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1 | INTRODUCTION

A vertex coloring of a graph is nonrepetitive if there is no path for which the first half of the
path is assigned the same sequence of colors as the second half. More precisely, a k-coloring
of a graph G is a function ¢ that assigns one of k colors to each vertex of G. A path
(v1, Va,...,vy) of even order in G is repetitively colored by 9 if (v;) = P (v.y;) fori € {1,...,t}. A
coloring 3 of G is nonrepetitive if no path of G of even order is repetitively colored by .
Observe that a nonrepetitive coloring is proper, in the sense that adjacent vertices are
colored differently. The nonrepetitive chromatic number 7 (G) is the minimum integer k such
that G admits a nonrepetitive k-coloring. We only consider simple graphs with no loops or
parallel edges.

The seminal result in this area is by Thue [41], who in 1906 proved that every path is
nonrepetitively 3-colorable. Thue expressed his result in terms of strings over an alphabet of
three characters—Alon et al [3] introduced the generalization to graphs in 2002. Nonrepetitive
graph colorings have since been widely studied [2-12,21,25-33,35,37-39]. The principle result
of Alon et al [3] was that graphs with maximum degree A are nonrepetitively ¢ (A?)-colorable.
Several subsequent papers improved the constant [16,26,30]. The best-known bound is due
to Dujmovié et al [16].
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Theorem 1 (Dujmovic et al [16]). Every graph with maximum degree A is nonrepetitively
(1 + o(1))A%-colorable.

A number of other graph classes are known to have bounded nonrepetitive chromatic
number. In particular, trees are nonrepetitively 4-colorable [8,33], outerplanar graphs are
nonrepetitively 12-colorable [5,33], and graphs with bounded treewidth have bounded
nonrepetitive chromatic number [5,33]. (See Section 2 for the definition of treewidth.) The
best-known bound is due to Kiindgen and Pelsmajer [33].

Theorem 2 (Kiindgen and Pelsmajer [33]). Every graph with treewidth k is
nonrepetitively 4¢-colorable.

The primary contribution of this paper is to provide a qualitative generalizations of
Theorems 1 and 2 via the notion of graph immersions and excluded topological minors.

A graph G contains a graph H as an immersion if the vertices of H can be mapped to distinct
vertices of G, and the edges of H can be mapped to pairwise edge-disjoint paths in G, such that each
edge vw of H is mapped to a path in G whose endpoints are the images of v and w. The image in G
of each vertex in H is called a branch vertex. Structural and coloring properties of graphs excluding a
fixed immersion have been widely studied [1,13,14,18-20,22-24,34,36,40,42]. We prove that graphs
excluding a fixed immersion have bounded nonrepetitive chromatic number.

Theorem 3. For every graph H with t vertices, every graph that does not contain H as an
immersion is nonrepetitively 4 +0*)_colorable.

Since a graph with maximum degree A contains no star with A + 1 leaves as an immersion,
Theorem 3 implies that graphs with bounded degree have bounded nonrepetitive chromatic
number (as in Theorem 1).

We strengthen Theorem 3 as follows (although without explicit bounds). A graph G contains
a graph H as a strong immersion if G contains H as an immersion, such that for each edge vw of
H, no internal vertex of the path in G corresponding to vw is a branch vertex.

Theorem 4. For every fixed graph H, there exists a constant k, such that every graph G
that does not contain H as a strong immersion is nonrepetitively k-colorable.

Note that planar graphs with n vertices are nonrepetitively ¢(logn)-colorable [15], and the
same is true for graphs excluding a fixed graph as a minor or topological minor [17]. It is
unknown whether any of these classes have bounded nonrepetitive chromatic number. Our final
result shows that excluding a special type of topological minor gives bounded nonrepetitive
chromatic number. A subdivision of a graph H is a graph obtained from H by replacing each edge
vw of H by a path with endpoints v and w. A graph G contains H as a topological minor if a
subdivision of H is a subgraph of G. Vertices with degree at least 4 are important for topological
minors since it is easily seen and well known that for a graph H with maximum degree 3, a graph
G contains H as a topological minor if and only if G contains H as a minor.

Theorem 5. Let H be a fixed planar graph that has a planar embedding with all the
vertices of H with degree at least 4 on a single face. Then there exists a constant k, such that
every graph G that does not contain H as a topological minor is nonrepetitively k-colorable.
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FIGURE 1 Upper bounds on the nonrepetitive chromatic number of various graph classes. “Special” refers
to the condition in Theorem 5 [Color figure can be viewed at wileyonlinelibrary.com]

Graphs with bounded treewidth exclude fixed walls as topological minors. Since walls are
planar graphs with maximum degree 3, Theorem 5 implies that the graphs of bounded
treewidth have bounded nonrepetitive chromatic number (as in Theorem 2). Similarly, for every
graph H with ¢t vertices, the “fat star” graph (which is the 1-subdivision of the t-leaf star with
edge multiplicity ¢) contains H as a strong immersion. Since fat stars embed in the plane with
all vertices of degree at least 4 on a single face, Theorem 5 implies that graphs excluding a fixed
graph as a strong immersion have bounded nonrepetitive chromatic number (as in Theorem 4).
In this sense, Theorem 5 generalizes all of Theorems 1 to 4.

