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1 Introduction

This paper considers the following problem: Given a drawing of a planar graph
G possibly with crossings, redraw G with straight edges and no crossings,
while keeping as many vertices as possible fixed. More formally, consider
a geometric graph G with vertex set V (G) = {p1, . . . , pn}. A crossing-free
geometric graph H with vertex set V (H) = {q1, . . . , qn} is an untangling of
G if for all i, j ∈ {1, 2, . . . , n}, qi is adjacent to qj in H if and only if pi is
adjacent to pj in G. If pi = qi then pi is fixed, otherwise pi is free. Of course
only geometric planar graphs can be untangled. For a geometric planar graph
G, let fix(G) be the maximum number of fixed vertices in an untangling of
G. By the Fáry-Wagner Theorem, fix(G) is well defined. Pach and Tardos [3]
asked whether fix(G) ≥ nε for some ε > 0. Recently, Spillner and Wolff [4]
showed that fix(G) ≥ Ω(

√
log n/ log log n). This paper answers the question

of Pach and Tardos [3] in the affirmative. See the full version of this paper
(arXiv:0710.1641) for more results and references.
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Spain. Email:{ferran.hurtado, david.wood}@upc.edu
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Theorem 1.1 Every n-vertex geometric planar graph G can be untangled
while keeping at least (n/3)1/4 vertices fixed. That is, fix(G) ≥ (n/3)1/4.

2 Canonical Orderings and Frames

To prove Theorem 1.1 we may assume that G is an edge-maximal geometric
planar graph. Let E be an embedded planar graph isomorphic to G. So
each face of E is bounded by a 3-cycle. Let x, y and z be the vertices on
the outer face. de Fraysseix et al. [1] proved that E has a vertex ordering
σ = (v1 := x, v2 := y, v3, . . . , vn := z), called a canonical ordering, with
the following properties for each i ∈ {3, 4, . . . , n}, where Gi is the embedded
subgraph of E induced by {v1, v2, . . . , vi}, and Ci is the subgraph of E induced
by the edges on the boundary of the outer face of Gi (see Figure 1(a)):
(a) Ci is a cycle containing xy; (b) Gi is 2-connected and internally 3-connected
(that is, removing any two interior vertices of Gi does not disconnect it); (c)
vi is a vertex of Ci with at least two neighbours in Ci−1, and these neighbours
are consecutive on Ci−1.
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Fig. 1. (a) A canonical ordering of E . (b) The frame F ; the vertices in S, which form a
largest antichain in �, are drawn as squares. (c) The graph H; the vertices in R ⊆ S are
drawn as squares.

We now introduce a new combinatorial structure. The frame F of E is the
oriented subgraph of E (see Figure 1(b)) with vertex set V (F) := V (E), where
xy is an arc of F , and for each i ∈ {3, 4, . . . , n}, if p and p′ are the first and
the last neighbours of vi along the path in Ci−1 from x to y not containing the
edge xy, then pvi and vip

′ are arcs in F . We call p the left predecessor of vi
and p′ the right predecessor of vi. F defines a partial order � on V (F), where
v ≺ w whenever there is a directed path from v to w in F . The following two
lemmas and Dilworth’s Theorem readily imply Theorem 1.1.

Lemma 2.1 If � has a chain of ` vertices, then G can be untangled while
keeping

√
`/3 vertices fixed.



Lemma 2.2 If � has an antichain of t vertices, then G can be untangled
while keeping

√
t vertices fixed.

3 Big Chain—Proof of Lemma 2.1

A chord of a cycle C is an edge that has both endpoints in C, but itself is
not an edge of C. A cycle C in an embedded planar graph E is externally
chordless if each chordof C is embedded inside of C in E . Spillner and Wolff
[4] proved the following result.

Theorem 3.1 ([4]) Let G be a geometric planar graph and E an embedded
planar graph isomorphic to G. If E has an externally chordless cycle on `
vertices, then G can be untangled while keeping at least

√
`/3 vertices fixed.

