An algorithm for finding a maximum clique in a graph

David R. Wood *
School of Computer Science and Software Engineering, Monash University, Wellington Road, Clayton VIC 3168, Australia

Received 1 August 1995; revised 1 August 1997

Abstract

This paper introduces a branch-and-bound algorithm for the maximum clique problem which applies existing clique finding and vertex coloring heuristics to determine lower and upper bounds for the size of a maximum clique. Computational results on a variety of graphs indicate the proposed procedure in most instances outperforms leading algorithms. © 1997 Elsevier Science B.V. All rights reserved.

Keywords: Graph algorithm; Maximum clique problem; Branch-and-bound algorithm; Vertex coloring; Fractional coloring

1. Introduction

A clique of an undirected graph $G=(V, E)$ is a maximal set of pairwise adjacent vertices. A set of pairwise nonadjacent vertices is called an independent set. In this paper we address the following problem:

Maximum Clique Problem: For a given undirected graph G find a maximum clique of G (whose cardinality we denote by $\omega(G)$).
Clearly, the maximum clique problem is equivalent to that of finding a maximum independent set in the complementary graph. Applications for this problem exist in signal processing, computer vision and experimental design for example (see Ref. [7]). However, not only is the exact problem NP-hard (see Ref. [12]), but approximating the maximum clique problem within a factor of $|V|^{\varepsilon}$ for some $\varepsilon>0$ is NP-hard [1].

[^0]Early algorithms included the branch and bound algorithm of Bron and Kerbosch [10] to generate all the cliques of a graph and the recursive algorithm of Tarjan and Trojanowski [18] to determine a maximum independent set of an n-vertex graph in $\mathrm{O}\left(2^{n / 3}\right)$ time. Recent approaches to the maximum clique problem have included the branch-and-bound algorithms of Carraghan and Pardalos [11], Pardalos and Rodgers [15], Balas and Yu [7], Balas and Xue [5, 6], Babel and Tinhofer [3], and Babel [2]. In their survey paper, Pardalos and Xue [16] identify the following key issues in a branch-and-bound algorithm for the maximum clique problem.

1. How to find a good lower bound, i.e. a clique of large size?
2. How to find a good upper bound on the size of a maximum clique?
3. How to branch, i.e. break a problem into smaller subproblems?
In the following section of this paper we address the first two of these questions. In Section 3 we present our
branch-and-bound algorithm, and in Section 4 we discuss computational results of our algorithm in comparison with leading algorithms for the maximum clique problem. We denote the set of vertices adjacent to $v \in V$ by $N_{G}(v)$ and the subgraph of G induced by $S \subseteq V$ by $G(S)$.

2. Heuristics for the maximum clique problem

The algorithm of Ref. [7] concentrates on the determination of lower bounds using an algorithm to find a maximum clique of a maximal triangulated induced subgraph at selected search tree nodes. This method is extended to the maximum weight clique problem in Ref. [5]. The algorithm presented in this paper and the algorithm of Ref. [6] determine a lower bound at the root node of the search tree, using the algorithm of Balas [4] to find a maximum clique of an edge-maximal triangulated subgraph. To provide lower bounds at non-root search tree nodes we use the following simple heuristic to determine a clique Q of a graph $G=(V, E)$.

CLIQUE: Set $S:=V$ and $Q:=\emptyset$. While $S \neq \emptyset$, choose a vertex $v \in S$ with maximum degree in G, and set $Q:=Q \cup\{v\}$ and $S:=S \cap N_{G}(v)$.

We now turn our attention to the determination of upper bounds. The algorithms of Refs. [11, 15] use the size of a given subgraph as an upper bound for the size of a clique in that subgraph. Vertex colorings provide much tighter upper bounds. A vertex coloring (or k-coloring) of a graph $G=(V, E)$ is a partition of V into independent sets $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ called color classes. Each C_{i} contains those vertices assigned the i th color. A k-coloring of G must color each vertex of a clique differently, so k is an upper bound for $\omega(G)$. Determining the minimum k such that an arbitrary graph G is k-colorable is NPhard [12].

