rected graph G �nd a maximum clique of G
(whose cardinality we denote by !(G)).

Clearly, the maximum clique problem is equiva-
lent to that of �nding a maximum independent set
in the complementary graph. Applications for this
problem exist in signal processing, computer vision
and experimental design for example (see Ref. [7]).
However, not only is the exact problem NP-hard (see
Ref. [12]), but approximating the maximum clique
problem within a factor of |V |� for some �¿0 is
NP-hard [1].

∗ E-mail: davidw@cs.monash.edu.au.

Early algorithms included the branch and bound al-
gorithm of Bron and Kerbosch [10] to generate all
the cliques of a graph and the recursive algorithm of
Tarjan and Trojanowski [18] to determine a maxi-
mum independent set of an n-vertex graph in O(2n=3)
time. Recent approaches to the maximum clique prob-
lem have included the branch-and-bound algorithms
of Carraghan and Pardalos [11], Pardalos and Rodgers
[15], Balas and Yu [7], Balas and Xue [5, 6], Babel
and Tinhofer [3], and Babel [2]. In their survey pa-
per, Pardalos and Xue [16] identify the following key
issues in a branch-and-bound algorithm for the maxi-
mum clique problem.
1. How to �nd a good lower bound, i.e. a clique of
large size?

2. How to �nd a good upper bound on the size of a
maximum clique?

3. How to branch, i.e. break a problem into smaller
subproblems?
In the following section of this paper we address the

�rst two of these questions. In Section 3 we present our

0167-6377/97/$17.00 c© 1997 Elsevier Science B.V. All rights reserved
PII S0167-6377(97)00054 -0

212 D.R. Wood /Operations Research Letters 21 (1997) 211–217

branch-and-bound algorithm, and in Section 4 we dis-
cuss computational results of our algorithm in compar-
ison with leading algorithms for the maximum clique
problem.We denote the set of vertices adjacent to v∈V
by NG(v) and the subgraph of G induced by S ⊆V
by G(S).

2. Heuristics for the maximum clique problem

The algorithm of Ref. [7] concentrates on the de-
termination of lower bounds using an algorithm to
�nd a maximum clique of a maximal triangulated in-
duced subgraph at selected search tree nodes. This
method is extended to the maximum weight clique
problem in Ref. [5]. The algorithm presented in this
paper and the algorithm of Ref. [6] determine a lower
bound at the root node of the search tree, using the
algorithm of Balas [4] to �nd a maximum clique of
an edge-maximal triangulated subgraph. To provide
lower bounds at non-root search tree nodes we use the
following simple heuristic to determine a clique Q of
a graph G = (V; E).

CLIQUE: Set S :=V and Q := ∅. While S 6= ∅,
choose a vertex v∈S with maximum degree in G,
and set Q :=Q ∪ {v} and S := S ∩ NG(v).

We now turn our attention to the determination of
upper bounds. The algorithms of Refs. [11, 15] use
the size of a given subgraph as an upper bound for
the size of a clique in that subgraph. Vertex color-
ings provide much tighter upper bounds. A vertex
coloring (or k-coloring) of a graph G = (V; E) is a
partition of V into independent sets (C1; C2; : : : ; Ck)
called color classes. Each Ci contains those vertices
assigned the ith color. A k-coloring of G must color
each vertex of a clique di�erently, so k is an up-
per bound for !(G). Determining the minimum k
such that an arbitrary graph G is k-colorable is NP-
hard [12].
The following vertex coloring heuristic, described

in Biggs [8] as the greedy or sequential method, as-
signs the �rst color to every vertex available; repeats
for the second color, and so on, until all the vertices
are colored.

COLOR: To determine a color class Ck , set
Ck := ∅ and initialize S to be the set of uncol-

ored vertices. While S 6= ∅, assign color k to a
vertex v∈S with maximum degree in G, and set
Ck :=Ck ∪ {v} and S := (S\{v})\NG(v).

