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Abstract

The separation dimension of a graph G is the minimum positive integer d for which
there is an embedding of G into R

d , such that every pair of disjoint edges are separated
by some axis-parallel hyperplane. We prove a conjecture of Alon et al. [SIAM J. Discrete
Math. 2015] by showing that every graph with maximum degree � has separation dimension
less than 20�, which is best possible up to a constant factor. We also prove that graphs
with separation dimension 3 have bounded average degree and bounded chromatic number,
partially resolving an open problem by Alon et al. [J. Graph Theory 2018].

2010 Mathematics Subject Classification: 05C62

1. Introduction

This paper studies the separation dimension of graphs and its relationship with maximum
and average degree. For a graph G, a function f : V (G)→R

d is separating if for all disjoint
edges vw, xy ∈ E(G) there is an axis-parallel hyperplane that separates the pair of points
{ f (v), f (w)} from the pair { f (x), f (y)}. The separation dimension of a graph G is the
minimum positive integer d for which there is a d-dimensional separating function for G;
see [2, 3, 4, 5, 6, 13, 17] for recent work on the separation dimension of graphs.

This topic can also be thought of more combinatorially. Edges e and f in a graph G are
separated in a linear ordering of V (G) if both endpoints of e appear before both endpoints
of f , or both endpoints of f appear before both endpoints of e. A representation of G is a
non-empty set of linear orderings of V (G). A representation R of G is separating if every
pair of disjoint edges in G are separated in at least one ordering in R. It is easily seen that
the separation dimension of G equals the minimum size of a separating representation of G;
see [2, 3, 4, 5, 7].

A fundamental question is the relationship between separation dimension and maxi-
mum degree. Chandran et al. [7] proved that every graph with maximum degree � has
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separation dimension at most 2�(�log2 log2 �� + 3)+ 1. Alon et al. [2] improved this
bound to 29 log∗(�)�, and conjectured that a stronger O(�) bound should hold. We prove
this conjecture.

THEOREM 1. Every graph with maximum degree �� 1 has separation dimension less
than 20�.

This linear bound is best possible up to a constant factor, since Alon et al. [2] proved that
almost every �-regular graph has separation dimension at least �/2. Theorem 1 is proved
in Section 3.

Section 4 of this paper considers the following natural extremal question, first posed by
Alon et al. [3]: what is the maximum average degree of an n-vertex graph with separation
dimension s? Every graph with separation dimension at most 2 is planar, and thus has aver-
age degree less than 6. For s � 3, Alon et al. [3] proved the best known upper bound on the
average degree of O(logs−2 n), and asked whether graphs with bounded separation dimen-
sion have bounded degeneracy (or equivalently, bounded average degree). We answer the
first open case of this problem.

THEOREM 2. There is a constant c such that every graph with separation dimension 3
has average degree at most c.

2. A colouring lemma

This section proves a straightforward lemma that shows how to colour a graph so that each
vertex has few neighbours of each colour (Lemma 5). Several previous papers have proved
similar results [1, 7, 10, 11, 12, 15, 16]. The proof depends on the following two standard
probabilistic tools. Let [k] := {1, 2, . . . , k}.

LEMMA 3 (Lovász local lemma [9]). Let E1, . . . , En be events in a probability space,
each with probability at most p and mutually independent of all but at most D other events.
If 4pD � 1 then with positive probability, none of E1, . . . , En occur.

LEMMA 4 (Chernoff bound [14]). Let X1, . . . , Xn be independent random variables,
where Xi = 1 with probability p and Xi = 0 with probability 1− p. Let X :=∑n

i=1 Xi . Then
for δ > 0,

P(X � (1+ δ)pn)� e−δ2 pn/3.

LEMMA 5. For all positive integers k and �, for every graph G with maximum degree
at most �, there is a partition V1, . . . , Vk of V (G) such that for every vertex v ∈ V (G) and
integer i ∈ [k],

|NG(v)∩ Vi |< d := �

k
+

√
3� log(4k�2)

k
.

Proof. Independently and randomly colour each vertex with one of k colours. For each ver-
tex v ∈ V (G) and colour c, let Av,c be the event that at least d neighbours of v are all assigned
colour c. Each event is mutually independent of all but at most k�2 other events.
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Separation dimension and degree 3

We now prove that P(Av,c)� (4k�2)−1. Since P(Av,c) is increasing with deg(v), we may
assume that deg(v)=�. Say w1, . . . , w� are the neighbours of v. For i ∈ [�], let Xi := 1
if wi is coloured c, otherwise let Xi := 0. Then P(Xi )= p := 1/k. Let X :=∑�

i=1 Xi . Then
Av,c holds if and only if X � d. Let δ := dk/�− 1, so d = (1+ δ)p�. Then P(Av,c)=
P(X � d)= P(X � (1+ δ)p�). Now

δ2 p�

3
= 1

3

(
dk

�
− 1

)2

p�= log(4k�2).