The following vertex coloring heuristic, described in Biggs [8] as the greedy or sequential method, assigns the first color to every vertex available; repeats for the second color, and so on, until all the vertices are colored.

COLOR: To determine a color class C_{k}, set $C_{k}:=\emptyset$ and initialize S to be the set of uncol-
ored vertices. While $S \neq \emptyset$, assign color k to a vertex $v \in S$ with maximum degree in G, and set $C_{k}:=C_{k} \cup\{v\}$ and $S:=(S \backslash\{v\}) \backslash N_{G}(v)$.
In Refs. [2, 3, 6] upper bounds are determined using the following vertex coloring heuristic of Brelaz [9]:

DSATUR: While uncolored vertices remain, choose an uncolored vertex v adjacent to the maximum number of different colors (called the saturation degree of v), breaking ties by higher degree. Color v with the minimum color not already assigned to an adjacent vertex.
This method colors the connected components of G in turn, and within each connected component the initial vertices chosen form a clique. So DSATUR provides both a lower and upper bound for $\omega(G)$. Comparisons of COLOR and DSATUR in Refs. $[6,19]$ show that for all but a few of the tested graphs DSATUR requires (up to 27.5%) less colors than COLOR, although DSATUR uses considerably more CPU time. For very sparse and very dense graphs, DSATUR is an order of magnitude more expensive than COLOR [6].

A fractional coloring of a graph $G=(V, E)$ is a set C of (possibly intersecting) weighted color classes (i.e. independent sets), such that for each vertex $v \in V$ the sum of the weights of the color classes containing v is at least 1 .

Since a color class can contain at most one vertex of a clique, in a fractional coloring the sum of the weights of those color classes intersecting a clique Q is at least $|Q|$. Therefore, the total weight of a fractional coloring of a graph G is an upper bound for $\omega(G)$. The upper bound from a minimum weight fractional coloring is in general tighter than that provided by a minimum vertex coloring [6], however, Grötschel, Lovász and Schrijver show that determining such a fractional coloring is NP-hard [13].

In Ref. [6] the following heuristic for the fractional coloring problem provides upper bounds for the maximum clique problem. After i iterations of FCP each vertex is colored exactly i times, and each color class is assigned weight $1 / i$, so $t_{i}=|C| / i$ is an upper bound for $\omega(G)$. Initially $C:=\emptyset, i:=1$ and $t_{0}:=\infty$.

FCP (at iteration \boldsymbol{i}): For each vertex v, include v in the first color class $C_{j} \in C$, if one exists, such that $C_{j} \cup\{v\}$ is an independent set. Let U be the set of vertices not included in a color
class. Find a vertex coloring $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ of $G(U)$ (using COLOR or DSATUR), and set $C:=C \cup\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ and $t_{i}:=|C| / i$. If $t_{i}<t_{i-1}$ then set $i:=i+1$ and repeat, otherwise return the upper bound $\left\lfloor t_{i-1}\right\rfloor$.

To prove a complexity result for FCP the authors amend the stopping rule so that the number of color classes $|C|$ does not exceed the number of vertices $|V|$. Our implementation also includes this feature. Note that for many graphs a tighter upper bound can be calculated by reiterating the algorithm after either stopping condition is satisfied. By $\mathrm{FCP}_{\mathrm{C}}$ and $\mathrm{FCP}_{\mathrm{D}}$ we refer to FCP with COLOR and DSATUR determining vertex colorings respectively. The comparison of these heuristics in $[6,19]$ show that the improvements in upper bound by $\mathrm{FCP}_{\mathrm{C}}$ over COLOR range from 0 to 21 colors, and for $\mathrm{FCP}_{\mathrm{D}}$ over DSATUR the improvements range from 0 to 7 colors.