In Refs. [2,3,6] upper bounds are determined using
the following vertex coloring heuristic of Brelaz [9]:

DSATUR: While uncolored vertices remain,
choose an uncolored vertex v adjacent to the
maximum number of di�erent colors (called the
saturation degree of v), breaking ties by higher
degree. Color v with the minimum color not
already assigned to an adjacent vertex.

This method colors the connected components of
G in turn, and within each connected component the
initial vertices chosen form a clique. So DSATUR
provides both a lower and upper bound for !(G).
Comparisons of COLOR and DSATUR in Refs.
[6, 19] show that for all but a few of the tested graphs
DSATUR requires (up to 27.5%) less colors than
COLOR, although DSATUR uses considerably more
CPU time. For very sparse and very dense graphs,
DSATUR is an order of magnitude more expensive
than COLOR [6].
A fractional coloring of a graph G = (V; E) is a

set C of (possibly intersecting) weighted color classes
(i.e. independent sets), such that for each vertex v∈V
the sum of the weights of the color classes containing
v is at least 1.
Since a color class can contain at most one vertex

of a clique, in a fractional coloring the sum of the
weights of those color classes intersecting a cliqueQ is
at least |Q|. Therefore, the total weight of a fractional
coloring of a graph G is an upper bound for !(G).
The upper bound from a minimum weight fractional
coloring is in general tighter than that provided by
a minimum vertex coloring [6], however, Gr�otschel,
Lov�asz and Schrijver show that determining such a
fractional coloring is NP-hard [13].
In Ref. [6] the following heuristic for the fractional

coloring problem provides upper bounds for the max-
imum clique problem. After i iterations of FCP each
vertex is colored exactly i times, and each color class
is assigned weight 1=i, so ti = |C|=i is an upper bound
for !(G). Initially C := ∅, i := 1 and t0 :=∞.

FCP (at iteration i): For each vertex v, include
v in the �rst color class Cj∈C, if one exists,
such that Cj ∪ {v} is an independent set. Let
U be the set of vertices not included in a color

D.R. Wood /Operations Research Letters 21 (1997) 211–217 213

class. Find a vertex coloring (C1; C2; : : : ; Ck) of
G(U) (using COLOR or DSATUR), and set
C :=C ∪ {C1; C2; : : : ; Ck} and ti := |C|=i. If
ti¡ti−1 then set i := i + 1 and repeat, otherwise
return the upper bound bti−1c.

To prove a complexity result for FCP the authors
amend the stopping rule so that the number of color
classes |C| does not exceed the number of vertices
|V |. Our implementation also includes this feature.
Note that for many graphs a tighter upper bound can
be calculated by reiterating the algorithm after either
stopping condition is satis�ed. By FCPC and FCPD
we refer to FCP with COLOR and DSATUR deter-
mining vertex colorings respectively. The comparison
of these heuristics in [6, 19] show that the improve-
ments in upper bound by FCPC over COLOR range
from 0 to 21 colors, and for FCPD over DSATUR the
improvements range from 0 to 7 colors.

3. The maximum clique algorithm

We now present our branch and bound algorithm
MC for the maximum clique problem, which uses the
FCP heuristic to determine upper bounds, and, like
the algorithms of [11, 15], activates exactly one new
search tree node at each branching stage. Given a
graph G=(V; E) algorithm MC maintains the follow-
ing conditions:
• If h is the depth of the search tree the set

{v1; v2; : : : ; vh−1} consists of pairwise adjacent
vertices.

• M is the largest clique found by the algorithm; h−
16|M |6!(G).

• For 16i6h, the vertex set Si⊆
⋂i−1
j=1 NG(vj) con-

sists of candidates for enlarging {v1; v2; : : : ; vi−1}
into a clique.

• For 16i6h, (Ci1; Ci2; : : : ; Ciki) is a vertex coloring
of G(Si). Both ki and k ′i (determined by FCP) are
upper bounds for !(G(Si)), with k ′i6ki.