By Lemma 4 with n =�,

P(Av,c)� e−δ2 p�/3 = (4k�2)−1,

as claimed. By Lemma 3, with positive probability no event occurs, implying the desired
partition exists.

3. Proof of Theorem 1

Our proof works by considering sets of orderings with stronger properties than separation.
We start with a lemma about complete graphs.

LEMMA 6. Let G be the complete graph on n vertices including loops. Then for some
integer p � 10 log n, there are linear orderings <1, . . . , <p of V (G), such that:

(1) every pair of disjoint edges e, f ∈ E(G) are separated in some <i ; and
(2) for every vertex v ∈ V (G) and distinct vertices u, w ∈ V (G) \ {v}, for some i ∈ [p]

we have u <i v <i w or w <i v <i u.

Proof. Let p := 	10 log n
. For i ∈ [p], let <i be a random linear ordering of V (G).
Let e and f be edges in G with no common endpoint. If neither e nor f are loops, then

the probability that e and f are separated in <i is 1/3. If e is a loop and f is a non-loop,
then the probability that e and f are separated in <i is 2/3. If both e and f are loops, then
they are always separated in <i . Thus the probability that e and f are not separated in <i is
at most 2/3. Hence the probability that (1) fails for e and f is at most (2/3)p.

Now consider a vertex v ∈ V (G) and distinct vertices u, w ∈ V (G) \ {v}. For each i ∈ [p]
the probability that u <i v <i w or w <i v <i u is 1/3. Hence the probability (2) fails for
every i ∈ [p] is at most (2/3)p.

By the union bound, the probability that both (1) and (2) fail is at most
(|E(G)|

2

) (
2

3

)p

+ n

(
n − 1

2

) (
2

3

)p

=
((

n(n + 1)/2

2

)
+ n

(
n − 1

2

)) (
2

3

)p

< n4

(
2

3

)p

< 1.

Thus there exists linear orderings <1, . . . , <p such that (1) and (2) hold.

Note that we need �(log n) orderings in Lemma 6 because of (2): if p < log2(n − 1)− 1
then for any vertex v and any set of p orderings, there are distinct vertices x, y are on the
same side of v in each of the orderings.
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The following definition is a key to the proof of Theorem 1. A representation <1, . . . , <p

of a graph G is strongly separating if:

(a) for all disjoint edges vw, xy ∈ E(G), for some ordering <i , we have v, w <i x, y
or x, y <i v, w, and

(b) for every edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}, we have x <i v, w and
v, w < j x for some i, j ∈ [p].

We define the strong separation dimension of a graph G to be the minimum number of linear
orderings in a strongly separating representation of G. Clearly the separation dimension of
a graph is at most its strong separation dimension, and it will be helpful to work with the
latter.

LEMMA 7. Every graph G with maximum degree � has strong separation dimension at
most the separation dimension of G plus 2�+ 2.

Proof. Say G has separation dimension d. By Vizing’s Theorem, there is a partition
E1, . . . , E�+1 of E(G) into matchings. Starting from a separating representation of G
in d dimensions, we now add two orderings <i and <′i for each i ∈ [�+ 1]. Say Ei =
{v1w1, . . . , vnwn}. Let <i be v1, w1, . . . , vnwn followed by V (G) \ {v1, w1, . . . , vn, wn} in
any ordering. Let <′i be the reverse of <′i . Every edge vw of G is in some Ei . Since v and w

are consecutive in <i , for each vertex x ∈ V (G) \ {v, w}, we have v, w <i x and x <′i v, w,
or v, w <′i x and x <i v, w. Hence we have a strongly separating representation of G with
d + 2�+ 2 orderings in total.

LEMMA 8. Let G1, . . . , Gk be the connected components of a graph G. For a ∈ [k],
let pa be the strong separation dimension of Ga. Then G has strong separation dimen-
sion at most max{p1, . . . , pk, 2}. Moreover, there is such a representation such that in each
ordering, V (G1) < V (G2) < · · ·< V (Gk) or V (Gk) < V (Gk−1) < · · ·< V (G1).