3. The maximum clique algorithm

We now present our branch and bound algorithm MC for the maximum clique problem, which uses the FCP heuristic to determine upper bounds, and, like the algorithms of $[11,15]$, activates exactly one new search tree node at each branching stage. Given a graph $G=(V, E)$ algorithm MC maintains the following conditions:

- If h is the depth of the search tree the set $\left\{v_{1}, v_{2}, \ldots, v_{h-1}\right\}$ consists of pairwise adjacent vertices.
- M is the largest clique found by the algorithm; $h-$ $1 \leqslant|M| \leqslant \omega(G)$.
- For $1 \leqslant i \leqslant h$, the vertex set $S_{i} \subseteq \bigcap_{j=1}^{i-1} N_{G}\left(v_{j}\right)$ consists of candidates for enlarging $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$ into a clique.
- For $1 \leqslant i \leqslant h,\left(C_{1}^{i}, C_{2}^{i}, \ldots, C_{k_{i}}^{i}\right)$ is a vertex coloring of $G\left(S_{i}\right)$. Both k_{i} and k_{i}^{\prime} (determined by FCP) are upper bounds for $\omega\left(G\left(S_{i}\right)\right)$, with $k_{i}^{\prime} \leqslant k_{i}$.
- An active node of the search tree corresponds to the subproblem of finding a maximum clique larger than M of the subgraph:
$G_{i}=G\left(\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\} \cup S_{i}\right), \quad$ for $1 \leqslant i \leqslant h$.
Clearly, $\omega\left(G_{i}\right) \leqslant i-1+k_{i}^{\prime} \leqslant i-1+k_{i}$.

Algorithm MC

Step 0 (Initialisation): Find a maximum clique M of an edge-maximal triangulated subgraph of G. Set $h:=1, S_{h}:=V$ and go to Step 2.
Step 1 (Calculate Lower Bound): Find a clique Q of $G\left(S_{h}\right)$.
If $h-1+|Q|>|M|$ then set $M:=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{h-1}\right\} \cup Q$.
Go to step 2.
Step 2 (Calculate Upper Bound): Find a vertex coloring $\left(C_{1}^{h}, C_{2}^{h}, \ldots, C_{k_{h}}^{h}\right)$ of $G\left(S_{h}\right)$.
If $h-1+k_{h} \leqslant|M|$ then go to Step 4.
Apply FCP to $G\left(S_{h}\right)$ to obtain a further upper bound $k_{h}^{\prime} \geqslant \omega\left(G\left(S_{h}\right)\right)$.
If $h-1+k_{h}^{\prime} \leqslant|M|$ then go to Step 4.
Go to Step 3.
Step 3 (Branching): Choose a vertex $v_{h} \in C_{k_{h}}^{h}$ with maximum degree in G.
Set $S_{h+1}:=S_{h} \cap N_{G}\left(v_{h}\right), S_{h}:=S_{h} \backslash\left\{v_{h}\right\}$, $C_{k_{h}}^{h}:=C_{k_{h}}^{h} \backslash\left\{v_{h}\right\}$.
If $C_{k_{h}}^{h}=\emptyset$ then decrement k_{h} and if $k_{h}<k_{h}^{\prime}$ then set $k_{h}^{\prime}:=k_{h}$. Increment h and go to Step 1.
Step 4 (Backtracking): If $h=1$ then stop: M is a maximum clique of G.
Decrement h and if $h-1+k_{h}^{\prime} \leqslant|M|$ then go to Step 4.
Go to Step 3.
In line 2 of Step 3, the problem of finding a maximum clique of G_{h} is divided into two sub-problems. If v_{h} is a vertex of $G\left(S_{h}\right)$ then a clique Q of G_{h} will be contained in either:
$G_{h+1}=G\left(\left\{v_{1}, v_{2}, \ldots, v_{h}\right\} \cup\left(S_{h} \cap N_{G}\left(v_{h}\right)\right)\right) \quad$ if $v_{h} \in Q$
or
$G_{h}=G\left(\left\{v_{1}, v_{2}, \ldots, v_{h-1}\right\} \cup\left(S_{h} \backslash\left\{v_{h}\right\}\right)\right) \quad$ if $v_{h} \notin Q$.
We choose v_{h} from the final color class $C_{k_{h}}^{h}$ as the latter color classes generated by COLOR and by DSATUR tend to be smaller than the initial ones. Therefore the upper bound k_{h} is reduced more quickly than if an arbitrary vertex in S_{h} was chosen. Note that since $|M| \geqslant h-1$ and $h-1+k_{h}>|M|$ whenever the algorithm goes to Step 3, we have $k_{h} \geqslant 1$ at this stage, and therefore the color class $C_{k_{k}}^{h}$ must exist.