The results of this paper, in relation to the best-known bounds on the nonrepetitive
chromatic number, are summarized in Figure 1.

Finally, note that several papers study nonrepetitive choosability. In particular, all of the
O (&%) upper bounds mentioned above hold for nonrepetitive choosability. Contrarily, Fiorenzi
et al [21] showed that trees have unbounded nonrepetitive choosability. It follows that for all of
the above graph classes with unbounded degree, the nonrepetitive choosability is unbounded.

2 | TREE DECOMPOSITIONS

For a graph G and tree T, a tree decomposition or T-decomposition of G consists of a collection
(T, CV(G): x € V(T)) of sets of vertices of G, called bags, indexed by the nodes of T, such that
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for each vertex v € V (G) the set {x € V(T) : v € T} induces a connected subtree of T, and for
each edge vw of G there is a node x € V(T) such that v, w € T,. The width of a
T-decomposition is the maximum, taken over the nodes x € V (T), of |T,| — 1. The treewidth
of a graph G is the minimum width of a tree decomposition of G. The adhesion of a tree
decomposition (T; : x € V(T)) is max{|T, N Ty| : xy € E(T)}. The torso of each node x € V (T)
is the graph obtained from the induced subgraph G[T,] by adding a clique on T, N T, for each
edge xy € E(T) incident to x. Dujmovic et al [17] generalized Theorem 2 as follows.

Lemma 6 (Dujmovic et al [17]). If a graph G has a tree decomposition with adhesion k
such that every torso is nonrepetitively c-colorable, then G is nonrepetitively ¢ 4“-colorable.

For integers ¢, d > 0 a graph G has (¢, d)-bounded degree if G contains at most ¢ vertices with
degree greater than d.

Lemma 7. Every graph with (c, d)-bounded degree is nonrepetitively ¢ + (1 + 0(1))d?-
colorable.

Proof. Assign a distinct color to each vertex of degree at least d, and color the remaining
graph by Theorem 1. For each vertex v of degree at least d, no other vertex is assigned the
same color as v. Thus v is in no repetitively colored path. The result then follows from
Theorem 1. O

Dvoidk [18] proved the following structure theorem for graphs excluding a strong
immersion.

Theorem 8 (Dvorak [18]). For every fixed graph H, there exists a constant k, such that
every graph G that does not contain H as a strong immersion has a tree decomposition such
that each torso is (k, k)-bounded degree.

Lemmas 7 and 6 and Theorem 8 imply Theorem 4.

3 | WEAK IMMERSIONS

The proof of Theorem 4 gives no explicit bound on the constant k. In this section, we prove an
explicit bound on the nonrepetitive chromatic number of graphs excluding a weak immersion.
Theorem 3 follows from Lemma 6 and the following structure theorem of independent interest.

Theorem 9. For every graph H with t vertices, every graph that does not contain H as a
weak immersion has a tree decomposition with adhesion at most t> such that every torso has
(t, t* + 2t?)-bounded degree.

The starting point for the proof of Theorem 9 is the following structure theorem of Wollan
[42]. For a tree T and graph G, a T-partition of G is a partition (T, C V(G) : x € V(T)) of V(G)
indexed by the nodes of T. Each set T is called a bag. Note that a bag may be empty. For each
edge xy of a tree T, let T (xy) and T (yx) be the components of T — xy where x is in T (xy) and y
is in T(x). For each edge xye€ E(T), let G(T,xy):={T,:z€ V(T(xy))} and
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G(T, yx):={T; : z € V(T (x))}. Let E(T, xp) be the set of edges in G between G (T, xy) and
G(T, yx). The adhesion of a T-partition (T : x € V (T)) is the maximum, taken over all edges xy
of T, of |[E(T, xy)|. For each node x of T, the torso of x (with respect to a T-partition) is the graph
obtained from G by identifying G(T, yx) into a single vertex for each edge xy incident to x
(deleting resulting parallel edges and loops).

Theorem 10 (Wollan [42]). For every graph H with t vertices, for every graph G that does
not contain H as a weak immersion, there is a T-partition of G with adhesion at most t>
such that each torso has (t, t¥)-bounded degree.

Proof of Theorem 9. Let G be a graph that does not contain H as a weak immersion.
Consider the T-partition (T; : x € V(T)) of G from Theorem 10.