Proof. Let p :=max{p1, . . . , pk, 2}. For a ∈ [k], let {<a
1, . . . , <a

p} be a strongly separating
representation of Ga . For j ∈ [p− 1], let < j be the ordering of V (G) with V (G1) < j · · ·< j

V (Gk), where V (Ga) is internally ordered according to <a
j , for a ∈ [k]. Finally, let <p be the

ordering of V (G) with V (Gk) <p · · ·<p V (G1), where V (Ga) is internally ordered accord-
ing to <a

p, for a ∈ [k]. Thus {<1, . . . , <p} is a representation of G, which we now show
is strongly separating. Consider disjoint edges vw, xy ∈ E(G). If vw and xy are in the
same component, then (a) holds by assumption. Otherwise, vw and xy are in distinct com-
ponents, implying that v, w <1 x, y or x, y <1 v, w, and again (a) holds. Now consider an
edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}. If vw and x are in the same component, then
(b) holds by assumption. So we may assume that vw ∈ E(Ga) and x ∈ V (Gb) for distinct
a, b ∈ [k]. If a < b then v, w <1 x and x <p v, w. If b < a then v, w <p x and x <1 v, w.
Thus (b) holds, and {<1, . . . , <p} is strongly separating.

Note that every connected graph with at least three vertices has strong separation dimen-
sion at least 2, so Lemma 8 implies that for every graph G with at least three vertices in some
component, the strong separation dimension of G equals the maximum strong separation
dimension of the components of G.
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Separation dimension and degree 5

For a graph G and disjoint sets A, B ⊆ V (G), let G[A, B] be the bipartite subgraph of G
with vertex set A ∪ B and edge set {vw ∈ E(G) : v ∈ A, w ∈ B}.

LEMMA 9. Fix integers s, t, k � 2, where k is even. Let G be a graph, and let V1, . . . , Vk

be a partition of V (G), such that G[Vi ] has strong separation dimension at most s for each
i ∈ [k], and G[Vi , Vj ] has strong separation dimension at most t for all distinct i, j ∈ [k].
Then G has strong separation dimension at most 2s + (k − 1)t + 20 log k.

Proof. Let G0 :=⋃k
i=1 G[Vi ]. Let H be the complete graph with vertex set [k]. Let

E1, . . . , Ek−1 be a partition of E(H) into perfect matchings, which exists since k is even.
For i ∈ [k − 1], let Gi :=⋃

ab∈Ei
G[Va, Vb]. Note that V (Gi)= V (G) for i ∈ [0, k − 1], and

that G =G0 ∪G1 ∪ · · · ∪Gk−1.
Since s, t � 2, by Lemma 8, G0 has strong separation dimension at most s, and Gi has

strong separation dimension at most t for each i ∈ [k − 1]. This gives s + (k − 1)t orderings
of V (G). Moreover, by Lemma 8, for each of the s orderings of G0, we have V1 < · · ·< Vk

or Vk < · · ·< V1. For each such ordering of G0 of the form V1 < · · ·< Vk , add the extra
ordering Vk < · · ·< V1 to the representation of G. And for each such ordering of G0 of the
form Vk < · · ·< V1, add the extra ordering V1 < · · ·< Vk to the representation of G. In these
extra orderings, each set Vi inherits its ordering from the original. (So the extra ordering is
not simply the reverse of the original.) This gives 2s + (k − 1)t orderings of V (G).

For each i ∈ [k], let
−→
Vi be an arbitrary linear ordering of Vi . Let

←−
Vi be the reverse ordering.

Let H+ be the complete graph on vertex set [k] including loops. By Lemma 6, for some
p � 10 log k, there is a representation {<1, . . . , <p} of H+ such that:

(1) each pair of disjoint edges e, f ∈ E(H+) are separated in some <i , and
(2) for every vertex v ∈ V (H+) and for all distinct vertices u, w ∈ V (H+) \ {v}, for

some i ∈ [p] we have u <i v <i w or w <i v <i u.

For each i ∈ [p], introduce two orderings <+i and <−i of V (G) constructed from <i : in the

first replace each vertex i ∈ V (H+) by
−→
Vi , and in the second replace each vertex i ∈ V (H+)

by
←−
Vi . Together with the previous orderings, this gives a total of at most 2s + (k − 1)t +

20 log k orderings of V (G).
We now check that each pair of disjoint edges vw and xy in G are separated in some

ordering. Say v ∈ Vi , w ∈ Vj , x ∈ Va and y ∈ Vb.
If i = j and a = b, then vw and xy are both in G0, and are thus separated in some ordering

arising from G0. So we may assume that i �= j or a �= b. Without loss of generality, i �= j .
If {i, j} = {a, b} then i j ∈ E� for some � ∈ [k − 1], implying vw and xy are both in G�,

and are thus separated in some ordering arising from G�. So we may assume that {i, j} �=
{a, b}. Thus i j and ab are distinct edges of H+, where ab is possibly a loop.

