
c© British Computer Society 2002

Lower Bounds for One-to-one Packet
Routing on Trees using Hot-Potato

Algorithms
ALAN ROBERTS1 , ANTONIOS SYMVONIS2 AND DAVID R. WOOD3

1University of Sydney, Sydney NSW 2006, Australia
2Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

3School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
Email: alanr@zip.com.au, symvonis@cc.uoi.gr, davidw@csc.carleton.ca

In this paper, we consider hot-potato packet routing of one-to-one routing patterns on n-node trees.
By applying a ‘charging argument’, we show that any greedy hot-potato algorithm routes a one-
to-one routing pattern within 2(n − 1) steps. On the other hand, a trivial lower bound suggests
that at least 3n/2 steps are required by any oblivious greedy algorithm. As the main contribution
of the paper, we tighten the 2(n − 1) upper bound by constructing (for all sufficiently large n) an
elaborate one-to-one packet routing problem on an n-node tree for which an oblivious greedy hot-
potato algorithm requires at least 2n − o(n) steps. This improved lower bound is also shown to
be valid for the minimum-distance heuristic. For trees of maximum degree d , we establish a lower

bound of 2((d − 3)/(d − 2))n − o(n) routing steps.
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1. INTRODUCTION

In a packet routing problem we are given a synchronous
network represented by a connected undirected graph and a
set of packets distributed over the nodes of the graph. Each
packet has an origin and a destination node and the aim
is to route each packet to its destination in as few steps as
possible, subject to each edge carrying at most one packet
in each direction at each time step. The distribution of
the origins and destinations of packets specifies the routing
pattern. In a many-to-many pattern each node may be the
origin and destination of more than one packet. If each node
is the origin of at most one packet then the routing pattern is
called many-to-one. In a one-to-many routing pattern each
node is the destination of at most one packet. If each node is
the origin and destination of at most one packet the pattern
is called one-to-one. A one-to-one pattern with the same
number of packets as nodes is called a permutation.

Packet routing algorithms fall into two main categories,
namely on-line and off-line algorithms. In on-line routing,
routing decisions are made in a distributed manner at
each node of the network. At each routing step,
every node decides by which links to route the packets
residing in it, depending on local information only, usually
consisting of the origin and destination nodes of the packets
residing in it. (More complicated on-line schemes where
‘local knowledge’ incorporates information accumulated
in the node since the beginning of the routing can also
be defined.) In off-line routing, a routing schedule
which dictates how each packet moves during each step

of the routing is precomputed. A routing schedule
can be thought of as a collection of paths, each path
corresponding to a particular packet and describing the route
that the packet follows from its origin to its destination
node.

In this paper we examine on-line one-to-one packet
routing on trees under the hot-potato model. In a hot-
potato (or deflection) routing algorithm there is no buffering
of packets at nodes; that is, each packet must traverse a
link at every step until it reaches its destination. This
approach, introduced some 35 years ago by Baran [1],
has been observed in a number of experiments to perform
exceptionally well in practice [2, 3, 4, 5, 6, 7] and
has been used in parallel machines such as the HEP
multiprocessor [8], the Connection Machine [9] and the
Caltech mosaic C [10]. The elimination of buffering queues
used in store-and-forward algorithms has the advantage of
potentially faster switching, which is particularly important
for optical networks [5, 11, 12, 13], where buffering involves
transforming the packets into electronic form.

In this paper we concentrate on greedy on-line hot-potato
routing algorithms which at each step attempt to advance
each packet towards its destination. If, at some time step t ,
a packet p moves away from its destination then we say p is
deflected; otherwise we say p is advanced. If p is deflected
and there is a packet q which is at the same node as p before
step t and q is assigned a link whose end-point is closer to
the destination of p, then we say that p is deflected by q .
We formalize the notion of a greedy hot-potato algorithm as
follows.
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DEFINITION 1.1. A hot-potato routing algorithm is said
to be greedy if, whenever a packet p is deflected, all the links
which would advance p towards its destination are used by
other advancing packets.