Table 1
Maximum clique finding algorithms - uniform random graphs

n	d	LB	$\|M\|$	CPU time (s)					Search tree nodes				
				MC_{C}	MC ${ }_{\text {D }}$	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MC1}_{\mathrm{D}}$	BXB	MC_{C}	MC_{D}	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MC1}_{\mathrm{D}}$	BXB
100	10	3.7	3.9	0.222	0.428	0.160	0.280	0.432	24.3	18.7	24.8	18.7	23.1
100	20	4.7	5.1	0.363	0.755	0.277	0.523	0.752	38.1	33.9	40.6	34.7	39.2
100	30	5.6	6.3	0.959	1.590	0.422	0.883	1.390	53.4	45.6	79.2	52.9	50.3
100	40	6.9	7.6	1.325	3.148	0.613	1.508	3.020	109.8	82.4	165.6	102.8	89.1
100	50	8.1	9.1	2.515	6.894	1.478	3.780	6.458	254.1	198.7	344.5	234.9	201.9
100	60	10.4	11.6	5.497	14.18	1.932	6.860	14.87	468.4	328.7	707.5	405.8	365.4
100	70	12.8	14.8	14.31	36.85	3.445	18.08	38.38	1048	672.7	1705	893.4	698.1
100	80	18.0	20.0	35.43	92.84	6.525	46.46	88.62	1786	1253	2961	1696	1160
100	90	28.0	30.7	73.84	150.1	12.12	71.30	134.1	2126	1109	4043	1523	974.3
200	10	4.0	4.3	1.013	2.498	0.962	1.715	2.705	92.3	83.5	98.2	83.7	91.2
200	20	5.1	5.9	2.708	5.810	1.548	4.217	5.965	140.3	120.7	202.2	137.6	126.9
200	30	6.1	7.3	7.030	17.71	3.187	9.095	18.56	519.9	396.2	699.5	476.8	386.0
200	40	7.6	9.0	16.04	47.64	5.510	26.04	49.85	1539	1162	2011	1279	1317
200	50	10.0	11.1	57.49	161.5	12.68	81.31	168.1	4295	2810	6846	3622	2889
200	60	12.1	14.0	249.9	755.6	45.66	380.4	820.4	17461	11704	26857	14712	13109
200	70	15.3	18.1	1993	5830	341.9	2945	5829	102122	64430	173810	88354	63972

Theorem 1. Given an undirected graph $G=(V, E)$ algorithm MC finds a maximum clique M of G.

Proof: This result follows immediately from the observation that algorithm MC maintains the abovementioned conditions throughout the algorithm.

To evaluate the effectiveness of the FCP heuristic as an upper bounding device for the maximum clique problem, we have also developed an algorithm MC1, which skips lines 3 and 4 of step 2 , thus not using FCP to calculate a further upper bound. $\mathrm{MC}_{\mathrm{C}}\left(\mathrm{MC1}_{\mathrm{C}}\right)$ uses CLIQUE to determine a clique in Step 1, and $\mathrm{FCP}_{\mathrm{C}}$ (COLOR) to determine upper bounds in Step 2. $\mathrm{MC}_{\mathrm{D}}\left(\mathrm{MC1}_{\mathrm{D}}\right)$ uses $\mathrm{FCP}_{\mathrm{D}}$ (DSATUR) for these purposes.