• An active node of the search tree corresponds to
the subproblem of �nding a maximum clique larger
than M of the subgraph:

Gi = G({v1; v2; : : : ; vi−1} ∪ Si); for 16i6h:

Clearly, !(Gi)6i − 1 + k ′i 6i − 1 + ki.

Algorithm MC
Step 0 (Initialisation): Find a maximum clique M of

an edge-maximal triangulated subgraph of G.
Set h := 1, Sh :=V and go to Step 2.

Step 1 (Calculate Lower Bound): Find a clique Q of
G(Sh).
If h− 1 + |Q|¿|M | then set M := {v1; v2; : : : ;
vh−1} ∪ Q.
Go to step 2.

Step 2 (Calculate Upper Bound): Find a vertex col-
oring (Ch1 ; C

h
2 ; : : : ; C

h
kh) of G(Sh).

If h− 1 + kh6|M | then go to Step 4.
Apply FCP to G(Sh) to obtain a further upper
bound k ′h¿!(G(Sh)).
If h− 1 + k ′h6|M | then go to Step 4.
Go to Step 3.

Step 3 (Branching): Choose a vertex vh∈Chkh with
maximum degree in G.
Set Sh+1 := Sh ∩ NG(vh), Sh := Sh\{vh},
Chkh :=C

h
kh\{vh}.

If Chkh = ∅ then decrement kh and if kh¡k ′h
then set k ′h := kh.
Increment h and go to Step 1.

Step 4 (Backtracking): If h = 1 then stop: M is a
maximum clique of G.
Decrement h and if h− 1 + k ′h6|M | then go
to Step 4.
Go to Step 3.

In line 2 of Step 3, the problem of �nding a maxi-
mum clique of Gh is divided into two sub-problems.
If vh is a vertex of G(Sh) then a clique Q of Gh will
be contained in either:

Gh+1 = G({v1; v2; : : : ; vh}∪(Sh ∩ NG(vh))) if vh∈Q

or

Gh = G({v1; v2; : : : ; vh−1} ∪ (Sh\{vh})) if vh 6∈Q:

We choose vh from the �nal color class Chkh as
the latter color classes generated by COLOR and by
DSATUR tend to be smaller than the initial ones.
Therefore the upper bound kh is reduced more quickly
than if an arbitrary vertex in Sh was chosen. Note that
since |M |¿h− 1 and h− 1 + kh¿|M | whenever the
algorithm goes to Step 3, we have kh¿1 at this stage,
and therefore the color class Chkh must exist.

214 D.R. Wood /Operations Research Letters 21 (1997) 211–217

Table 1
Maximum clique �nding algorithms – uniform random graphs

n d LB |M | CPU time (s) Search tree nodes

MCC MCD MC1C MC1D BXB MCC MCD MC1C MC1D BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1
100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2
100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3
100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1
100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9
100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4
100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1048 672.7 1705 893.4 698.1
100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1786 1253 2961 1696 1160
100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2126 1109 4043 1523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2
200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9
200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0
200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1539 1162 2011 1279 1317
200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4295 2810 6846 3622 2889
200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17 461 11 704 26 857 14 712 13 109
200 70 15.3 18.1 1993 5830 341.9 2945 5829 102 122 64 430 173 810 88 354 63 972

Theorem 1. Given an undirected graph G = (V; E)
algorithm MC �nds a maximum clique M of G.

Proof: This result follows immediately from the
observation that algorithm MC maintains the
abovementioned conditions throughout the al-
gorithm.

To evaluate the e�ectiveness of the FCP heuristic
as an upper bounding device for the maximum clique
problem, we have also developed an algorithm MC1,
which skips lines 3 and 4 of step 2, thus not using
FCP to calculate a further upper bound. MCC (MC1C)
uses CLIQUE to determine a clique in Step 1, and
FCPC (COLOR) to determine upper bounds in Step
2. MCD (MC1D) uses FCPD (DSATUR) for these
purposes.

