A Polynomial Bound for Untangling Geometric Planar Graphs*

Prosenjit Bose ${ }^{1} \quad$ Vida Dujmović ${ }^{1}$ Ferran Hurtado ${ }^{2} \quad$ Pat Morin ${ }^{1}$
Stefan Langerman ${ }^{3}$ David R. Wood ${ }^{2}$

1 Introduction

This paper considers the following problem: Given a drawing of a planar graph G possibly with crossings, redraw G with straight edges and no crossings, while keeping as many vertices as possible fixed. More formally, consider a geometric graph G with vertex set $V(G)=\left\{p_{1}, \ldots, p_{n}\right\}$. A crossing-free geometric graph H with vertex set $V(H)=\left\{q_{1}, \ldots, q_{n}\right\}$ is an untangling of G if for all $i, j \in\{1,2, \ldots, n\}, q_{i}$ is adjacent to q_{j} in H if and only if p_{i} is adjacent to p_{j} in G. If $p_{i}=q_{i}$ then p_{i} is fixed, otherwise p_{i} is free. Of course only geometric planar graphs can be untangled. For a geometric planar graph G, let fix (G) be the maximum number of fixed vertices in an untangling of G. By the Fáry-Wagner Theorem, fix (G) is well defined. Pach and Tardos [3] asked whether $\operatorname{fix}(G) \geq n^{\varepsilon}$ for some $\varepsilon>0$. Recently, Spillner and Wolff [4] showed that fix $(G) \geq \Omega(\sqrt{\log n / \log \log n})$. This paper answers the question of Pach and Tardos [3] in the affirmative. See the full version of this paper (arXiv:0710.1641) for more results and references.

[^0]Theorem 1.1 Every n-vertex geometric planar graph G can be untangled while keeping at least $(n / 3)^{1 / 4}$ vertices fixed. That is, fix $(G) \geq(n / 3)^{1 / 4}$.

2 Canonical Orderings and Frames

To prove Theorem 1.1 we may assume that G is an edge-maximal geometric planar graph. Let \mathcal{E} be an embedded planar graph isomorphic to G. So each face of \mathcal{E} is bounded by a 3 -cycle. Let x, y and z be the vertices on the outer face. de Fraysseix et al. [1] proved that \mathcal{E} has a vertex ordering $\sigma=\left(v_{1}:=x, v_{2}:=y, v_{3}, \ldots, v_{n}:=z\right)$, called a canonical ordering, with the following properties for each $i \in\{3,4, \ldots, n\}$, where G_{i} is the embedded subgraph of \mathcal{E} induced by $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$, and C_{i} is the subgraph of \mathcal{E} induced by the edges on the boundary of the outer face of G_{i} (see Figure 1(a)):
(a) C_{i} is a cycle containing $x y$; (b) G_{i} is 2-connected and internally 3-connected (that is, removing any two interior vertices of G_{i} does not disconnect it); (c) v_{i} is a vertex of C_{i} with at least two neighbours in C_{i-1}, and these neighbours are consecutive on C_{i-1}.

(b)

(c)

Fig. 1. (a) A canonical ordering of \mathcal{E}. (b) The frame \mathcal{F}; the vertices in S, which form a largest antichain in \preceq, are drawn as squares. (c) The graph \mathcal{H}; the vertices in $R \subseteq S$ are drawn as squares.

We now introduce a new combinatorial structure. The frame \mathcal{F} of \mathcal{E} is the oriented subgraph of \mathcal{E} (see Figure $1(\mathrm{~b})$) with vertex set $V(\mathcal{F}):=V(\mathcal{E})$, where $x y$ is an arc of \mathcal{F}, and for each $i \in\{3,4, \ldots, n\}$, if p and p^{\prime} are the first and the last neighbours of v_{i} along the path in C_{i-1} from x to y not containing the edge $x y$, then $p v_{i}$ and $v_{i} p^{\prime}$ are arcs in \mathcal{F}. We call p the left predecessor of v_{i} and p^{\prime} the right predecessor of v_{i}. \mathcal{F} defines a partial order \preceq on $V(\mathcal{F})$, where $v \prec w$ whenever there is a directed path from v to w in \mathcal{F}. The following two lemmas and Dilworth's Theorem readily imply Theorem 1.1.