If at some time step, there is a link at some node which
advances more than one packet residing at this node towards
their respective destinations, then we say the packets are
in conflict. We consider three types of greedy algorithms
which differ with regard to their methods for resolving
conflicts. We say a greedy hot-potato routing algorithm is
oblivious if, for each conflict, the packet to traverse the link
is chosen arbitrarily from those packets which wish to do
so. The minimum-distance heuristic, proposed in [14, 15],
chooses a packet with minimum distance to its destination
to advance and in the maximum-distance heuristic a packet
with maximum distance to its destination is chosen to
advance.

Only recently has there been any precise analysis of the
performance of greedy hot-potato algorithms [16, 17, 18,
19, 20, 21, 22]. Non-greedy hot-potato algorithms have
appeared in [16, 23, 24, 25, 26, 27, 28] and lower bounds
for hot-potato routing on meshes have been presented by
Ben-Aroya et al. [29]. An important result, developed
independently by Borodin et al. [19] and Feige [25],
establishes an upper bound of dist(p) + 2(k − 1) on the
number of steps used by a greedy hot-potato algorithm to
route a packet p on a wide class of networks including trees,
where dist(p) is the shortest distance from the origin to the
destination of p and k is the number of packets participating
in the routing. However this result is not tight for one-to-one
packet routing and for trees. The gap between the known
lower bounds, the experimental results and the recent upper
bounds motivate our analysis of the performance of greedy
hot-potato algorithms on trees and in particular for one-to-
one routing patterns. With these simpler cases, we might
expect to gain tight bounds on the running time of a hot-
potato algorithm.

Borodin et al. [19] also introduce the notion of a totally
greedy hot-potato algorithm (referred as maximum advance
by Feige [25]) which, at each time step, minimizes the
possible number of deflected packets at each node. This
involves solving a maximum matching problem between
packets and ‘good’ links. Since, for trees, there is exactly
one link which advances a packet towards its destination,
a greedy algorithm on a tree is necessarily totally greedy.
Feige [25] also introduced the class of minimum advance
hot-potato algorithms which always advance at least one
packet (for every node) towards its destination. Feige and
Krauthgamer [30] proved that minimum advance hot-potato
algorithms never livelock on trees.

Symvonis [31] developed an O(n2) time algorithm for
determining a routing schedule for off-line permutation
routing on trees. The routing is completed within n−1 steps,
which is clearly optimal. Alstrup et al. [32] develop an
algorithm for the same problem which delays each packet at
its origin for some amount of time and then moves the packet

directly towards its destination. The schedule is computed in
O(n logn log logn) time and again the routing is completed
within n − 1 steps.

Packet routing on trees has also been studied under
the matching model [33, 34, 35]. Here each node holds
exactly one packet and the only operation allowed is the
exchange of the packets at the end-points of an edge.
Zhang [35] described an algorithm in the matching model
for permutation routing on an n-node tree within 3n/2 +
O(logn) steps. Pantziou et al. [34] established a close
relationship between the matching and hot-potato routing
models that allows the application of tools for the analysis of
hot-potato algorithms to the matching model. In particular,
they present an on-line algorithm for many-to-many routing
on trees under the matching model, which routes k packets
within d(k − 1) + d · dist steps, where d is the maximum
degree of the tree and dist is the maximum distance from the
origin to the destination of a packet. Their off-line algorithm
solves the same problem within 2(k − 1) + dist steps.

Our results. Based on the ‘charging argument’ [19, 25] and
by utilizing the fact that a tree is a bipartite network, we
show that any greedy hot-potato algorithm routes a one-to-
one routing pattern on an n-node tree within 2(n − 1) steps.
On the other hand, a straightforward lower bound suggests
that there are one-to-one routing problems requiring at least
3n/2 steps by an oblivious greedy hot-potato algorithm.

A natural question which arises is how to close the gap
between the 2(n − 1) upper bound and the 3n/2 lower
bound. The main contribution of the paper establishes
that the upper bound is optimal (within lower order terms).
More specifically, for sufficiently large n, we construct
an elaborate one-to-one packet routing problem on an
n-node tree for which an oblivious greedy hot-potato routing
algorithm requires at least 2n − o(n) steps. We also show
that the same lower bound applies for the minimum distance
heuristic.

