
http://www.elsevier.com/locate/jctb

Journal of Combinatorial Theory, Series B 90 (2004) 309–313

Bounded degree acyclic decompositions
of digraphs$

David R. Wood

School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6

Received 13 June 2003

Abstract

An acyclic decomposition of a digraph is a partition of the edges into acyclic subgraphs.

Trivially every digraph has an acyclic decomposition into two subgraphs. It is proved that for

every integer sX2 every digraph has an acyclic decomposition into s subgraphs such that in

each subgraph the outdegree of each vertex v is at most
degðvÞ

s�1

l m
: For all digraphs this degree

bound is optimal.
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1. Introduction

Throughout this paper a digraph G ¼ ðV ;EÞ is a finite loopless directed graph
without parallel edges (but possibly with 2-cycles). EðvÞ denotes the set of outgoing
edges incident to a vertex vAV ; and degðvÞ ¼ jEðvÞj denotes the outdegree of v: For
some set of edges E0DE; G½E0� denotes the subdigraph G0 ¼ ðV ;E 0Þ:

A vertex-ordering p of a digraph G ¼ ðV ;EÞ is a total order ðv1; v2;y; vnÞ
of V : For each vertex vi; let succpðviÞ ¼ fðvi; vjÞAEðviÞ : iojg and predpðviÞ ¼
fðvi; vjÞAEðviÞ : joig: Edges ðvi; vjÞAsuccpðviÞ (respectively, predpðviÞ) are called

successor (predecessor) edges of vi in p; and vj is called a successor (predecessor) of vi

in p:

ARTICLE IN PRESS

$Research supported by NSERC.

E-mail address: davidw@scs.carleton.ca.

0095-8956/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jctb.2003.08.004



It is well known that a digraph G is acyclic if and only if G has a vertex-ordering p
such that all edges are successor edges. p is then called a topological ordering (or
topological sort) of G:

An acyclic decomposition of a digraph G ¼ ðV ;EÞ is a partition fE1;E2;y;Esg of
E such that each G½Ei� is acyclic. Every digraph G has an acyclic decomposition into
two subgraphs. To see this, take an arbitrary vertex-ordering p of G; and let
E1 ¼

S
v succpðvÞ and E2 ¼

S
v predpðvÞ: Then p and its reverse are topological

orderings of G½E1� and G½E2�; respectively. Thus G½E1� and G½E2� are acyclic.
Our aim is to produce acyclic decompositions with a prescribed number of

subgraphs such that in each subgraph each vertex has small outdegree proportional
to its original outdegree. Such acyclic decompositions have been implicitly used in
algorithms for orthogonal graph drawing [2,7]. For a given acyclic decomposition
fE1;E2;y;Esg of G; the outdegree of each vertex v in G½Ei� is denoted by degiðvÞ:

Theorem 1. For every integer sX2; every digraph G ¼ ðV ;EÞ has an acyclic

decomposition fE1;E2;y;Esg such that degiðvÞp
degðvÞ

s�1

l m
for all vertices vAV and

all iAf1; 2;y; sg:

Since every acyclic digraph has some vertex with outdegree zero, in every acyclic
decomposition fE1;E2;y;Esg of G; there is a subgraph G½Ei� and a vertex v with

degiðvÞX
degðvÞ

s�1

l m
: Thus Theorem 1 is optimal for all G and s: Note that Theorem 1

also holds when replacing outdegree by indegree—just reverse each edge and apply
the outdegree result.

