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Abstract

An acyclic decomposition of a digraph is a partition of the edges into acyclic subgraphs.
Trivially every digraph has an acyclic decomposition into two subgraphs. It is proved that for
every integer s>2 every digraph has an acyclic decomposition into s subgraphs such that in

each subgraph the outdegree of each vertex v is at most [‘y&q)—‘ For all digraphs this degree

bound is optimal.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper a digraph G = (V,E) is a finite loopless directed graph
without parallel edges (but possibly with 2-cycles). E(v) denotes the set of outgoing
edges incident to a vertex ve V', and deg(v) = |E(v)| denotes the outdegree of v. For
some set of edges E'< E, G[E'] denotes the subdigraph G’ = (V, E').

A vertex-ordering m of a digraph G = (V,E) is a total order (vi,v2,...,0,)
of V. For each vertex v;, let succ,(v;) = {(v;,v;)€E(v;) : i<j} and pred,(v;) =
{(vi,v;)e E(v;) : j<i}. Edges (v;,v;)€esuccy(v;) (respectively, pred,(v;)) are called
successor (predecessor) edges of v; in ©, and v; is called a successor (predecessor) of v;
in 7.
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It is well known that a digraph G is acyclic if and only if G has a vertex-ordering n
such that all edges are successor edges. = is then called a topological ordering (or
topological sort) of G.

An acyclic decomposition of a digraph G = (V, E) is a partition {E), Ea, ..., E;} of
E such that each G[E;] is acyclic. Every digraph G has an acyclic decomposition into
two subgraphs. To see this, take an arbitrary vertex-ordering = of G, and let
E, =, succy(v) and E, =|J, pred,(v). Then m and its reverse are topological
orderings of G[E|] and G[E:], respectively. Thus G[E|] and G[E>] are acyclic.

Our aim is to produce acyclic decompositions with a prescribed number of
subgraphs such that in each subgraph each vertex has small outdegree proportional
to its original outdegree. Such acyclic decompositions have been implicitly used in
algorithms for orthogonal graph drawing [2,7]. For a given acyclic decomposition
{E\, Es, ..., E} of G, the outdegree of each vertex v in G[E;] is denoted by deg;(v).

Theorem 1. For every integer s=2, every digraph G = (V,E) has an acyclic
decomposition {E\, Es, ..., Es} such that deg;(v)< Ff%(f)—‘ for all vertices veV and
all ie{1,2,...,s}.

Since every acyclic digraph has some vertex with outdegree zero, in every acyclic
decomposition {Ej, E», ..., Es} of G, there is a subgraph G[E;] and a vertex v with

deg;(v) > Fj%(l")—‘. Thus Theorem 1 is optimal for all G and s. Note that Theorem 1

also holds when replacing outdegree by indegree—just reverse each edge and apply
the outdegree result.

Theorem 1 is related to the arboricity of a digraph. See [3-6] for various
‘diarboricity’ definitions. Here the aim is to find acyclic decompositions with a small
number of subgraphs, each satisfying some prescribed upper bound on the indegree
or outdegree (or both). Define arb,(G) (respectively, arb?(G)) to be the minimum
number of subgraphs in an acyclic decomposition of a digraph G into sub-
graphs with maximum indegree (outdegree) at most d. Let A~ (G) and 4™ (G)
be the maximum indegree and outdegree of G. Karejan [3] showed that
arb;(G)e{47(G),47(G) + 1}, and thus arb'Ge{47(G),4"(G) +1}. It follows
from Theorem 1 with s = [%—‘ + 1 that arb?(G) < [@W + 1. By the above lower

bound, this result is optimal for out-regular digraphs. Similarly one shows that

arb,(G) < P%&G)] + 1, which matches the above bound of Karejan for d = 1 and is

optimal for in-regular digraphs.

2. Proof of Theorem 1

We prove Theorem 1 by induction on s with the following induction hypothesis:
For a given vertex-ordering n = (v, va, ...,v,) of a digraph G = (V,E), there is an
acyclic decomposition {E,Ey, ..., Es} of G such that for all ie{1,2,...,s} and all
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vertices ve 'V,
Fciﬂ if |pred,(v)| = deg(v),
[w] if |pred, (v)| <deg(v).

§—

deg;(v) <Dy (v)

Proof. Construct a vertex-ordering ¢ of G as follows. Start with an empty vertex-
ordering, and add the vertices vy, v2, ..., v, into ¢ in this order, inserting v; so that

SHpred.(vi)| | if [pred,(v;)]<deg(v:),
|preda(vi)| = s—1 . .
Spred, (v7)] | if [pred, (v;)| = deg(v:).