Lemma 2.1 If \preceq has a chain of ℓ vertices, then G can be untangled while keeping $\sqrt{\ell / 3}$ vertices fixed.

Lemma 2.2 If \preceq has an antichain of t vertices, then G can be untangled while keeping \sqrt{t} vertices fixed.

3 Big Chain-Proof of Lemma 2.1

A chord of a cycle C is an edge that has both endpoints in C, but itself is not an edge of C. A cycle C in an embedded planar graph \mathcal{E} is externally chordless if each chordof C is embedded inside of C in \mathcal{E}. Spillner and Wolff [4] proved the following result.

Theorem 3.1 ([4]) Let G be a geometric planar graph and \mathcal{E} an embedded planar graph isomorphic to G. If \mathcal{E} has an externally chordless cycle on ℓ vertices, then G can be untangled while keeping at least $\sqrt{\ell / 3}$ vertices fixed.

Proof. [of Lemma 2.1]. If $\ell \leq 2$ then the claim is trivial. Assume that $\ell \geq 3$. Now \preceq has a maximal chain of size $\ell^{\prime} \geq \ell$. This chain corresponds to a path P from x to y in \mathcal{F} not including $x y$. Let C be the cycle consisting of P plus the edge $x y$. We claim that C is externally chordless in \mathcal{E}. Consider a chord $v_{i} v_{j}$ of C. Without loss of generality, $i<j$. Thus v_{i} is in G_{j-1} and $v_{i} v_{j}$ is an edge of G_{j}. The neighbours of v_{j} in G_{j-1} appear consecutively along the boundary C_{j-1} of G_{j-1}. Let x_{1}, \ldots, x_{d} be the neighbours of v_{j} in left-toright order on C_{j-1}. Thus $x_{1} v_{j}$ and $v_{j} x_{d}$ are arcs in \mathcal{F}. Let $u v_{j}$ and $v_{j} w$ be the incoming and outgoing arcs in P at v_{j}. Then the counterclockwise order of edges incident to v_{j} in \mathcal{E} is $\left(u, \ldots, x_{1}, \ldots, x_{d}, \ldots, w, \ldots\right)$. In particular, each edge $v_{j} x_{\ell}$ is contained in the closure of the interior of C. Now $v_{i}=x_{\ell}$ for some $\ell \in\{1,2, \ldots, d\}$. Thus $v_{i} v_{j}$ is an internal chord of C, and C is externally chordless. Hence \mathcal{E} contains an externally chordless cycle on ℓ^{\prime} vertices, and the result follows from Theorem 3.1.

4 Big Antichain-Proof of Lemma 2.2

Our goal is to untangle G while keeping a large set R of vertices fixed. The following geometric lemma simplifies this task by allowing us to concentrate on the case in which all the vertices in R are on the y -axis. The proof is based on a straight-forward perturbation scheme.

Lemma 4.1 Let \bar{G} be an untangling of some geometric planar graph G. Let R be a set of vertices of G such that each vertex of R is on the y -axis in \bar{G} and has the same y -coordinate in \bar{G} as in G. Then there exists an untangling $\overline{G^{\prime}}$ of G in which the vertices in R are fixed.

Let S be the set of vertices that comprise a largest antichain in \preceq, as illustrated in Figure 1(b). Now consider the given geometric graph G. Assume, by a suitable rotation, that no pair of vertices of G have the same y-coordinate. Let R be a largest subset $R \subseteq S$ such that the y-coordinates of the vertices of R are either monotonically increasing or monotonically decreasing when considered in the order given by σ. By the Erdős-Szekeres Theorem, $|R| \geq \sqrt{|S|}$. Without loss of generality, R is monotonically increasing. In what follows, we untangle G while keeping R fixed.