4. Computational results

See [19] for a complete description of the imple-
mentation of our algorithms in GAP [17] on a Sun
Sparcstation 10. We now compare the performance of
algorithms MCC, MCD, MC1C and MC1D with ex-
isting algorithms for the maximum clique problem.

By BXB we refer to a combination of the algorithms
of [2, 6], the most e�cient known algorithms for the
maximum clique problem. BXB uses FCPD to cal-
culate lower and upper bounds at each search tree
node, and uses branching rule II of [2], their best
performing branching rule. The branching rules of
Refs. [2, 6] (which is stated for weighted graphs)
both generally activate more than one new search tree
node.
Table 1 shows the average size of the lower bound

determined at the root node (LB), the average size of
a maximum clique (|M |), the average CPU time taken
by each of the algorithms, and the average number of
search tree nodes generated by each algorithm, for 10
uniform random graphs of size n= |V | and edge prob-
ability (or density) d= 2|E|=n(n− 1). In Table 2 we
compare the algorithms for a selection of the DIMACS
benchmark graphs which were developed as part of
the 1993 DIMACS Challenge (see Johnson and Trick
Ref. [14]). They include non-uniform random graphs
with relatively large clique sizes, and graphs which
have arisen in coding theory, the Steiner Triple Prob-
lem, tilings of hypercubes, vertex cover problems and
fault diagnosis. Table 2 shows the size n and density
d of the graph, the CPU time taken by each algorithm,
and the number of search tree nodes generated by each

D.R. Wood /Operations Research Letters 21 (1997) 211–217 215
T
ab
le
2

M
ax
im
um

cl
iq
ue
�n
di
ng
al
go
ri
th
m
s
–
D
IM
A
C
S
be
nc
hm
ar
k
gr
ap
hs

D
IM
A
C
S
G
ra
ph

n
d

|M
|

C
PU

tim
e
(s
)