Note that the predecessors of v; in n are already in ¢ when v; is inserted. Since
each vertex v with |pred,(v)| = deg(v) has no successors in =, in the final vertex-
ordering g,

pred ()] = |*

di(’ﬂ. (1)

1deg(v)J and [succ,(v)| = [ g

N

For each vertex v with |pred, (v)| <deg(v), regardless of where in ¢ the successors of v
in 7 are inserted,

—1 s—1
5 tored, 01| < pred, ()] [ prede (0] + e ()

= [u |predn(v)|—‘ + deg(v) — |pred,(v)]

:degiv) — {MJ (2)
and
) < e (0] <o) - [~ ey 0] G)

Consider the base case with s =2. For each vertex v, let E;(v) = succ,(v) and
E,(v) = pred,(v). Then ¢ and its reverse are topological orderings of G[E,] and
G|E,], respectively. Thus {E|, E>} is an acyclic decomposition of G. For each
ie{1,2}, every vertex v with |pred,(v)| = deg(v) has

deg;(v) <max{|pred, (v)], [succ, (v)|} = [3deg(v)]| = D2z (v)
by Eq. (1), and every vertex v with |pred,(v)| <deg(v) has
deg;(v) <max{|pred, (v)], |succ, (v)[} <deg(v) — [3] pred,(v)|| = D2x(v)

by Eqgs. (2) and (3). Thus the induction hypothesis holds for s = 2.
Now assume s> 3 and the induction hypothesis holds for s — 1. For each vertex v,

let Es(v) be a set of min{D,,(v), |succ,(v)|} edges from succ,(v). Let E; = |, Es(v).
Then o is a topological ordering of G[E;], and thus G[E;] is acyclic. By the choice of



312 D.R. Wood | Journal of Combinatorial Theory, Series B 90 (2004) 309-313

E;(v), the claimed degree bound of deg (v)<D;.(v) holds. Let G' = G\E;, and
denote the outdegree in G’ of each vertex v by deg'(v) = deg(v) — |E;(v)|.

By the induction hypothesis for s — 1 applied to G’ with vertex-ordering ¢, G’ has
an acyclic decomposition {E|, E;, ..., E;_1} such that for all ie{1,2,...,5— 1} and
vertices v,

)] (@) i [pred, ()] = deg/(0).
degi(v)<q .
{ celt) = Upsre_ ;(UW b 1)]} (b) if |pred, (v)| <deg/(v).

(4)

We now show that each vertex v has deg;(v) <Dy, (v) for all ie{1,2,...,s — 1}.

Case 1. |pred,(v)| = deg(v): Then D, (v) = di(ﬂ = |succ, (v)| by Eq. (1). Thus

N

E,(v) = succ,(v) and deg'(v) = |pred, (v)| = [} deg(v)| by Eq. (1). By Eq. (4)(a),

deg,(v) < L_ll r - ldeg(v)ﬂ < Feg(v)

S N

= D, (v).

Case 2. |pred,(v)|<deg(v) and |succ,(v)|<Ds(v): Then Ey(v) = succ,(v) and
deg/(1) = [pred, (1) <deg(r) — | 201 by Eq. (2). By Eq. (4)(@),

deg(v) — | Ipred,(v)|/s |

s—1

deg;(v) < { —‘ = D, (v).

Case 3. |pred,(v)|<deg(v) and D;,(v)<|succ,(v)|: Then |E(v)| = Ds,(v) and
thus,

deg/(v) = deg(v) — Dox(v)

g [Ceet) = Lpre (0]
_ (5= 2)deg(v) + L Ipred(0)l/s] .

s—1

Since | E;(v)|<|succ,(v)|, deg'(v) > |pred, (v)|. Thus by Egs. (4)(b) and (5),

deg o)< [y (o 2dete) + Lorta(oljs] _ lred0] ).

s—2 s—1 s—1
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By Eq. (2), a0l lorsda(l
deg(v) | 1 <Lpredn(v)l/SJ B {Ipredn(v)Jﬂ

s—1  s=2 s—1 K

_ _dff(’;) - i 2(_ i - ? Vprecln(vn J ﬂ
_ [deg(v) - L|predn<v)/sq

deg;(v) <

s—1

=D; (v).

Hence every vertex v has deg;(v)<D,,(v) for all ie{l,2,....,s—1}. Thus
{E\, E, ..., Es} is an acyclic decomposition with deg;(v) <D;,(v) for all vertices v
and all ie{1,2, ...,s}. This completes the proof of the induction hypothesis. [

Theorem 1 follows immediately since D; ,(v) < F?gf(]”)—‘.

Finally, note that using a similar approach to the median placement algorithm of
Bied et al. [1], each inductive step in the proof of Theorem 1 can be implemented in
O(|V| + |E]|) time. Thus the desired acyclic decomposition can be determined in
O(s(|V| + |E|)) time.
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