For each vertex $v \in V(\mathcal{F})$, define $\operatorname{Lroof}(v)$ and $\operatorname{Rroof}(v)$ to be the following directed paths in \mathcal{F}. First define $\operatorname{Lroof}\left(v_{1}\right):=\operatorname{Rroof}\left(v_{1}\right):=\emptyset$ and $\operatorname{Lroof}\left(v_{2}\right):=$ $\operatorname{Rroof}\left(v_{2}\right):=\emptyset$. Now for each $i \in\{3, \ldots, n\}$, define $\operatorname{Lroof}\left(v_{i}\right)$ and $\operatorname{Rroof}\left(v_{i}\right)$ recursively by $\operatorname{Lroof}\left(v_{i}\right):=\operatorname{Lroof}(p) \cup\left\{p v_{i}\right\}$ and $\operatorname{Rroof}\left(v_{i}\right):=\left\{v_{i} p^{\prime}\right\} \cup \operatorname{Rroof}(p)$, where p and p^{\prime} respectively are the left and right predecessors of v_{i}. Let $\operatorname{roof}\left(v_{i}\right):=\operatorname{Lroof}\left(v_{i}\right) \cup \operatorname{Rroof}\left(v_{i}\right)$. Let \mathcal{H} be the subgraph of \mathcal{E} induced by $V(\mathcal{H}):=\cup\{\operatorname{roof}(w): w \in R\}$, as illustrated in Figure 1(c).

Lemma 4.2 The geometric planar graph $G[V(\mathcal{H})]$ can be untangled such that each vertex of R is on the y -axis and has the same y -coordinate in the untangling as in $G[V(\mathcal{H})]$. Moreover, all the internal faces of the untangling are star-shaped and the path on its outer face from x to y not containing $x y$ is strictly x -monotone.

Before proving Lemma 4.2, we show that it implies Lemma 2.2 when coupled with the following theorem by Hong and Nagamochi [2].

Theorem 4.3 ([2]) Consider a 3-connected embedded planar graph \mathcal{E}, with outer facial cycle C. For every star-shaped geometric cycle \bar{C} and isomorphic mapping from $V(C)$ to $V(\bar{C})$, there is a crossing-free geometric graph $\overline{\mathcal{E}}$ isomorphic to \mathcal{E} with \bar{C} as its outer face and respecting the vertex mapping.

Proof. [of Lemma 2.2.] There is a maximal antichain S in \preceq of size $t^{\prime} \geq t$. Thus $|R| \geq \sqrt{t}$, and by Lemma 4.2, $G[V(\mathcal{H})]$ can be untangled such that the vertices of R are on the y-axis and their y-coordinates are preserved. If $z \notin R$, then assign x - and y-coordinates to z, and connect z to its neighbours in \mathcal{H}, such that the resulting geometric graph H is crossing-free and all the internal faces of H are star-shaped. H is an untangling of $G[V(\mathcal{H}) \cup\{z\}]$.

Now we place the remaining free vertices (the vertices in $V(G) \backslash V(H)$). Partition $V(G) \backslash V(H)$ into sets $I_{j}(j \in\{1,2, \ldots,|E(H)|-|V(H)|+1\})$, where each vertex in I_{j} is inside the cycle in \mathcal{E} determined by the internal face f_{j} of H. For each internal face f_{j} of H, let G^{j} be the subgraph of \mathcal{E} with vertex set $V\left(f_{j}\right) \cup I_{j}$, and comprised of the edges of the cycle f_{j}, the edges
in $\mathcal{E}\left[I_{j}\right]$, and the edges between $V\left(f_{j}\right)$ and I_{j}. Each f_{j} is star-shaped in H, by Lemma 4.2. The proof of that G^{j} is 3 -connected is simple and we omit it due to space limitations. Applying Theorem 4.3 to embed each subgraph G^{j} yields an untangling of G in which the vertices in R are on the y-axis and their y-coordinates are preserved. Applying Lemma 4.1 completes the proof.