Se
ar
ch
tr
ee
no
de
s

M
C
C

M
C
D

M
C
1 C

M
C
1 D

B
X
B

M
C
C

M
C
D

M
C
1 C

M
C
1 D

B
X
B

B
X

br
oc
k2
00
1

20
0

75
21

49
11

15
18
6

80
5.
2

79
51

16
32
0

21
8
85
3

14
9
15
3

37
9
81
0

21
1
01
3

16
3
34
8

11
3
24
4

br
oc
k2
00
2

20
0

50
12

26
.7
2

14
9.
7

3.
83
3

74
.2
2

15
8.
4

17
90

30
18

25
94

35
93

30
18

29
65

br
oc
k2
00
3

20
0

61
15

23
0.
1

57
3.
6

38
.5
0

28
1.
0

81
5.
9

15
35
4

78
18

24
11
3

10
11
3

12
71
7

81
55

br
oc
k2
00
4

20
0

66
17

56
8.
2

19
26

92
.9
5

93
1.
5

15
30

31
75
1

25
10
5

52
33
2

33
69
3

19
31
6

25
70
5

c-
fa
t2
00
-1

20
0

8
12

0.
28
3

2.
20
0

0.
01
7

0.
15
0

2.
13
3

8
1

8
4

1
1

c-
fa
t2
00
-2

20
0

16
24

0.
31
7

0.
18
3

0.
01
7

0.
18
3

0.
16
7

7
1

7
1

1
1

c-
fa
t2
00
-5

20
0

43
58

0.
68
3

3.
46
7

0.
13
3

2.
21
7

3.
28
4

27
27

27
27

27
29

c-
fa
t5
00
-1

50
0

4
14

0.
53
4

0.
61
6

0.
01
7

0.
61
7

2.
21
7

13
1

13
1

1
1

c-
fa
t5
00
-2

50
0

7
26

1.
41
7

0.
70
0

0.
08
3

0.
70
0

0.
75
0

23
1

23
1

1
1

c-
fa
t5
00
-5

50
0

19
64

1.
45
0

0.
98
4

0.
16
6

0.
95
0

0.
98
3

23
1

23
1

1
1

c-
fa
t5
00
-1
0

50
0

37
12
6

0.
01
7

1.
40
0

0.
03
3

1.
40
0

1.
45
0

1
1

1
1

1
1

ha
m
m
in
g6
-2

64
90

32
0.
01
7

0.
05
0

0.
00
1

0.
06
7

0.
06
6

1
1

1
1

1
1

ha
m
m
in
g6
-4

64
35

4
0.
13
3

0.
85
0

0.
06
7

0.
30
0

0.
80
0

81
29

81
58

29
48

ha
m
m
in
g8
-2

25
6

97
12
8

0.
01
7

0.
73
3

0.
00
1

0.
75
0

0.
71
7

1
1

1
1

1
1

ha
m
m
in
g8
-4

25
6

64
16

34
4.
2

15
5.
7

79
.1
5

13
7.
6

15
6.
5

28
59
3

35
7

36
44
1

20
45

35
7

37
3

ha
m
m
in
g1
0-
2

10
24

99
51
2

0.
05
0

10
.5
7

0.
06
6

10
.4
7

12
.2
8

1
1

1
1

1
1

jo
hn
so
n8
-2
-4

28
56

4
0.
05
0

0.
05
0

0.
01
7

0.
08
3

0.
03
3

20
1

23
26

1
1

jo
hn
so
n8
-4
-4

70
77

14
0.
53
3

0.
30
0

0.
18
3

0.
53
4

0.
30
0

11
5

1
11
5

19
1

1
jo
hn
so
n1
6-
2-
4

12
0

76
8

77
0.
8

0.
41
7

19
5.
8

20
46

0.
38
4

19
0
08
4

1
25
6
09
9

35
5
52
2

1
1

ke
lle
r4

17
1

65
11

11
3.
1

25
6.
5

18
.4
5

13
7.
5

25
6.
7

65
43

37
00

12
82
9

51
95

37
00

41
64

M
A
N
N
a9

45
93

16
0.
61
7

1.
03
3

0.
10
0

0.
38
4

1.
01
7

46
19

60
20

19
23

M
A
N
N
a2
7

37
8

99
12
6

23
28
6

26
52
4

70
4.
3

97
53

25
54
9

39
08
7

87
04

47
26
4

98
74

87
14

14
14
5

p
ha
t3
00
-1

30
0

24
8

8.
80
0

38
.9
3

1.
46
7

20
.1
2

37
.5
3

10
32

81
9

13
10

92
8

81
9

83
2

p
ha
t3
00
-2

30
0

49
25

75
.0
5

22
5.
6

10
.0
5

12
9.
2

22
5.
5

18
88

13
04

28
01

15
79

13
04

16
13

p
ha
t5
00
-1

50
0

25
9

76
.4
8

38
4.
8

13
.7
2

23
1.
4

38
9.
5

74
54

61
79

97
72

67
24

61
79

61
05

p
ha
t5
00
-2

50
0

50
36

26
95

97
90

26
7.
1

57
96

63
20

35
65
7

27
18
2

59
39
3

34
78
7

17
01
9

31
74
6

p
ha
t7
00
-1

70
0

25
11

27
2.
8

19
15

40
.3
2

10
60

14
08

17
62
9

19
33
7

25
80
5

23
15
0

15
31
0

14
04
0

p
ha
t1
00
0-
1

10
00

24
10

18
83

13
06
0

28
3.
2

69
74

13
15
0

12
2
18
2

90
60
7

17
9
08
2

11
1
89
7

91
15
9

93
00
4

sa
n2
00
0.
7
1

20
0

70
30

6.
61
7

36
.3
7

0.
91
7

18
.8
5

95
.7
3

53
23
1

20
6

34
8

64
5

63
5

sa
n2
00
0.
7
2

20
0

70
18

3.
70
0

20
.8
0

0.
46
6

10
.6
5

36
.5
3

11
0

15
4

19
5

18
2

36
3

85
2

sa
n2
00
0.
9
1

20
0

90
70

73
.7
5

45
.7
2

11
.4
8

24
.9
2

25
5.
4

71
5

12
1

20
69

20
1

63
1

10
sa
n2
00
0.
9
2

20
0

90
60

59
88

61
2.
6

10
52

34
8.
0

20
36

71
11
4

15
53

21
1
88
9

23
65

56
55