4. Computational results

See [19] for a complete description of the implementation of our algorithms in GAP [17] on a Sun Sparcstation 10. We now compare the performance of algorithms $\mathrm{MC}_{\mathrm{C}}, \mathrm{MC}_{\mathrm{D}}, \mathrm{MC1}_{\mathrm{C}}$ and $\mathrm{MC1}_{\mathrm{D}}$ with existing algorithms for the maximum clique problem.

By BXB we refer to a combination of the algorithms of [2,6], the most efficient known algorithms for the maximum clique problem. BXB uses $\mathrm{FCP}_{\mathrm{D}}$ to calculate lower and upper bounds at each search tree node, and uses branching rule II of [2], their best performing branching rule. The branching rules of Refs. [2, 6] (which is stated for weighted graphs) both generally activate more than one new search tree node.

Table 1 shows the average size of the lower bound determined at the root node (LB), the average size of a maximum clique $(|M|)$, the average CPU time taken by each of the algorithms, and the average number of search tree nodes generated by each algorithm, for 10 uniform random graphs of size $n=|V|$ and edge probability (or density) $d=2|E| / n(n-1)$. In Table 2 we compare the algorithms for a selection of the DIMACS benchmark graphs which were developed as part of the 1993 DIMACS Challenge (see Johnson and Trick Ref. [14]). They include non-uniform random graphs with relatively large clique sizes, and graphs which have arisen in coding theory, the Steiner Triple Problem, tilings of hypercubes, vertex cover problems and fault diagnosis. Table 2 shows the size n and density d of the graph, the CPU time taken by each algorithm, and the number of search tree nodes generated by each
Maximum clique finding algorithms - DIMACS benchmark graphs