Proof. [of Lemma 4.2] We start by proving some properties of the roofs of vertices in R. Consider two incomparable vertices u and v in R, where $u<_{\sigma} v$. Let x^{\prime} be a vertex of \mathcal{F} such that $x^{\prime} \in \operatorname{Lroof}(u)$ and $x^{\prime} \in \operatorname{Lroof}(v)$, and the vertex following x^{\prime} in $\operatorname{Lroof}(u)$ is not the same as the vertex following x^{\prime} in $\operatorname{Lroof}(v)$. Similarly, let y^{\prime} be a vertex of \mathcal{F} such that $y^{\prime} \in \operatorname{Rroof}(u)$ and $y^{\prime} \in \operatorname{Rroof}(v)$, and the vertex before y^{\prime} in $\operatorname{Rroof}(u)$ is not the same as the vertex before y^{\prime} in $\operatorname{Rroof}(v)$. Such vertices, x^{\prime} and y^{\prime}, exist since u and v are incomparable in \mathcal{F}. Then the paths between x and x^{\prime} both equal $\operatorname{Lroof}\left(x^{\prime}\right)$. Similarly, the paths between y^{\prime} and y both equal $\operatorname{Rroof}\left(y^{\prime}\right)$. The path between x^{\prime} and y^{\prime} in roof (u) contains u, the path between x^{\prime} and y^{\prime} in roof (v) contains v, and the two paths have only x^{\prime} and y^{\prime} in common. Finally, u is inside the cycle determined by $\operatorname{roof}(v)$ and the edge $x y$ in \mathcal{F}.

We proceed by induction on the number of vertices in R, but require a somewhat stronger inductive hypothesis. A simple strictly x-monotone polygonal chain C is ε-ray-monotone from a point $p=\left(x_{p}, y_{p}\right)$ if for every point $r=\left(x_{p}, y_{p}+t\right)$ with $t \geq \varepsilon$, and every point $q \in C$, $(\overrightarrow{r q} \cap C=\emptyset$, where $(\overrightarrow{r q})$ is the open line-segment with endpoints r and q. Under this definition, if C is ε-raymonotone from p then C is ε-ray-monotone from every point $q=\left(x_{p}, y_{p}+t\right)$, $t>0$, above p. Furthermore, there exists a value $\delta=\delta(p, C, \varepsilon)$ such that C is ε-ray-monotone from every point p^{\prime} at distance at most δ from p.

Let ε^{\prime} be the minimum difference between the y-coordinates of some pair of vertices in R. Below we construct an untangling $\overline{\mathcal{H}}$ of $G[V(\mathcal{H})]$ that satisfies the following property (in addition to the conditions of the lemma): If $|R|>0$ then the outer face of $\overline{\mathcal{H}}$ is bounded by the edge $x y$ and a path C from x to y such that $C \cap R=\{v\}$, for some vertex $v \in R$, and C is ε-ray-monotone from v for some $\varepsilon<\varepsilon^{\prime}$.

For the base case, with $|R|=0, \mathcal{H}$ consists of the single edge $x y$, which can be untangled by placing x at $(-1, t)$ and y at $(1, t)$, where t is less than every y-coordinate in G. Now assume that $|R| \geq 1$. Let v be the vertex in R, right-most in the total order σ. If $|R|=1$ then let \mathcal{H}^{\prime} be the subgraph of \mathcal{H} induced by $\{x, y\}$. Otherwise $|R|>1$ and let \mathcal{H}^{\prime} be the subgraph of \mathcal{H} induced by $\cup\{\operatorname{roof}(u): u \in R \backslash v\}$. By induction, there is an untangling $\overline{\mathcal{H}^{\prime}}$ of $G\left[V\left(\mathcal{H}^{\prime}\right)\right]$ that satisfies the inductive hypothesis. It remains to place v and
the vertices of $\operatorname{roof}(v)$ that are not yet placed. These vertices form a path P from some vertex x^{\prime} of \mathcal{H}^{\prime} to v to some vertex y^{\prime} of \mathcal{H}^{\prime}.