If {i, j} ∩ {a, b} = ∅ then i j and ab are separated in some ordering <h arising from H+,
implying that vw and xy are also separated (in both <+h and <−h ). So we may assume that
{i, j} ∩ {a, b} �= ∅. Without loss of generality, i = a.

First suppose that a = b (= i). Then xy ∈ E(G0) and v ∈ V (G0). Thus for some ordering
<α of G0, we have v <α x, y. By construction, Vj <α Vi or Vi <α Vj . If Vj <α Vi then w <α

v <α x, y. Otherwise, Vi <α Vj . Then in the extra ordering associated with <α, we have
w < v < x, y. In both cases, vw and xy are separated.
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6 ALEX SCOTT AND DAVID R. WOOD

So we may assume that a �= b. Thus j �= b, as otherwise {i, j} = {a, b}. By property (2)
above, for some r ∈ [p] we have j <r i <r b or b <r i <r j . Without loss of generality, j <r

i <r b. Since v < x in
−→
Vi or in

←−
Vi , in one of <+r and <−r , we have w < v < x < y, implying

vw and xy are separated.
It remains to show that for every edge vw ∈ E(G) and vertex x ∈ V (G) \ {v, w}, we have

x < v, w in some ordering and v, w < x in another ordering. Since vw ∈ E(Gi) for some
i ∈ [0, k − 1], and x ∈ V (Gi), this property holds by assumption.

We now prove Theorem 1, which says that every graph with maximum degree � has
separation dimension less than 20�. Recall that Chandran et al. [7] proved the upper bound
of 2�(�log2 log2 �� + 3)+ 1, which is less than 20� if �� 217. So it suffices to assume
that �� 217. In this case, to enable an inductive proof, we prove the following strengthening.

LEMMA 10. For �� 217, every graph with maximum degree at most � has strong
separation dimension at most 20�(1−�−1/5).

Proof. We proceed by induction on �. In the base case, suppose that 217 ��� 232. Let
G be a graph with maximum degree �. By Lemma 7 and the result of Chandran et al. [7]
mentioned above, the strong separation dimension of G is at most

2�(�log2 log2 �� + 4)+ 3= 18�+ 3 � 20�(1−�−1/5).

So we may assume that � > 232. Let G be a graph with maximum degree �. Let k be the
largest even integer at most �1/4. Let

d := (1+ k−1)
�

k
.

By Lemma 5, there is a partition V1, . . . , Vk of V (G) such that for every vertex v ∈ V (G)

and integer i ∈ [k],

|NG(v)∩ Vi |< �

k
+

√
3� log(4k�2)

k
< d,

where the final inequality holds since k ��1/4 and � > 232. Thus G[Vi ] and G[Vi , Vj ] have
maximum degree at most d for all distinct i, j ∈ [k].

Now d ��/k ��3/4 � 224 and d < �. By induction, G[Vi ] and G[Vi , Vj ] both have
strong separation dimension at most 20d(1− d−1/5) for all distinct i, j ∈ [k]. Since 20d(1−
d−1/5)� 2, by Lemma 9, G has strong separation dimension at most 20(k + 1)d(1−
d−1/5)+ 20 log k, which is at most 20(k + 2)d(1− d−1/5). All that remains is to prove that

(k + 2)d(1− d−1/5)��(1−�−1/5). (3·1)

Suppose for the sake of contradiction that (3·1) does not hold. Substituting for d and since
k + 4 � (k + 2)(1+ k−1),

(k + 4)
�

k
(1− d−1/5)� (k + 2)(1+ k−1)

�

k
(1− d−1/5) > �(1−�−1/5).

Thus

(1+ 4k−1)(1− d−1/5) > 1−�−1/5.
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Separation dimension and degree 7

Hence

4k−1 +�−1/5 > (1+ 4k−1)d−1/5 > d−1/5.

Since k � 4�1/4/5 and d < 3�3/4/2,

5�−1/4 +�−1/5 >

(
3

2
�3/4

)−1/5

,

which is a contradiction since � > 232. Hence (3·1) holds, which completes the proof.