A possible criticism of the trees used in the development
of the above lower bounds is that some nodes have high
degree. We therefore establish a lower bound of 2((d − 3)/
(d − 2))n − o(n) on the number of routing steps under
the minimum-distance heuristic (and thus, for an oblivious
greedy algorithm) applied to an infinite family of n-node
trees with maximum degree d .

The paper is organized as follows. In Section 2, we
provide some simple lower bounds and observations which
are used in the remainder of the paper. We also show that any
greedy hot-potato algorithm will route a one-to-one pattern
on an n-node tree within 2(n − 1) steps. Section 3 presents
the lower bound of 2n−o(n) on the number of steps required
by an oblivious greedy hot-potato algorithm to route a one-
to-one pattern on an n-node tree. In Section 4, we establish
the same lower bound for the minimum-distance heuristic.
We also establish a lower bound of 2((d−3)/(d−2))n−o(n)

on the number of routing steps under the minimum-distance
heuristic applied to an infinite family of n-node trees with
maximum degree d . We conclude in Section 5.
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2. PRELIMINARIES

We firstly make an observation concerning hot-potato
routing on bipartite networks (for example, trees, meshes,
hypercubes, etc.) which we shall exploit in our lower bounds
and in the analysis of greedy hot-potato algorithms on trees.
Suppose the nodes are coloured black and white such that
adjacent nodes receive different colours. We associate with
each packet the colour of the node where it originates and
say that packets with the same colour have the same parity.
Since in a hot-potato algorithm each packet moves at every
step, a black/white packet will be at a white/black node after
an odd number of steps and at a black/white node after
an even number of steps. Hence we have the following
observation.

OBSERVATION 2.1. In a hot-potato routing algorithm on
a bipartite network, conflicting packets have the same parity.

2.1. Introductory lower bounds

We now establish lower bounds for the number of routing
steps required for a hot-potato algorithm to move packets out
of certain subtrees within a larger tree. These introductory
results are used to prove our main lower bounds in Sections 3
and 4. Consider the subtree shown in Figure 1 consisting of
k leaves adjacent to a single node, with a packet at each leaf
destined for some node outside of the subtree.

LEMMA 2.2. Suppose the packets p1, p2, . . . , pk are at
the leaves of a subtree T with k+1 nodes and each packet pi ,
1 ≤ i ≤ k, has a destination outside of T . Any hot-potato
algorithm will take at least 2k steps for p1, p2, . . . , pk to
leave T .

Proof. We proceed by induction on k. For k = 1 the sole
packet will move to the non-leaf node in the first step and
out of T in the second step. Assume the result holds for
k − 1 packets. In the first step all of p1, p2, . . . , pk will
move to the non-leaf node and in the second step all but
one of these packets will be deflected back to the leaf nodes.
By induction, for the remaining k − 1 packets to leave T

requires 2(k − 1) steps, so for p1, p2, . . . , pk to leave T

requires 2(k − 1) + 2 = 2k steps.

We now use Lemma 2.2 to deduce the following lower
bound.

LEMMA 2.3. There is a permutation routing problem on
an n-node tree for which the minimum-distance heuristic
will take 3n/2 steps and the maximum-distance heuristic will
take n steps.

Proof. Consider the tree Bn with n/2 nodes forming a path
and n/2 leaves attached to one end of the path, as illustrated
in Figure 2.

We define a permutation routing problem on Bn as
follows. The packets which originate in the path have
destinations in the leaves and the packets which originate
in the leaves have destinations in the path. By Lemma 2.2 it
will take 2(n/2) = n steps for all the packets in the leaves

� � �

8 > > > > > > > < > > > > > > > :
k

FIGURE 1. The subtree T with k + 1 nodes and k leaves.