DIMACS Graph	n	d	$\|M\|$	CPU time					Search	e nodes				
				MC_{C}	MC_{D}	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MCl}_{\mathrm{D}}$	BXB	MC_{C}	MC_{D}	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MC1}_{\mathrm{D}}$	BXB	BX
brock200_1	200	75	21	4911	15186	805.2	7951	16320	218853	149153	379810	211013	163348	113244
brock200_2	200	50	12	26.72	149.7	3.833	74.22	158.4	1790	3018	2594	3593	3018	2965
brock200_3	200	61	15	230.1	573.6	38.50	281.0	815.9	15354	7818	24113	10113	12717	8155
brock200_4	200	66	17	568.2	1926	92.95	931.5	1530	31751	25105	52332	33693	19316	25705
c-fat200-1	200	8	12	0.283	2.200	0.017	0.150	2.133	8	1	8	4	1	1
c-fat200-2	200	16	24	0.317	0.183	0.017	0.183	0.167	7	1	7	1	1	1
c-fat200-5	200	43	58	0.683	3.467	0.133	2.217	3.284	27	27	27	27	27	29
c-fat500-1	500	4	14	0.534	0.616	0.017	0.617	2.217	13	1	13	1	1	1
c-fat500-2	500	7	26	1.417	0.700	0.083	0.700	0.750	23	1	23	1	1	1
c-fat500-5	500	19	64	1.450	0.984	0.166	0.950	0.983	23	1	23	1	1	1
c-fat500-10	500	37	126	0.017	1.400	0.033	1.400	1.450	1	1	1	1	1	1
hamming6-2	64	90	32	0.017	0.050	0.001	0.067	0.066	1	1	1	1	1	1
hamming6-4	64	35	4	0.133	0.850	0.067	0.300	0.800	81	29	81	58	29	48
hamming8-2	256	97	128	0.017	0.733	0.001	0.750	0.717	1	1	1	1	1	1
hamming8-4	256	64	16	344.2	155.7	79.15	137.6	156.5	28593	357	36441	2045	357	373
hamming 10-2	1024	99	512	0.050	10.57	0.066	10.47	12.28	1	1	1	1	1	1
johnson8-2-4	28	56	4	0.050	0.050	0.017	0.083	0.033	20	1	23	26	1	1
johnson8-4-4	70	77	14	0.533	0.300	0.183	0.534	0.300	115	1	115	19	1	1
johnson16-2-4	120	76	8	770.8	0.417	195.8	2046	0.384	190084	1	256099	355522	1	1
keller4	171	65	11	113.1	256.5	18.45	137.5	256.7	6543	3700	12829	5195	3700	4164
MANN_a 9	45	93	16	0.617	1.033	0.100	0.384	1.017	46	19	60	20	19	23
MANN_a27	378	99	126	23286	26524	704.3	9753	25549	39087	8704	47264	9874	8714	14145
p_hat300-1	300	24	8	8.800	38.93	1.467	20.12	37.53	1032	819	1310	928	819	832
p_hat300-2	300	49	25	75.05	225.6	10.05	129.2	225.5	1888	1304	2801	1579	1304	1613
p_hat500-1	500	25	9	76.48	384.8	13.72	231.4	389.5	7454	6179	9772	6724	6179	6105
p_hat500-2	500	50	36	2695	9790	267.1	5796	6320	35657	27182	59393	34787	17019	31746
p_hat700-1	700	25	11	272.8	1915	40.32	1060	1408	17629	19337	25805	23150	15310	14040
p_hat1000-1	1000	24	10	1883	13060	283.2	6974	13150	122182	90607	179082	111897	91159	93004
san200_0.7_1	200	70	30	6.617	36.37	0.917	18.85	95.73	53	231	206	348	645	635
san200_0.7_2	200	70	18	3.700	20.80	0.466	10.65	36.53	110	154	195	182	363	852
san200_0.9_1	200	90	70	73.75	45.72	11.48	24.92	255.4	715	121	2069	201	631	10
san200_0.9_2	200	90	60	5988	612.6	1052	348.0	2036	71114	1553	211889	2365	5655	1825
san400_0.5_1	400	50	13	51.03	81.73	11.22	64.83	247.7	1223	378	3465	523	1689	1194
san400_0.7_1	400	70	40	1681	2455	198.7	1430	10263	15903	5604	38989	8507	30707	20913
san400_0.7_2	400	70	30	36486	39100	6228	24285	66579	690806	139092	1591030	231593	295314	75773
san1000	1000	50	15	2281	32630	653.9	40814	9277	43623	44408	106823	78698	12996	21897
sanr200_0.7	200	70	18	1711	4608	338.2	2372	4076	87012	51610	150861	71799	44278	40496
sanr400_0.5	400	50	13	2352	9094	350.9	4955	8617	155285	115210	233381	136636	114208	112932

Table 3
Maximum clique finding algorithms - uniform random graphs with $n=100$ and $d=90 \%$

$\|M\|$	CPU time (s)					Search tree nodes				
	MC_{C}	MC ${ }_{\text {D }}$	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MC1} \mathrm{D}$	BXB	MC_{C}	MC_{D}	$\mathrm{MC1}_{\mathrm{C}}$	$\mathrm{MC1} \mathrm{D}_{\text {d }}$	BXB
29	160.0	263.1	26.34	122.5	285.8	4957	2014	9854	2721	2216
30	66.09	158.2	10.38	74.80	134.4	1885	1183	3259	1620	966
31	53.27	94.34	9.740	45.92	79.52	1392	643.5	2815	938.5	522
32	50.80	138.0	7.809	66.97	92.19	1323	1005	2465	1372	623
33	12.03	36.32	2.300	17.90	22.80	256	217	391	307	123

algorithm. Column BX refers to the number of search tree nodes for the algorithm of Ref. [6] as stated in their paper. To accurately compare algorithms we use the values presented in Ref. [6] for the lower bound at the root node for each of the tested algorithms.

In most cases those algorithms $\mathrm{MC}_{\mathrm{D}}, \mathrm{BXB}$ and BX which use the upper bound heuristic $\mathrm{FCP}_{\mathrm{D}}$, generate the least number of search tree nodes. MC_{D} on average generates less search tree nodes than BXB for 12 of the 16 sets of random graphs. For 12 of the DIMACS benchmark graphs the lower bound and upper bound calculated at the root node by these algorithms are equal, and therefore only one search tree node is generated. Of the other 26 DIMACS benchmark graphs, MC_{D} uses the least search tree nodes of these algorithms 15 times, BXB 10 times, and BX 8 times.