4. Proof of Theorem 2

This section shows that graphs with separation dimension 3 have bounded average degree.
Much of the proof works in any dimension, so we present it in general. We include proofs
of the following two folklore lemmas for completeness.

LEMMA 11. Every graph with average degree at least 2d contains a subgraph with
minimum degree at least d.

Proof. Deleting a vertex of degree less than d maintains the property that the average degree
is at least 2d. Thus, repeatedly deleting vertices of degree less than d produces a subgraph
with average degree at least 2d and minimum degree at least d.

LEMMA 12. Every graph with minimum degree at least 2d contains a bipartite spanning
subgraph with minimum degree at least d.

Proof. For a partition A, B of V (G), let e(A, B) be the number of edges between A and B.
Let A, B be a partition of V (G) maximising e(A, B). If some vertex v in A has fewer than
d neighbours in B, then v has more than d neighbours in A, implying that e(A \ {v}, B ∪
{v}) > e(A, B), which contradicts the choice of A, B. Thus each vertex in A has at least d
neighbours in B, and by symmetry, every vertex in B has at least d neighbours in A. The
result follows.

Let G be a bipartite graph with bipartition (A, B). A representation {<1, . . . , <d} of G is
consistent if for every edge vw ∈ E(G) with v ∈ A and w ∈ B, we have v <i w for all i ∈ [d].
A representation {<1, . . . , <d} of G is A-homogeneous if there are integers a1, . . . , ad ∈
{−1,+1}, such that for every vertex v ∈ A, there is a linear ordering <v of NG(v), with the
property that for i ∈ [d],

(i) if ai = 1 then NG(v) is ordered in <i according to <v, and
(ii) if ai =−1 then NG(v) is ordered in <i according to <′v,

where <′v is the reverse of <v. The definition of B-homogeneous is analogous.

LEMMA 13. Suppose that for some positive integers d and t, there is a graph G with
average degree at least 2d+2(2d+1t)2d−1

and separation dimension at most d. Then there is a
bipartite subgraph G ′ of G with bipartition (A′, B ′), with minimum degree at least t , such
that G ′ has a d-dimensional consistent separating representation that is A′-homogeneous
or B ′-homogeneous.
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8 ALEX SCOTT AND DAVID R. WOOD

Proof. Let {<1, . . . , <d} be a separating representation of G. By Lemma 12, G contains
a bipartite spanning subgraph G1 with average degree at least 2d+1(2d+1t)2d−1

. Then {<1

, . . . , <d} is a separating representation of G1. Let (A1, B1) be the bipartition of G1.
For each edge vw ∈ E(G1) with v ∈ A1 and w ∈ B1, let f (vw)= ( f1(vw), . . . , fd(vw)),

where fi (vw) := 1 if v <i w, and fi(vw) :=−1 if w <i v (for i ∈ [d]). Since f takes at
most 2d values, there is a set E2 ⊆ E(G1) with f (vw)= f (xy) for all vw, xy ∈ E2, and
|E2|� |E(G1)|/2d . Let G2 be the spanning subgraph of G1 with edge set E2. Thus G2 has
average degree at least 2(2d+1t)2d−1

. For i ∈ [d], if fi (vw)=−1 for vw ∈ E2, then replace
<i by <′i . Thus {<1, . . . , <d} is a consistent separating representation of G2. This property
is maintained for all subgraphs of G2.

By Lemma 11, G2 contains a subgraph G3 with minimum degree at least (2d+1t)2d−1
. Let

A3 := A2 ∩ V (G3) and B3 := B2 ∩ V (G3). Thus (A3, B3) is a bipartition of G3. Without loss
of generality, |A3|� |B3|.

For each vertex v ∈ A3, by the Erdős–Szekeres theorem [8] applied d − 1 times, there is a
subset Mv of NG3(v) that is monotone with respect to <1 in each ordering <2, . . . , <d , and

|Mv|� (degG3
(v))1/2d−1 � 2d+1t.

Let g(v)= (g2(v), . . . , gd(v)), where gi (v) := 1 if Mv is forward in <i , and gi (v) :=−1
if Mv is backward in <i , for i ∈ [2, d]. Since g takes at most 2d−1 values, there is a sub-
set A4 of A3 such that g(v)= g(x) for all v, x ∈ A4, and |A4|� |A3|/2d−1. Let a1 := 1 and
for i ∈ [2, d], let ai := gi (v) for v ∈ A4. For v ∈ A4, let <v be the ordering of Mv in <1.
Let B4 :=⋃

v∈A4
Mv. Let G4 be the bipartite subgraph with bipartition (A4, B4), where

E(G4) := {vw : v ∈ A4, w ∈ Mv}. By construction, {<1, . . . , <d} is an A4-homogeneous
consistent separating representation of G4. This property is maintained for all subgraphs
of G4.