� � �

8 > > > > > > > < > > > > > > > :
n=2

8>>>>>>><
>>>>>>>:

n=2

FIGURE 2. The tree Bn.

to enter the path. Under the minimum-distance heuristic the
packet destined for the end of the path will be the last packet
to enter the path and will take a further n/2 steps to complete
the routing, hence a total of 3n/2 steps. For the maximum-
distance heuristic this packet will enter the path first and the
total time will be n.

By definition, the decisions of an oblivious algorithm
regarding the packets which are advanced out of all those in
conflict with each other are made arbitrarily. When proving
lower bounds, this allows us to assume that an oblivious
algorithm will make all the ‘bad choices’. Since an oblivious
algorithm can make exactly the same routing decisions as
the minimum-distance heuristic, the lower bound for the
minimum-distance heuristic implies a lower bound for an
oblivious algorithm. Thus, we have the following.

COROLLARY 2.4. There is a permutation routing
problem on an n-node tree for which an oblivious greedy
algorithm will take 3n/2 steps.

We now examine the performance of the hot-potato
algorithm on complete d-ary trees. Consider a complete
d-ary subtree of height h, with a packet at each node
destined for some node outside of the subtree, as illustrated
in Figure 3.

LEMMA 2.5. Suppose a tree contains an n-node complete
d-ary subtree (d ≥ 2) of height h with a packet at each node
of the subtree destined for some node outside of the subtree.
Then the number of steps for a hot-potato routing algorithm
to move all of the packets to outside of the subtree is

2

(
dn

d + 1

)
if h is odd, and, 2

(
dn + 1

d + 1

)
if h is even.
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FIGURE 3. A complete binary subtree of height 4.

Proof. If the root node is coloured white (respectively,
black) then after an odd number of steps a black (white)
packet will be at the root and after an even number of
steps a white (black) packet will be at the root. Thus
on alternate steps black/white packets depart the subtree.
Suppose without loss of generality that the leaves of the
subtree are coloured white. Then there will be more white
packets than black packets. After all the black packets have
departed from the tree (along with an equal number of white
packets) the remaining white packets will depart from the
tree on alternate steps. Thus the total number of steps is
twice the number of white packets; that is, twice the number
of white nodes.

The number of nodes in the complete d-ary tree of
height h is

n =
h∑

i=0

di = dh+1 − 1

d − 1
. (1)

Suppose h is even. The number of white nodes is

h∑
i=0
even

di =
h/2∑
i=0

(d2)i ,

which is the number of nodes in the complete d2-ary tree of
height h/2, which by (1) evaluates to

(d2)h/2+1 − 1

d2 − 1
= dh+2 − 1

d2 − 1

= d(dh+1 − 1) + (d − 1)

(d − 1)(d + 1)

= dn + 1

d + 1
.

The result follows for even h. Now suppose h is odd.
The number of white nodes is

h∑
i=1
odd

di = d

h−1∑
i=0
even

di = d

(h−1)/2∑
i=0

(d2)i,

which by (1) is

d

(
(d2)(h−1)/2+1 − 1

d2 − 1

)
= d

d + 1

(
dh+1 − 1

d − 1

)

= dn

d + 1
.

The result follows for odd h and hence for all h.

Note that, in a complete d-ary tree, the majority of the
nodes are leaves. We therefore can obtain a lower bound on
the number of routing steps even if all the packets originate
at the leaves of the subtree.

LEMMA 2.6. Suppose a tree contains an n-node complete
d-ary subtree and each leaf of this tree contains one packet
whose destination is outside of the subtree. Then a hot-
potato routing algorithm will take at least

2

(
(d − 1)n + 1

d

)

steps to move all of the packets to outside of the subtree.

Proof. Since the leaves have the same parity, only on
alternate steps can packets originating at leaves be at the
root. Hence the number of steps is at least twice the number
of leaves. The number of leaves in a d-ary tree of height h is

dh = dh+1 − 1

d
+ 1

d

=
(
d − 1

d

)(
dh+1 − 1

d − 1

)
+ 1

d

= (d − 1)n + 1

d
.

The result follows.