18
25

sa
n4
00
0.
5
1

40
0

50
13

51
.0
3

81
.7
3

11
.2
2

64
.8
3

24
7.
7

12
23

37
8

34
65

52
3

16
89

11
94

sa
n4
00
0.
7
1

40
0

70
40

16
81

24
55

19
8.
7

14
30

10
26
3

15
90
3

56
04

38
98
9

85
07

30
70
7

20
91
3

sa
n4
00
0.
7
2

40
0

70
30

36
48
6

39
10
0

62
28

24
28
5

66
57
9

69
0
80
6

13
9
09
2

1
59
1
03
0

23
1
59
3

29
5
31
4

75
77
3

sa
n1
00
0

10
00

50
15

22
81

32
63
0

65
3.
9

40
81
4

92
77

43
62
3

44
40
8

10
6
82
3

78
69
8

12
99
6

21
89
7

sa
nr
20
0
0.
7

20
0

70
18

17
11

46
08

33
8.
2

23
72

40
76

87
01
2

51
61
0

15
0
86
1

71
79
9

44
27
8

40
49
6

sa
nr
40
0
0.
5

40
0

50
13

23
52

90
94

35
0.
9

49
55

86
17

15
5
28
5

11
5
21
0

23
3
38
1

13
6
63
6

11
4
20
8

11
2
93
2

216 D.R. Wood /Operations Research Letters 21 (1997) 211–217

Table 3
Maximum clique �nding algorithms – uniform random graphs with n = 100 and d = 90%

|M | CPU time (s) Search tree nodes

MCC MCD MC1C MC1D BXB MCC MCD MC1C MC1D BXB

29 160.0 263.1 26.34 122.5 285.8 4957 2014 9854 2721 2216
30 66.09 158.2 10.38 74.80 134.4 1885 1183 3259 1620 966
31 53.27 94.34 9.740 45.92 79.52 1392 643.5 2815 938.5 522
32 50.80 138.0 7.809 66.97 92.19 1323 1005 2465 1372 623
33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123

algorithm. Column BX refers to the number of search
tree nodes for the algorithm of Ref. [6] as stated in
their paper. To accurately compare algorithms we use
the values presented in Ref. [6] for the lower bound
at the root node for each of the tested algorithms.
In most cases those algorithms MCD, BXB and BX

which use the upper bound heuristic FCPD, gener-
ate the least number of search tree nodes. MCD on
average generates less search tree nodes than BXB
for 12 of the 16 sets of random graphs. For 12 of
the DIMACS benchmark graphs the lower bound and
upper bound calculated at the root node by these al-
gorithms are equal, and therefore only one search tree
node is generated. Of the other 26 DIMACS bench-
mark graphs, MCD uses the least search tree nodes of
these algorithms 15 times, BXB 10 times, and BX 8
times.
Those algorithms which use the vertex coloring

heuristic COLOR, while generating the most search
tree nodes, are generally the fastest. In particular,
for the random graphs, MC1C is the fastest of the
tested algorithms, using on average only 18.41%
of the CPU time used by BXB. MC1C is again the
fastest for all but four of the DIMACS benchmark
graphs (and for two of these the di�erence is only
a few microseconds). We have also implemented a
variant MC2C of MC1C which only �nds a lower
bound at the root node of the search tree. For the
random graphs (DIMACS benchmark graphs) this
algorithm uses 0.65% (0.20%) more search tree
nodes than MC1C, yet is on average 4.34% (12.04%)
faster than MC1C. This indicates that the determina-
tion of lower bounds at non-root nodes is not time-
e�cient.
We have observed that for graphs with �xed size

and density the di�culty of the maximum clique prob-

lem is generally inversely proportional to the size of a
maximum clique in the graph. This is apparent for the
san graphs with equal n and d. Similar results occur
with the random graphs. For example, the 10 uniform
random graphs (used in Table 1) with n = 100 and
d=90% have a maximum clique of size 29(2), 30(3),
31(2), 32(2) or 33(1). For each maximum clique size,
Table 3 shows the average CPU time taken, and the
average number of search tree nodes generated by each
algorithm.