Let T’ be obtained from T by orienting each edge towards some root vertex. We now define
a tree decomposition (T : x € V (T)) of G. Initialize T; := T, for each node x € V (T). For
each edge vw of G, ifv € T, and w € T, and z is the least common ancestor of x and y in T”,
then add v to T for each node @ on the Xz path in T’, and add w to T for each node « on the
yZ path in T’. Thus each vertex v € T, is in a sequence of bags that correspond to a directed
path from x to some ancestor of x in 7. By construction, the endpoints of each edge are in a
common bag. Thus (Ty : x € V(T)) is a tree decomposition of G.

Consider a vertex v € Ty N Ty for some edge xy of T’. Then v is in G(T, xy) and v has a
neighbor w in G (T, yx), implying vw € E(T, xy). Thus |Ty n Ty| < |[E(T, xp)| < t2. That
is, the tree decomposition (T} : x € V(T)) has adhesion at most ¢2.

Let G} be the torso of each node x € V(T) with respect to the tree decomposition
(T¥ : x € V(T)). That is, G* is obtained from G[Ty] by adding a clique on T¥ n T for
each edge xy of T. Our goal is to prove that G} has (¢, t* + 2t%)-bounded degree.

Consider a vertex v of G'. Then v is in the bag corresponding to at most one child node z of
x, as otherwise v would belong to a set of bags that do not correspond to a directed path in 7'.
Since (T: x € V(T)) has adhesion at most ¢, v has at most ¢? neighbors in T; N T;. For the
same reason, if p is the parent of x, then v has at most t?> neighbors in Ty N T;‘. Thus the
degree of v in G} is at most the degree of v in G[T;] plus 2t2. Call this property (x).

First consider the case that v ¢ T,. Let z be the node of T for whichv € T,. Since v € T, by
construction, x is an ancestor of z. Let y be the node immediately before x on the pas pathinT’.
We now bound the number of neighbors of v in T Say w € Ng(v) N Ty. If w is in G(T, xy)
then let e,, be the edge vw. Otherwise, w is in G(T, yx) and thus w has a neighbor u in
G(T,xy) since we Ty let e, be the edge wu. Observe that {e,:w € Ng
W) N T C E(T, xp), and thus |{e, : w € Ng(v) n T;}| < 2. Since e, # e, for distinct
u, w € Ng(v) n T, we have [N (v) N T} < 2. By (%), the degree of v in Gy is at most 3¢2.

Now consider the case that v € T,. Suppose further that v is not one of the at most
t vertices of degree greater than ¢2 in the torso Q of x with respect to the given T-partition.
Suppose that in Q, v has d; neighbors in T, and d, neighbors not in T, (the identified
vertices). So d; + d, < t2. Consider a neighbor w of v in G[T}] with w & T.. Then
w € G(T, yx) for some child y of x. For at most d, children y of x, there is a neighbor of
v in G(T, yx). Furthermore, for each child y of x, v has at most 2 neighbors in G(T, yx)
since the T-partition has adhesion at most t2. Thus v has degree at most d; + d,t? < t* in
G[T}]. By (%), v has degree at most 2t + t* in G

Since 3t2 < t* + 2t2, the torso G{ has (¢, t* + 2t%)-bounded degree. O
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4 | EXCLUDING A TOPOLOGICAL MINOR

Theorem 5 is an immediate corollary of Lemma 6 and the following structure theorem
of Dvorak [18] that extends Theorem 8.

Theorem 11 (Dvoiak [18]). Let H be a fixed planar graph that has a planar embedding
with all the vertices of H with degree at least 4 on a single face. Then there exists a constant
k, such that every graph G that does not contain H as a topological minor has a tree
decomposition such that each torso has (k, k)-bounded degree.

While Theorem 11 is not explicitly stated in Dvotak [18], we now explain that it is in fact a
special case of Theorem 3 in Dvotak [18]. This result provides a structural description of graphs
excluding a given topological minor in terms of the following definition. For a graph H and
surface X%, let mf(H, X) be the minimum, over all possible embeddings of H in Z, of the
minimum number of faces such that every vertex of degree at least 4 is incident with one of
these faces. By assumption, for our graph H and for every surface X, we have mf(H, X) = 1. In
this case, Theorem 3 of Dvotak [18] says that for some integer k = k(H), every graph G that
does not contain H as a topological minor is a clique sum of (k, k)-bounded degree graphs. It
immediately follows that G has the desired tree decomposition. See Corollary 1.4 in Liu and
Thomas [34] for a closely related structure theorem.

The following natural open problem arises from This study: Do graphs excluding a fixed
planar graph as a topological minor have bounded nonrepetitive chromatic number? And what
is the structure of such graphs?
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