Theorem 1 is related to the arboricity of a digraph. See [3–6] for various
‘diarboricity’ definitions. Here the aim is to find acyclic decompositions with a small
number of subgraphs, each satisfying some prescribed upper bound on the indegree

or outdegree (or both). Define arbdðGÞ (respectively, arbdðGÞ) to be the minimum
number of subgraphs in an acyclic decomposition of a digraph G into sub-

graphs with maximum indegree (outdegree) at most d: Let D�ðGÞ and DþðGÞ
be the maximum indegree and outdegree of G: Karejan [3] showed that

arb1ðGÞAfD�ðGÞ;D�ðGÞ þ 1g; and thus arb1GAfDþðGÞ;DþðGÞ þ 1g: It follows

from Theorem 1 with s ¼ DþðGÞ
d

l m
þ 1 that arbdðGÞp DþðGÞ

d

l m
þ 1: By the above lower

bound, this result is optimal for out-regular digraphs. Similarly one shows that

arbdðGÞp D�ðGÞ
d

l m
þ 1; which matches the above bound of Karejan for d ¼ 1 and is

optimal for in-regular digraphs.

2. Proof of Theorem 1

We prove Theorem 1 by induction on s with the following induction hypothesis:
For a given vertex-ordering p ¼ ðv1; v2;y; vnÞ of a digraph G ¼ ðV ;EÞ; there is an

acyclic decomposition fE1;E2;y;Esg of G such that for all iAf1; 2;y; sg and all
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vertices vAV ;

degiðvÞpDs;pðvÞ ¼def
degðvÞ

s

l m
if jpredpðvÞj ¼ degðvÞ;

degðvÞ�IjpredpðvÞj=sm
s�1

l m
if jpredpðvÞjodegðvÞ:

8><
>:

Proof. Construct a vertex-ordering s of G as follows. Start with an empty vertex-
ordering, and add the vertices v1; v2;y; vn into s in this order, inserting vi so that

jpredsðviÞj ¼
s�1

s
jpredpðviÞj

s�1
s
jpredpðviÞj

" #
if jpredpðviÞjodegðviÞ;
if jpredpðviÞj ¼ degðviÞ:

(

Note that the predecessors of vi in p are already in s when vi is inserted. Since
each vertex v with jpredpðvÞj ¼ degðvÞ has no successors in p; in the final vertex-
ordering s;

jpredsðvÞj ¼
s� 1

s
degðvÞ

� �
and jsuccsðvÞj ¼

degðvÞ
s

 �
: ð1Þ

For each vertex v with jpredpðvÞjodegðvÞ; regardless of where in s the successors of v

in p are inserted,

s� 1

s
jpredpðvÞj

 �
pjpredsðvÞjp

s� 1

s
jpredpðvÞj

 �
þ jsuccpðvÞj

¼ s� 1

s
jpredpðvÞj

 �
þ degðvÞ � jpredpðvÞj

¼ degðvÞ � jpredpðvÞj
s

� �
ð2Þ

and

jpredpðvÞj
s

� �
pjsuccsðvÞjpdegðvÞ � s� 1

s
j predpðvÞj

 �
: ð3Þ

Consider the base case with s ¼ 2: For each vertex v; let E1ðvÞ ¼ succsðvÞ and
E2ðvÞ ¼ predsðvÞ: Then s and its reverse are topological orderings of G½E1� and
G½E2�; respectively. Thus fE1;E2g is an acyclic decomposition of G: For each
iAf1; 2g; every vertex v with jpredpðvÞj ¼ degðvÞ has

degiðvÞpmaxfjpredsðvÞj; jsuccsðvÞjg ¼ 1
2
degðvÞ

� �
¼ D2;pðvÞ

by Eq. (1), and every vertex v with jpredpðvÞjodegðvÞ has
degiðvÞpmaxfjpredsðvÞj; jsuccsðvÞjgpdegðvÞ � 1