Acknowledgements

The author wishes to thank Graham Farr, Cheryl
Praeger, Leonard Soicher and an anonymous ref-
eree for their helpful discussion and advice. Thanks
also to Christopher Pickett for the use of his
computer.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof
veri�cation and intractability of approximation problems,
Proc. 33rd IEEE Symp. on Foundations of Computer Science,
1992, pp. 13–22.

[2] L. Babel, Finding maximum cliques in arbitrary and in special
graphs, computing 46 (1991) 321–341.

[3] L. Babel, G. Tinhofer, A branch and bound algorithm for
the maximum clique problem, Meth. Oper. Res. 34 (1990)
207–217.

[4] E. Balas, A fast algorithm for �nding an edge-maximal
subgraph with a TR-formative coloring, Discrete Appl. Math.
15 (1986) 123–134.

[5] E. Balas, J. Xue, Minimum weighted coloring of triangulated
graphs, with application to maximum weight vertex packing
and clique �nding in arbitrary graphs, SIAM J. Comput. 20(2)
(1991) 209–221.

D.R. Wood /Operations Research Letters 21 (1997) 211–217 217

[6] E. Balas, J. Xue, Weighted and unweighted maximum
clique algorithms with upper bounds from fractional coloring,
Algorithmica 15 (1996) 397–412.

[7] E. Balas, C.S. Yu, Finding a maximum clique in an arbitrary
graph, SIAM J. Comput. 15(4) (1986) 1054–1068.

[8] N. Biggs, Some Heuristics for Graph Coloring, in: R. Nelson,
R.J. Wilson, (Eds.), Graph Colourings, Longman, New York,
1990, pp. 87–96.

[9] D. Brelaz, New methods to color the vertices of a graph,
Comm. ACM 22 (1979) 251–256.

[10] C. Bron, J. Kerbosch, Finding all cliques of an undirected
graph, Comm. ACM 16(9) (1973) 575–577.

[11] R. Garraghan, P.M. Pardalos, An exact algorithm for the
maximum clique problem, Oper. Res. Lett. 9 (1990) 375–382.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, San
Francisco, 1979.

[13] M. Gr�otschel, L. Lov�asz, A. Schrijver, Polynomial algorithms
for perfect graphs, Ann. Discrete Math. 21 (1984) 325–356.

[14] D.S. Johnson, M.A. Trick (Eds.), Cliques, Coloring, and
Satis�ability: Second DIMACS Challenge. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, Providence, 1996.

[15] P.M. Pardalos, G.P. Rodgers, A branch and bound algorithm
for the maximum clique problem, Comput. Oper. Res. 19(5)
(1992) 363–375.

[16] P.M. Pardalos, J. Xue, The maximum clique problem. J.
Global Optim. 4 (1994) 301–328.

[17] M. Sch�onert et al., GAP-Groups, Algorithms and
Programming, Lehrstuhl D f�ur Mathematik, Rheinisch
Westf�alische Technische Hochschule, Aachen, Germany,
1995.

[18] R.E. Tarjan, A.E. Trojanowski, Finding a maximum
independent set, SIAM J. Comput. 6(3) (1977) 537–546.

[19] D.R. Wood, An algorithm for �nding a maximum clique in
a graph, Technical Report 96=260, Department of Computer
Science, Monash University, Australia, 1996, available at
ftp.cs.monash.edu.au.

