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1 Introduction

This paper considers the following problem: Given a drawing of a planar graph
G possibly with crossings, redraw G with straight edges and no crossings,
while keeping as many vertices as possible fixed. More formally, consider
a geometric graph G with vertex set V(G) = {p1,...,pn}. A crossing-free
geometric graph H with vertex set V(H) = {q1,...,qn} is an untangling of
G if for all 7,7 € {1,2,...,n}, ¢; is adjacent to ¢; in H if and only if p; is
adjacent to p; in G. If p; = ¢; then p; is fized, otherwise p; is free. Of course
only geometric planar graphs can be untangled. For a geometric planar graph
G, let fix(G) be the maximum number of fixed vertices in an untangling of
G. By the Fary-Wagner Theorem, fix(G) is well defined. Pach and Tardos [3]
asked whether fix(G) > n® for some ¢ > 0. Recently, Spillner and Wolff [4]
showed that fix(G) > Q(y/logn/loglogn). This paper answers the question
of Pach and Tardos [3] in the affirmative. See the full version of this paper
(arXiv:0710.1641) for more results and references.

* This research was initiated at the Bellairs Workshop on Comp. Geometry (Feb 1-9, 2007)
organized by Godfried Toussaint. The full paper is at http://arxiv.org/abs/0710.1641.
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Theorem 1.1 Fvery n-vertex geometric planar graph G can be untangled
while keeping at least (n/3)'/* wvertices fived. That is, fix(G) > (n/3)"/4.

2 Canonical Orderings and Frames

To prove Theorem 1.1 we may assume that G is an edge-maximal geometric
planar graph. Let £& be an embedded planar graph isomorphic to G. So
each face of £ is bounded by a 3-cycle. Let x, y and 2z be the vertices on
the outer face. de Fraysseix et al. [1] proved that £ has a vertex ordering
o= (v == z,v9 1= yY,vs3,...,v, = z), called a canonical ordering, with
the following properties for each i € {3,4,...,n}, where G; is the embedded
subgraph of £ induced by {v1,vs,...,v;}, and C; is the subgraph of £ induced
by the edges on the boundary of the outer face of G; (see Figure 1(a)):

(a) C; is a cycle containing zy; (b) G; is 2-connected and internally 3-connected
(that is, removing any two interior vertices of G; does not disconnect it); (c)
v; is a vertex of C; with at least two neighbours in C;_1, and these neighbours
are consecutive on C;_;.

Fig. 1. (a) A canonical ordering of £. (b) The frame F; the vertices in S, which form a
largest antichain in <, are drawn as squares. (c¢) The graph H; the vertices in R C S are
drawn as squares.

We now introduce a new combinatorial structure. The frame F of £ is the
oriented subgraph of € (see Figure 1(b)) with vertex set V(F) := V(€), where
zy is an arc of F, and for each i € {3,4,...,n}, if p and p’ are the first and
the last neighbours of v; along the path in C;_; from x to y not containing the
edge xy, then pv; and v;p’ are arcs in F. We call p the left predecessor of v;
and p’ the right predecessor of v;. F defines a partial order < on V(F), where
v < w whenever there is a directed path from v to w in F. The following two
lemmas and Dilworth’s Theorem readily imply Theorem 1.1.

Lemma 2.1 If < has a chain of ¢ vertices, then G can be untangled while
keeping \/ /3 wvertices fized.



Lemma 2.2 If < has an antichain of t vertices, then G can be untangled
while keeping v/t vertices fized.

3 Big Chain—Proof of Lemma 2.1

A chord of a cycle C' is an edge that has both endpoints in C, but itself is
not an edge of C. A cycle C' in an embedded planar graph & is externally
chordless if each chordof C' is embedded inside of C' in £. Spillner and Wolff
[4] proved the following result.

Theorem 3.1 ([4]) Let G be a geometric planar graph and € an embedded
planar graph isomorphic to G. If & has an externally chordless cycle on ¢
vertices, then G can be untangled while keeping at least \/{/3 vertices fized.