2.2. Algorithms

We now apply Observation 2.1 in conjunction with the
charging argument (as described by Borodin et al. [19])
to provide an upper bound on the number of routing steps

THE COMPUTER JOURNAL, Vol. 45, No. 4, 2002



LOWER BOUNDS FOR ONE-TO-ONE PACKET ROUTING 427

of a greedy hot-potato routing algorithm on a tree. To
aid understanding we repeat the important details from that
paper. Suppose p is a packet which is deflected by the
packet p1. Follow packet p1 until it reaches its destination or
it is deflected by packet p2, whichever happens first. In the
latter case, follow packet p2 until it reaches its destination
or it is deflected by packet p3 and so on. We continue
in this manner until we follow a packet pl which reaches
its destination. The sequence of packets p1, p2, . . . , pl is
defined to be the deflection sequence corresponding to the
original deflection of packet p. The path (starting from the
deflection node and ending at the destination of pl) which is
defined by the deflection sequence is said to be the deflection
path corresponding to the deflection of packet p. Note that,
for a particular packet p, we can define as many deflection
sequences (paths) as the number of deflections p suffers
during the course of its routing.

LEMMA 2.7. (Borodin et al. [19]) Suppose that for any
deflection of a packet p from node v to node u the shortest
path from u to the destination of pl (the last packet in the
deflection sequence) is at least as long as the deflection path.
Then, pl cannot be the last packet in any other deflection
sequence of packet p. Consequently we can ‘charge’ the
deflection to packet pl .

This result is useful in the analysis of greedy hot-potato
algorithms, as we now demonstrate in the case of trees.

THEOREM 2.8. A greedy hot-potato algorithm will route
a one-to-one pattern on an n-node tree within 2(n−1) steps.

Proof. For an arbitrary packet p we denote by defl(p) the
number of times that p is deflected before reaching its
destination and by dist(p) the distance from the origin of
p to its destination. Clearly p will reach its destination in
exactly 2 · defl(p) + dist(p) steps.

We now establish an upper bound on defl(p). Let p be
a fixed packet originating at a node v, which we assume
without loss of generality to be coloured white. According to
Definition 1.1, in any deflection of p to a node u, the shortest
path from u to the destination of the last packet in the
corresponding deflection sequence is at least as long as the
deflection path. Therefore, by Lemma 2.7, each deflection
of p can be charged to a distinct packet.

Clearly there are at least �dist(p)/2	 black nodes in the
tree and thus there are at most n − 1 − �dist(p)/2	 white
nodes in the tree besides v. By Observation 2.1, only packets
which originate at white nodes can deflect p. Hence

defl(p) ≤ n − 1 −
⌈

dist(p)

2

⌉
.

Thus the number of steps for p to reach its destination is at
most

2

(
n − 1 −

⌈
dist(p)

2

⌉)
+ dist(p) ≤ 2(n − 1).

Note that there is a well-known (non-greedy) hot-potato
algorithm (see [16]) for many-to-many packet routing on an

arbitrary network which, in the case of trees, also attains an
upper bound of 2(n − 1). For an arbitrary interconnection
network represented by a graph G, construct the directed
graph G′ with node set V (G′) = V (G) and arc set A(G′) ={−→vw,−→wv : vw ∈ E(G)

}
. Every node of G′ has equal in-

degree and out-degree, so G′ has an Eulerian tour (see, for
example, [36]). Route the packets by following the Eulerian
tour, assigning at most one packet to each outgoing arc.
Once a packet reaches its destination it is consumed. The
tour has length 2|E(G)|, so the maximum number of time
steps for a packet to reach its destination is 2|E(G)|. Hence
this algorithm on an n-node tree terminates within 2(n − 1)
time steps.

Consider a many-to-many routing pattern defined on an
arbitrary n-node tree such that for every vertex v the number
of packets originating at v is the degree of v and all packets
are destined for some leaf node s. At most one packet can
be consumed at each step and, since there are 2n−3 packets
not originating at s, at least 2n − 3 steps are needed by
any routing algorithm. Hence the above bound for many-
to-many packet routing on trees is tight (up to the additive
constant).