Proof. [of Lemma 2.1]. If ` ≤ 2 then the claim is trivial. Assume that ` ≥ 3.
Now � has a maximal chain of size `′ ≥ `. This chain corresponds to a path
P from x to y in F not including xy. Let C be the cycle consisting of P
plus the edge xy. We claim that C is externally chordless in E . Consider a
chord vivj of C. Without loss of generality, i < j. Thus vi is in Gj−1 and vivj
is an edge of Gj. The neighbours of vj in Gj−1 appear consecutively along
the boundary Cj−1 of Gj−1. Let x1, . . . , xd be the neighbours of vj in left-to-
right order on Cj−1. Thus x1vj and vjxd are arcs in F . Let uvj and vjw be
the incoming and outgoing arcs in P at vj. Then the counterclockwise order
of edges incident to vj in E is (u, . . . , x1, . . . , xd, . . . , w, . . . ). In particular,
each edge vjx` is contained in the closure of the interior of C. Now vi = x` for
some ` ∈ {1, 2, . . . , d}. Thus vivj is an internal chord of C, and C is externally
chordless. Hence E contains an externally chordless cycle on `′ vertices, and
the result follows from Theorem 3.1. 2

4 Big Antichain—Proof of Lemma 2.2

Our goal is to untangle G while keeping a large set R of vertices fixed. The
following geometric lemma simplifies this task by allowing us to concentrate
on the case in which all the vertices in R are on the y-axis. The proof is based
on a straight-forward perturbation scheme.

Lemma 4.1 Let G be an untangling of some geometric planar graph G. Let
R be a set of vertices of G such that each vertex of R is on the y-axis in G
and has the same y-coordinate in G as in G. Then there exists an untangling
G′ of G in which the vertices in R are fixed.



Let S be the set of vertices that comprise a largest antichain in �, as illus-
trated in Figure 1(b). Now consider the given geometric graph G. Assume, by
a suitable rotation, that no pair of vertices of G have the same y-coordinate.
Let R be a largest subset R ⊆ S such that the y-coordinates of the vertices of
R are either monotonically increasing or monotonically decreasing when con-
sidered in the order given by σ. By the Erdős-Szekeres Theorem, |R| ≥

√
|S|.

Without loss of generality, R is monotonically increasing. In what follows, we
untangle G while keeping R fixed.

For each vertex v ∈ V (F), define Lroof(v) and Rroof(v) to be the following
directed paths in F . First define Lroof(v1) := Rroof(v1) := ∅ and Lroof(v2) :=
Rroof(v2) := ∅. Now for each i ∈ {3, . . . , n}, define Lroof(vi) and Rroof(vi)
recursively by Lroof(vi) := Lroof(p)∪{pvi} and Rroof(vi) := {vip′}∪Rroof(p),
where p and p′ respectively are the left and right predecessors of vi. Let
roof(vi) := Lroof(vi) ∪ Rroof(vi). Let H be the subgraph of E induced by
V (H) := ∪{roof(w) : w ∈ R}, as illustrated in Figure 1(c).

Lemma 4.2 The geometric planar graph G[V (H)] can be untangled such that
each vertex of R is on the y-axis and has the same y-coordinate in the untan-
gling as in G[V (H)]. Moreover, all the internal faces of the untangling are
star-shaped and the path on its outer face from x to y not containing xy is
strictly x-monotone.

Before proving Lemma 4.2, we show that it implies Lemma 2.2 when cou-
pled with the following theorem by Hong and Nagamochi [2].

Theorem 4.3 ([2]) Consider a 3-connected embedded planar graph E, with
outer facial cycle C. For every star-shaped geometric cycle C and isomor-
phic mapping from V (C) to V (C), there is a crossing-free geometric graph E
isomorphic to E with C as its outer face and respecting the vertex mapping.

Proof. [of Lemma 2.2.] There is a maximal antichain S in � of size t′ ≥ t.
Thus |R| ≥

√
t, and by Lemma 4.2, G[V (H)] can be untangled such that the

vertices of R are on the y-axis and their y-coordinates are preserved. If z 6∈ R,
then assign x- and y-coordinates to z, and connect z to its neighbours in H,
such that the resulting geometric graph H is crossing-free and all the internal
faces of H are star-shaped. H is an untangling of G[V (H) ∪ {z}].

Now we place the remaining free vertices (the vertices in V (G) \ V (H)).
Partition V (G) \ V (H) into sets Ij (j ∈ {1, 2, . . . , |E(H)| − |V (H)| + 1}),
where each vertex in Ij is inside the cycle in E determined by the internal face
fj of H. For each internal face fj of H, let Gj be the subgraph of E with
vertex set V (fj) ∪ Ij, and comprised of the edges of the cycle fj, the edges



in E [Ij], and the edges between V (fj) and Ij. Each fj is star-shaped in H,
by Lemma 4.2. The proof of that Gj is 3-connected is simple and we omit it
due to space limitations. Applying Theorem 4.3 to embed each subgraph Gj

yields an untangling of G in which the vertices in R are on the y-axis and their
y-coordinates are preserved. Applying Lemma 4.1 completes the proof. 2