Those algorithms which use the vertex coloring heuristic COLOR, while generating the most search tree nodes, are generally the fastest. In particular, for the random graphs, $\mathrm{MC1}_{\mathrm{C}}$ is the fastest of the tested algorithms, using on average only 18.41% of the CPU time used by BXB. $\mathrm{MC1}_{\mathrm{C}}$ is again the fastest for all but four of the DIMACS benchmark graphs (and for two of these the difference is only a few microseconds). We have also implemented a variant MC_{C} of $\mathrm{MC1}_{\mathrm{C}}$ which only finds a lower bound at the root node of the search tree. For the random graphs (DIMACS benchmark graphs) this algorithm uses 0.65% (0.20%) more search tree nodes than $\mathrm{MC1}_{\mathrm{C}}$, yet is on average 4.34% (12.04%) faster than $\mathrm{MC1}_{\mathrm{C}}$. This indicates that the determination of lower bounds at non-root nodes is not timeefficient.

We have observed that for graphs with fixed size and density the difficulty of the maximum clique prob-
lem is generally inversely proportional to the size of a maximum clique in the graph. This is apparent for the san graphs with equal n and d. Similar results occur with the random graphs. For example, the 10 uniform random graphs (used in Table 1) with $n=100$ and $d=90 \%$ have a maximum clique of size 29(2), 30(3), $31(2)$, 32(2) or 33(1). For each maximum clique size, Table 3 shows the average CPU time taken, and the average number of search tree nodes generated by each algorithm.

Acknowledgements

The author wishes to thank Graham Farr, Cheryl Praeger, Leonard Soicher and an anonymous referee for their helpful discussion and advice. Thanks also to Christopher Pickett for the use of his computer.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and intractability of approximation problems, Proc. 33rd IEEE Symp. on Foundations of Computer Science, 1992, pp. 13-22.
[2] L. Babel, Finding maximum cliques in arbitrary and in special graphs, computing 46 (1991) 321-341.
[3] L. Babel, G. Tinhofer, A branch and bound algorithm for the maximum clique problem, Meth. Oper. Res. 34 (1990) 207-217.
[4] E. Balas, A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring, Discrete Appl. Math. 15 (1986) 123-134.
[5] E. Balas, J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM J. Comput. 20(2) (1991) 209-221.
[6] E. Balas, J. Xue, Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring, Algorithmica 15 (1996) 397-412.
[7] E. Balas, C.S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Comput. 15(4) (1986) 1054-1068.
[8] N. Biggs, Some Heuristics for Graph Coloring, in: R. Nelson, R.J. Wilson, (Eds.), Graph Colourings, Longman, New York, 1990, pp. 87-96.
[9] D. Brelaz, New methods to color the vertices of a graph, Comm. ACM 22 (1979) 251-256.
[10] C. Bron, J. Kerbosch, Finding all cliques of an undirected graph, Comm. ACM 16(9) (1973) 575-577.
[11] R. Garraghan, P.M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. Lett. 9 (1990) 375-382.
[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
[13] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325-356.
[14] D.S. Johnson, M.A. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, 1996.
[15] P.M. Pardalos, G.P. Rodgers, A branch and bound algorithm for the maximum clique problem, Comput. Oper. Res. 19(5) (1992) 363-375.
[16] P.M. Pardalos, J. Xue, The maximum clique problem. J. Global Optim. 4 (1994) 301-328.
[17] M. Schönert et al., GAP-Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.
[18] R.E. Tarjan, A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6(3) (1977) 537-546.
[19] D.R. Wood, An algorithm for finding a maximum clique in a graph, Technical Report 96/260, Department of Computer Science, Monash University, Australia, 1996, available at ftp.cs.monash.edu.au.

[^0]: * E-mail: davidw@cs.monash.edu.au.