3. LOWER BOUND FOR AN OBLIVIOUS
ALGORITHM

We now describe a one-to-one packet routing problem on
a tree with n nodes which will provide a lower bound of
2n − o(n) for the number of routing steps. The problem
is described by (a) the tree, (b) the routing pattern and
(c) a conflict resolution strategy.

The tree used in the lower bound proof consists of several
small subtrees which are attached to the nodes of a backbone
(see Figure 4). A routing pattern consists of the specification
of the destination of each packet. For the purposes of the
lower bound proof, for some packets it is only necessary
to specify the subtree that contains their destination nodes,
while, for others, the specification of the precise destination
node is required (packet destinations are indicated by arrows
in Figure 4).

In order to prove a lower bound we need to specify a ‘bad’
conflict resolution strategy that results in long routing times.
Given that in an oblivious algorithm conflicts are resolved in
an arbitrary fashion, the algorithm is then free to choose this
‘bad’ resolution strategy as its way of resolving conflicts.

Proving that the routing will terminate after at least
2n − o(n) steps requires a lot of technical detail. The main
idea is to divide the routing into time-disjoint phases and
to inductively show that at the end of each phase there is a
class of packets that have not passed a certain backbone node
on their trip toward their destination. The detailed proof
consisting of the tree construction, the routing pattern, the
conflict resolution strategy and the analysis of the routing is
given in the subsections that follow.

3.1. The tree construction

The tree Tk (k ≥ 2), illustrated in Figure 4 with nodes
coloured black and white, is defined as follows.
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FIGURE 4. The tree Tk (k ≥ 2) with routing pattern and phases indicated.

• Tk contains a path called the backbone consisting of the
4k − 1 nodes

(uL
k , v

L
k , u

L
k−1, v

L
k−1, . . . , u

L
2 , v

L
2 , u

L
1 ,

v1, u
R
1 , v

R
2 , u

R
2 , v

R
3 , uR

3 , . . . , v
R
k , u

R
k ),

where ‘L’ and ‘R’ refer to the left- and right-hand sides
of the tree, respectively. The ui -nodes are coloured
black, the vi -nodes are coloured white and node v1 is
considered to be the root of the tree.

• For each i, 2 ≤ i ≤ k, Tk contains a set AL
i of 4k black

nodes and black nodes yL
i and wL

i , all adjacent to vL
i ;

and a set AR
i of 4k black nodes and a black node wR

i ,
all adjacent to vR

i .
• For each i, 1 ≤ i ≤ k, Tk contains a set BL

i of 4k2

black nodes each adjacent to a white node bL
i which is

adjacent to uL
i ; and a set BR

i of 4k2 black nodes each
adjacent to a white node bR

i which is adjacent to uR
i .

• For each i, 1 ≤ i ≤ k − 1, Tk contains a black node xL
i

adjacent to bL
i and a black node xR

i adjacent to bR
i .

Clearly the number of nodes in Tk , denoted by nk , is
8k3 + O(k2).

3.2. The routing pattern

We define the routing of packets as follows, as illustrated in
Figure 4 by directed arcs.

• The packets originating in AL
i are destined for the nodes

in AR
i (2 ≤ i ≤ k).

• The packets originating in AR
i are destined for the nodes

in AL
i (2 ≤ i ≤ k).

• The packet originating at yL
i is destined for the node wR

i

(2 ≤ i ≤ k).
• The packet originating at wR

i is destined for the
node xR

i−1 (2 ≤ i ≤ k).
• The packet originating at wL

i is destined for the
node xL

i−1 (2 ≤ i ≤ k).
• The packets originating in BR

i are destined for the
nodes of BL

i−1 (2 ≤ i ≤ k).
• The packets originating in BL

i are destined for the nodes
of BR

i (1 ≤ i ≤ k).