The conditions of the lemma specify the location of v. In particular, v is on the y -axis, with its y -coordinate equal to its y -coordinate in G. The inductive hypothesis guarantees that the vertex v and every point sufficiently close to v can see every vertex on the outer face of $\overline{\mathcal{H}^{\prime}}$. Note that if $|R|>1$, then directly below v, on the y-axis, is a vertex $u \in R$. Since u is on the y-axis and the outer face of $\overline{\mathcal{H}^{\prime}}$ is strictly x -monotone, the x -coordinate of x^{\prime} is less than 0 and that the x-coordinate of y^{\prime} is greater than 0 .

To obtain the crossing-free geometric graph $\overline{\mathcal{H}}$, draw a unit circle c containing v, whose center is on the y-axis and below v, and place the interior vertices of P on c sufficiently close to v so that: (1) the path on the outer face of $\overline{\mathcal{H}}$ from x to y not containing $x y$ is strictly x -monotone, (2) all interior vertices of P see all other vertices of P in $\overline{\mathcal{H}},(3)$ all interior vertices of P see all vertices on the outer face of $\overline{\mathcal{H}^{\prime}}$ between x^{\prime} and y^{\prime}, and (4) the path on the outer face of $\overline{\mathcal{H}}$ from x to y not containing $x y$ is ε-ray-monotone from v for some $\varepsilon<\varepsilon^{\prime}$. It is simple to verify that all four conditions can be achieved.

Consider the path in $\overline{\mathcal{H}^{\prime}}$ from x to y not containing $x y$ along the outer face of $\overline{\mathcal{H}^{\prime}}$. This path is comprised of the same vertices and edges as a directed path from x to y in \mathcal{F}. Thus, as in the proof of Lemma 2.1, the outer face of $\overline{\mathcal{H}^{\prime}}$ has no outer chords in $\overline{\mathcal{H}}$. Therefore, an edge of $\overline{\mathcal{H}}$ that is not an edge of $\overline{\mathcal{H}^{\prime}}$ is either an edge on P, or it is an edge accounted for in Conditions (2) or (3). Thus $\overline{\mathcal{H}}$ is crossing-free. The vertices in R are on the y-axis and have the same y-coordinates in G as in $\overline{\mathcal{H}}$. Conditions (1) and (4) imply that the path between x and y on the outer face of $\overline{\mathcal{H}}$ is strictly x -monotone. The internal faces of $\overline{\mathcal{H}}$ are star-shaped since the only faces in $\overline{\mathcal{H}}$ not present in $\overline{\mathcal{H}^{\prime}}$ have interior vertices of P on their boundary, and conditions (2) and (3) imply that each such face is star-shaped from some interior vertex of P.

References

[1] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990.
[2] Seokhee Hong and H. Nagamochi. Convex drawings of graphs with non-convex boundary. In Proc. 32nd Workshop on Graph Theoretic Concepts in Computer Science (WG 2006), volume 4271 of $L N C S$, pp. 113-124. 2006.
[3] János Pach and Gábor Tardos. Untangling a polygon. Discrete Comput. Geom., 28(4):585-592, 2002.
[4] Andreas Spillner and Alexander Wolff. Untangling a planar graph. In Proc. 34th Int. Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM'08), volume 4910 of $L N C S$, pp. 473-484. 2008. Also in http://arxiv.org/abs/0709.0170.

[^0]: * This research was initiated at the Bellairs Workshop on Comp. Geometry (Feb 1-9, 2007) organized by Godfried Toussaint. The full paper is at http://arxiv.org/abs/0710.1641.
 ${ }^{1}$ School of Computer Science, Carleton University, Ottawa, Canada.
 Email:\{jit, pat\}@scs.carleton.ca Email:vida@cs.mcgill.ca
 ${ }^{2}$ Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain. Email:\{ferran.hurtado, david.wood\}@upc.edu
 ${ }^{3}$ Chercheur Qualifié du FNRS, Département d'Informatique, Université Libre de Bruxelles, Brussels Email:stefan.langerman@ulb.ac.be