2
j predpðvÞj

� �
¼ D2;pðvÞ

by Eqs. (2) and (3). Thus the induction hypothesis holds for s ¼ 2:
Now assume sX3 and the induction hypothesis holds for s� 1: For each vertex v;

let EsðvÞ be a set of minfDs;pðvÞ; jsuccsðvÞjg edges from succsðvÞ: Let Es ¼
S

v EsðvÞ:
Then s is a topological ordering of G½Es�; and thus G½Es� is acyclic. By the choice of
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EsðvÞ; the claimed degree bound of degsðvÞpDs;pðvÞ holds. Let G0 ¼ G\Es; and

denote the outdegree in G0 of each vertex v by deg0ðvÞ ¼ degðvÞ � jEsðvÞj:
By the induction hypothesis for s� 1 applied to G0 with vertex-ordering s; G0 has

an acyclic decomposition fE1;E2;y;Es�1g such that for all iAf1; 2;y; s� 1g and
vertices v;

degiðvÞp

deg0ðvÞ
s� 1

 �
ðaÞ if jpredsðvÞj ¼ deg0ðvÞ;

deg0ðvÞ � IjpredsðvÞj=ðs� 1Þm
s� 2

 �
ðbÞ if jpredsðvÞjodeg0ðvÞ:

8>>><
>>>:

ð4Þ

We now show that each vertex v has degiðvÞpDs;pðvÞ for all iAf1; 2;y; s� 1g:
Case 1. jpredpðvÞj ¼ degðvÞ: Then Ds;pðvÞ ¼ degðvÞ

s

l m
¼ jsuccsðvÞj by Eq. (1). Thus

EsðvÞ ¼ succsðvÞ and deg0ðvÞ ¼ jpredsðvÞj ¼ s�1
s
degðvÞ

� �
by Eq. (1). By Eq. (4)(a),

degiðvÞp
1

s� 1

s� 1

s
degðvÞ

� � �
p

degðvÞ
s

 �
¼ Ds;pðvÞ:

Case 2. jpredpðvÞjodegðvÞ and jsuccsðvÞjpDs;pðvÞ: Then EsðvÞ ¼ succsðvÞ and

deg0ðvÞ ¼ jpredsðvÞjpdegðvÞ � jpredpðvÞj
s

j k
by Eq. (2). By Eq. (4)(a),

degiðvÞp
degðvÞ � IjpredpðvÞj=sm

s� 1

 �
¼ Ds;pðvÞ:

Case 3. jpredpðvÞjodegðvÞ and Ds;pðvÞojsuccsðvÞj: Then jEsðvÞj ¼ Ds;pðvÞ and

thus,

deg0ðvÞ ¼ degðvÞ �Ds;pðvÞ

¼ degðvÞ � degðvÞ � IjpredpðvÞj=sm
s� 1

 �

p
ðs� 2Þ degðvÞ þ IjpredpðvÞj=sm

s� 1
: ð5Þ

Since jEsðvÞjojsuccsðvÞj; deg0ðvÞ4jpredsðvÞj: Thus by Eqs. (4)(b) and (5),

degiðvÞp
1

s� 2

ðs� 2Þ degðvÞ þ IjpredpðvÞj=sm
s� 1

� jpredsðvÞj
s� 1

� �� � �
:
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By Eq. (2), jpredsðvÞj
s�1 X

jpredpðvÞj
s

: Thus,

degiðvÞp
degðvÞ
s� 1

þ 1

s� 2

IjpredpðvÞj=sm
s� 1

� jpredpðvÞj
s

� �� � �

¼ degðvÞ
s� 1

þ 1

s� 2
� s� 2

s� 1

jpredpðvÞj
s

� �� � �

¼ degðvÞ � IjpredpðvÞj=sm
s� 1

 �
¼Ds;pðvÞ:

Hence every vertex v has degiðvÞpDs;pðvÞ for all iAf1; 2;y; s� 1g: Thus

fE1;E2;y;Esg is an acyclic decomposition with degiðvÞpDs;pðvÞ for all vertices v

and all iAf1; 2;y; sg: This completes the proof of the induction hypothesis. &

Theorem 1 follows immediately since Ds;pðvÞp degðvÞ
s�1

l m
:

Finally, note that using a similar approach to the median placement algorithm of
Bied et al. [1], each inductive step in the proof of Theorem 1 can be implemented in
OðjV j þ jEjÞ time. Thus the desired acyclic decomposition can be determined in
OðsðjV j þ jEjÞÞ time.
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