Proof. [of Lemma 2.1]. If £ < 2 then the claim is trivial. Assume that ¢ > 3.
Now < has a maximal chain of size ¢ > ¢. This chain corresponds to a path
P from z to y in F not including xzy. Let C be the cycle consisting of P
plus the edge xy. We claim that C' is externally chordless in £. Consider a
chord v;v; of C. Without loss of generality, ¢ < j. Thus v; is in G;_; and v;v;
is an edge of G;. The neighbours of v; in G;_; appear consecutively along
the boundary C;_; of G_;. Let z4,...,24 be the neighbours of v; in left-to-
right order on C;_;. Thus x1v; and vjz4 are arcs in F. Let uwv; and v;w be
the incoming and outgoing arcs in P at v;. Then the counterclockwise order
of edges incident to v; in &€ is (u,...,x1,...,%4,...,w,...). In particular,
each edge vz, is contained in the closure of the interior of C. Now v; = x, for
some ¢ € {1,2,...,d}. Thus v;v; is an internal chord of C', and C' is externally
chordless. Hence £ contains an externally chordless cycle on ¢ vertices, and
the result follows from Theorem 3.1. O

4 Big Antichain—Proof of Lemma 2.2

Our goal is to untangle G while keeping a large set R of vertices fixed. The
following geometric lemma simplifies this task by allowing us to concentrate
on the case in which all the vertices in R are on the y-axis. The proof is based
on a straight-forward perturbation scheme.

Lemma 4.1 Let G be an untangling of some geometric planar graph G. Let
R be a set of vertices of G such that each vertex of R is on the y-azis in G
and has the same y-coordinate in G as in G. Then there exists an untangling
G’ of G in which the vertices in R are fived.



Let S be the set of vertices that comprise a largest antichain in <, as illus-
trated in Figure 1(b). Now consider the given geometric graph G. Assume, by
a suitable rotation, that no pair of vertices of G have the same y-coordinate.
Let R be a largest subset R C .S such that the y-coordinates of the vertices of
R are either monotonically increasing or monotonically decreasing when con-
sidered in the order given by o. By the Erdés-Szekeres Theorem, |R| > \/|_] .
Without loss of generality, R is monotonically increasing. In what follows, we
untangle G while keeping R fixed.

For each vertex v € V(F), define Lroof (v) and Rroof(v) to be the following
directed paths in F. First define Lroof(v;) := Rroof(v;) := () and Lroof (vy) :=
Rroof(vq) := (). Now for each i € {3,...,n}, define Lroof(v;) and Rroof(v;)
recursively by Lroof (v;) := Lroof (p) U {pv;} and Rroof(v;) := {v;p'} URroof (p),
where p and p’ respectively are the left and right predecessors of v;. Let
roof (v;) := Lroof(v;) U Rroof(v;). Let H be the subgraph of £ induced by
V(H) := U{roof (w) : w € R}, as illustrated in Figure 1(c).

Lemma 4.2 The geometric planar graph G[V (H)] can be untangled such that
each vertex of R is on the y-azis and has the same y-coordinate in the untan-
gling as in G|V (H)]. Moreover, all the internal faces of the untangling are
star-shaped and the path on its outer face from x to y not containing xy is
strictly x-monotone.

Before proving Lemma 4.2, we show that it implies Lemma 2.2 when cou-
pled with the following theorem by Hong and Nagamochi [2].

Theorem 4.3 ([2]) Consider a 3-connected embedded planar graph &, with
outer facial cycle C. For every star-shaped geometric cycle C and isomor-
phic mapping from V(C) to V(C), there is a crossing-free geometric graph &
isomorphic to € with C as its outer face and respecting the vertex mapping.

Proof. [of Lemma 2.2.] There is a maximal antichain S in =< of size ¢’ > t.
Thus |R| > V/t, and by Lemma 4.2, G[V (H)] can be untangled such that the
vertices of R are on the y-axis and their y-coordinates are preserved. If z ¢ R,
then assign x- and y-coordinates to z, and connect z to its neighbours in H,
such that the resulting geometric graph H is crossing-free and all the internal
faces of H are star-shaped. H is an untangling of G[V (H) U {z}].

Now we place the remaining free vertices (the vertices in V(G) \ V(H)).
Partition V(G) \ V(H) into sets I; (j € {1,2,...,|E(H)| — |V(H)| + 1}),
where each vertex in /; is inside the cycle in £ determined by the internal face
f; of H. For each internal face f; of H, let G’ be the subgraph of £ with
vertex set V(f;) U I;, and comprised of the edges of the cycle f;, the edges



in £[;], and the edges between V' (f;) and I;. Each f; is star-shaped in H,
by Lemma 4.2. The proof of that G’ is 3-connected is simple and we omit it
due to space limitations. Applying Theorem 4.3 to embed each subgraph G’
yields an untangling of G in which the vertices in R are on the y-axis and their
y-coordinates are preserved. Applying Lemma 4.1 completes the proof. O