Proof. [of Lemma 4.2] We start by proving some properties of the roofs of
vertices in R. Consider two incomparable vertices u and v in R, where u <σ v.
Let x′ be a vertex of F such that x′ ∈ Lroof(u) and x′ ∈ Lroof(v), and the
vertex following x′ in Lroof(u) is not the same as the vertex following x′ in
Lroof(v). Similarly, let y′ be a vertex of F such that y′ ∈ Rroof(u) and
y′ ∈ Rroof(v), and the vertex before y′ in Rroof(u) is not the same as the
vertex before y′ in Rroof(v). Such vertices, x′ and y′, exist since u and v are
incomparable in F . Then the paths between x and x′ both equal Lroof(x′).
Similarly, the paths between y′ and y both equal Rroof(y′). The path between
x′ and y′ in roof(u) contains u, the path between x′ and y′ in roof(v) contains
v, and the two paths have only x′ and y′ in common. Finally, u is inside the
cycle determined by roof(v) and the edge xy in F .

We proceed by induction on the number of vertices in R, but require a
somewhat stronger inductive hypothesis. A simple strictly x-monotone polyg-
onal chain C is ε-ray-monotone from a point p = (xp, yp) if for every point
r = (xp, yp+t) with t ≥ ε, and every point q ∈ C, (rq)∩C = ∅, where (rq) is the
open line-segment with endpoints r and q. Under this definition, if C is ε-ray-
monotone from p then C is ε-ray-monotone from every point q = (xp, yp + t),
t > 0, above p. Furthermore, there exists a value δ = δ(p, C, ε) such that C is
ε-ray-monotone from every point p′ at distance at most δ from p.

Let ε′ be the minimum difference between the y-coordinates of some pair
of vertices in R. Below we construct an untangling H of G[V (H)] that satisfies
the following property (in addition to the conditions of the lemma): If |R| > 0
then the outer face of H is bounded by the edge xy and a path C from x to y
such that C ∩R = {v}, for some vertex v ∈ R, and C is ε-ray-monotone from
v for some ε < ε′.

For the base case, with |R| = 0, H consists of the single edge xy, which
can be untangled by placing x at (−1, t) and y at (1, t), where t is less than
every y-coordinate in G. Now assume that |R| ≥ 1. Let v be the vertex in
R, right-most in the total order σ. If |R| = 1 then let H′ be the subgraph
of H induced by {x, y}. Otherwise |R| > 1 and let H′ be the subgraph of H
induced by ∪{roof(u) : u ∈ R \ v}. By induction, there is an untangling H′
of G[V (H′)] that satisfies the inductive hypothesis. It remains to place v and



the vertices of roof(v) that are not yet placed. These vertices form a path P
from some vertex x′ of H′ to v to some vertex y′ of H′.

The conditions of the lemma specify the location of v. In particular, v is on
the y-axis, with its y-coordinate equal to its y-coordinate in G. The inductive
hypothesis guarantees that the vertex v and every point sufficiently close to
v can see every vertex on the outer face of H′. Note that if |R| > 1, then
directly below v, on the y-axis, is a vertex u ∈ R. Since u is on the y-axis and
the outer face of H′ is strictly x-monotone, the x-coordinate of x′ is less than
0 and that the x-coordinate of y′ is greater than 0.

To obtain the crossing-free geometric graph H, draw a unit circle c con-
taining v, whose center is on the y-axis and below v, and place the interior
vertices of P on c sufficiently close to v so that: (1) the path on the outer
face of H from x to y not containing xy is strictly x-monotone, (2) all interior
vertices of P see all other vertices of P in H, (3) all interior vertices of P see
all vertices on the outer face of H′ between x′ and y′, and (4) the path on the
outer face of H from x to y not containing xy is ε-ray-monotone from v for
some ε < ε′. It is simple to verify that all four conditions can be achieved.

Consider the path in H′ from x to y not containing xy along the outer face
of H′. This path is comprised of the same vertices and edges as a directed
path from x to y in F . Thus, as in the proof of Lemma 2.1, the outer face of
H′ has no outer chords in H. Therefore, an edge of H that is not an edge of
H′ is either an edge on P , or it is an edge accounted for in Conditions (2) or
(3). Thus H is crossing-free. The vertices in R are on the y-axis and have the
same y-coordinates in G as in H. Conditions (1) and (4) imply that the path
between x and y on the outer face of H is strictly x-monotone. The internal
faces of H are star-shaped since the only faces in H not present in H′ have
interior vertices of P on their boundary, and conditions (2) and (3) imply that
each such face is star-shaped from some interior vertex of P . 2
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