Note that every vertex in A4 has degree at least 2d+1t in G4, and that

|V (G4)| = |A4| + |B4|� |A4| + |B3|� |A4| + |A3|� (1+ 2d−1)|A4|� 2d |A4|.
Hence G4 has average degree

2|E(G4)|
|V (G4)| �

2d+1t |A4|
2d |A4| = 2t.

By Lemma 11, G4 contains a subgraph G5 with minimum degree at least t . Let A5 := A4 ∩
V (G5). Then {<1, . . . , <d} is an A5-homogeneous consistent separating representation
of G5.

We now prove Theorem 2.

LEMMA 14. Every graph with separation dimension 3 has average degree less than 229.

Proof. Suppose for the sake of contradiction that there is a graph with separation dimen-
sion 3 and average degree at least 229 = 23+2(23+14)23−1

. By Lemma 13, without loss of
generality (possibly exchanging the roles of A and B), there is a bipartite graph G with
bipartition (A, B), with minimum degree at least 4, such that G has a 3-dimensional A-
homogeneous consistent separating representation {<1, <2, <3}. Thus there are integers
a1, a2, a3 ∈ {−1,+1}, such that for every vertex v ∈ A, there is a linear ordering <v of
NG(v), with the property that for i ∈ [3],
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(i) if ai = 1 then NG(v) is ordered in <i according to <v, and
(ii) if ai =−1 then NG(v) is ordered in <i according to <′v.

By symmetry (since we may reverse all orders <v), we may assume that at least two
of a1, a2, a3 are +1. Reordering leaves two cases: a1 = a2 = a3 = 1, or a1 = a2 = 1 and
a3 =−1.

Case 1. a1 = a2 = a3 = 1: Let v be a vertex in A. Let b, c be neighbours of v with b <v c.
Since a1 = a2 = a3 = 1, we have v <i b <i c for each i ∈ [3]. Let x be a neighbour of b other
than v (which exists since G has minimum degree at least 4). Then vc and bx are separated
in no ordering, which is a contradiction.

Case 2. a1 = a2 = 1 and a3 =−1: For each vertex v ∈ A, mark the rightmost edge incident
with v according to the ordering <v of NG(v). Since G has at least 2|V (G)| edges and at
most |V (G)| edges are marked, G contains a cycle C of unmarked edges. As shown above,
C is not a 4-cycle. So |C |� 6.

Let v be the leftmost vertex in C in <1. Let b and c be the neighbours of v in C . Without
loss of generality, b <v c. Since a1 = a2 = 1 and a3 =−1, we have that v <1 b <1 c and
v <2 b <2 c and v <3 c <3 b. Let w be the neighbour of b in C , such that w �= v. Note that
v, w ∈ A and b, c ∈ B. Since b is between v and c in <1 and <2, the edges vc and wb are not
separated in <1 and <2. Thus vc and wb are separated in <3, implying v <3 c <3 w <3 b by
consistency. By the choice of v and by consistency, v <1 w <1 b <1 c. And by consistency,
v <2 w <2 b or w <2 v <2 b.

Let b′ be the rightmost neighbour of w in <w. Thus wb′ is marked. Since w is between
v and b in <1 and <3, the edges vb and wb′ are not separated in <1 and <3. Thus vb and
wb′ are separated in <2. Since a2 =+1 and b′ is the rightmost neighbour of w in <w, we
have b <2 b′. Thus v <2 w <2 b <2 b′ or w <2 v <2 b <2 b′. In both cases, vb and wb′ are
not separated in <2, which is a contradiction.

Alon et al. [3] state that it is open whether graphs with bounded separation dimension
have bounded chromatic number. Since separation dimension is non-decreasing under taking
subgraphs, Lemma 14 implies:

COROLLARY 15. Every graph with separation dimension 3 is 229-colourable.

Recall that Alon et al. [3] proved that every n-vertex graph with separation dimension
s � 2 has average degree O(logs−2 n). Their proof is by induction on s. Applying AvgDeg
in the base case leads to the following result:

COROLLARY 16. For s � 3, every n-vertex graph with separation dimension s has
average degree O(logs−3 n).

For each s � 4, it remains open whether graphs of separation dimension at most s satisfy
analogues of Lemma 14 and Corollary 15.
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