Proof. [of Lemma 4.2] We start by proving some properties of the roofs of
vertices in R. Consider two incomparable vertices u and v in R, where u <, v.
Let 2’ be a vertex of F such that 2’ € Lroof(u) and 2z’ € Lroof(v), and the
vertex following x’ in Lroof(u) is not the same as the vertex following z’ in
Lroof (v). Similarly, let 3 be a vertex of F such that y' € Rroof(u) and
y' € Rroof(v), and the vertex before 3 in Rroof(u) is not the same as the
vertex before ¢’ in Rroof(v). Such vertices, 2’ and ¢/, exist since v and v are
incomparable in F. Then the paths between x and 2z’ both equal Lroof (z’).
Similarly, the paths between 3’ and y both equal Rroof(y'). The path between
z’ and ¢’ in roof (u) contains u, the path between 2’ and 3’ in roof (v) contains
v, and the two paths have only ' and vy’ in common. Finally, u is inside the
cycle determined by roof (v) and the edge zy in F.

We proceed by induction on the number of vertices in R, but require a
somewhat stronger inductive hypothesis. A simple strictly x-monotone polyg-
onal chain C' is e-ray-monotone from a point p = (x,,y,) if for every point
r = (zp,yp+t) with ¢ > &, and every point ¢ € C, T¢NC = @), where 7q is the
open line-segment with endpoints r» and ¢q. Under this definition, if C' is e-ray-
monotone from p then C' is e-ray-monotone from every point ¢ = (x,,y, + 1),
t > 0, above p. Furthermore, there exists a value 6 = d(p, C, €) such that C' is
e-ray-monotone from every point p’ at distance at most § from p.

Let &' be the minimum difference between the y-coordinates of some pair
of vertices in R. Below we construct an untangling H of G[V (H)] that satisfies
the following property (in addition to the conditions of the lemma): If |R| > 0
then the outer face of H is bounded by the edge xy and a path C from z to y
such that C'N R = {v}, for some vertex v € R, and C' is e-ray-monotone from
v for some £ < ¢’

For the base case, with |R| = 0, H consists of the single edge zy, which
can be untangled by placing = at (—1,¢) and y at (1,t), where ¢ is less than
every y-coordinate in G. Now assume that |R| > 1. Let v be the vertex in
R, right-most in the total order . If |R| = 1 then let H' be the subgraph
of H induced by {z,y}. Otherwise |R| > 1 and let H’ be the subgraph of H
induced by U{roof(u) : u € R\ v}. By induction, there is an untangling H’
of G[V(H')] that satisfies the inductive hypothesis. It remains to place v and



the vertices of roof(v) that are not yet placed. These vertices form a path P
from some vertex z’ of H' to v to some vertex y' of H'.

The conditions of the lemma specify the location of v. In particular, v is on
the y-axis, with its y-coordinate equal to its y-coordinate in GG. The inductive
hypothesis guarantees that the vertex v and every point sufficiently close to
v can see every vertex on the outer face of H’. Note that if |R| > 1, then
directly below v, on the y-axis, is a vertex u € R. Since u is on the y-axis and
the outer face of H’ is strictly x-monotone, the x-coordinate of 2’ is less than
0 and that the x-coordinate of 3/ is greater than 0.

To obtain the crossing-free geometric graph H, draw a unit circle ¢ con-
taining v, whose center is on the y-axis and below v, and place the interior
vertices of P on ¢ sufficiently close to v so that: (1) the path on the outer
face of H from z to y not containing zy is strictly x-monotone, (2) all interior
vertices of P see all other vertices of P in H, (3) all interior vertices of P see
all vertices on the outer face of H’ between 2’ and 3/, and (4) the path on the
outer face of H from z to y not containing zy is e-ray-monotone from v for
some ¢ < &'. It is simple to verify that all four conditions can be achieved.

Consider the path in H’ from z to y not containing xy along the outer face
of H'. This path is comprised of the same vertices and edges as a directed
path from x to y in F. Thus, as in the proof of Lemma 2.1, the outer face of
H’ has no outer chords in H. Therefore, an edge of H that is not an edge of
H' is either an edge on P, or it is an edge accounted for in Conditions (2) or
(3). Thus H is crossing-free. The vertices in R are on the y-axis and have the
same y-coordinates in G as in H. Conditions (1) and (4) imply that the path
between x and y on the outer face of H is strictly x-monotone. The internal
faces of H are star-shaped since the only faces in H not present in H’ have
interior vertices of P on their boundary, and conditions (2) and (3) imply that
each such face is star-shaped from some interior vertex of P. O
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