Since there is at most one packet originating and destined
for each node, we have a one-to-one routing pattern.
A packet which originates in some node in BL

i is called at
various times a BL

i -packet, a Bi -packet, a B-packet and an
i-packet, and similarly for packets originating in some BR

i ,
AL

i , AR
i , yL

i , wL
i or wR

i .
We say a BL

i -packet departs when it first advances
past vL

i , an AL
i -packet or a yL

i -packet departs when it
first advances past uL

i−1, a BR
i -packet departs when it first

advances past vR
i and an AR

i -packet departs when it first
advances past uR

i−1. Note that we have defined departure
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nodes for all packets except the wi-packets; these packets
will firstly be blocked behind vi and then will be blocked
behind ui−1. In some sense the wi -packets depart twice.

We say a BL
i -packet arrives when it first advances past uR

i ,
a BR

i -packet arrives when it first advances past uL
i−1, an

AL
i -packet or a yL

i -packet arrives when it first advances
past vR

i and an AR
i -packet arrives when it first advances

past vL
i . Generally speaking, a packet arrives when it first

leaves the backbone after crossing the root. Note that this is
not necessarily the time step when the packet is consumed,
although as we shall prove a packet will always be consumed
shortly after it arrives.

3.3. The conflict resolution strategy

Recall that an oblivious greedy hot-potato algorithm
resolves conflicts arbitrarily. Hence an adversary is free
to substitute any strategies for resolving conflicts and for
deflecting packets to produce a lower bound. The following
scheme is designed so that, in general, those packets
originating at nodes closer to the root (as drawn in Figure 4)
have priority over packets originating at nodes further away.

1. For each i and j , 1 ≤ i < j ≤ k, an i-packet has
priority over a j -packet.

2. For each i, 2 ≤ i ≤ k, amongst the i-packets
the Ai-packets have highest priority, followed in
decreasing order of priority by the yL

i -packet, the
wR

i -packet, the BR
i -packets, the wL

i -packet and the
BL
i -packets.

3. Wherever possible, a deflected packet returns to the
node where it came from in the previous step.

3.4. Analysis

We now establish some introductory results concerning
the behaviour of the above-defined packet routing problem
on Tk .

LEMMA 3.1. For all i, 2 ≤ i ≤ k,

(a) The wL
i -packet cannot advance past vL

i until the
yL
i -packet has advanced past vL

i .
(b) No BL

i -packet can depart until the wL
i -packet has

advanced past vL
i .

Proof. (a) Suppose the yL
i -packet has not advanced

beyond vL
i . Since no packet is destined for yL

i , up to this
point the yL

i -packet will have been deflected back to yL
i in

any conflict at vL
i . Therefore, whenever the wL

i -packet is
at vL

i , the yL
i -packet will be in conflict with it. Since the

yL
i -packet has priority over the wL

i -packet, the wL
i -packet

will not have advanced beyond vL
i .

(b) Suppose the wL
i -packet has not advanced beyond vL

i

(which is the departure-node for BL
i -packets). Since no

packet is destined for wL
i , up to this point the wL

i -packet
will have been deflected back to wL

i in any conflict at vL
i .

Therefore, whenever a BL
i -packet is at vL

i , the wL
i -packet

will be in conflict with it. Since the wL
i -packet has

priority over a BL
i -packet, no BL

i -packet will have advanced
beyond vL

i .

We now prove our main lower bound for the tree Tk .

THEOREM 3.2. A greedy hot-potato routing algorithm
applied to the above routing pattern on the tree Tk , with the
above strategy for resolving conflicts and deflecting packets,
takes at least 2nk − o(nk) routing steps.

Proof. We establish this result by defining phases for the
routing corresponding to the movement of each set of
Bi -packets. Since each Bi has 4k2 nodes and each Ai has
only 4k nodes, the most significant part of the routing is
the time taken to route the B-packets. We then show that
these phases are disjoint. Applying Lemma 2.2, we conclude
that each phase corresponding to the routing of a set of
Bi -packets takes twice as many steps as there are nodes
in Bi . The role of the A-packets is to ‘fill-up’ the backbone
during the transition between phases.

For all j , 1 ≤ j ≤ k, we define phase-(2j − 1) to be the
time frame starting when the first BL

j -packet departs through

to when the last BL
j -packet arrives. For all j , 2 ≤ j ≤ k,

phase-(2j −2) commences when the first BR
j -packet departs

through to when the last BR
j -packet arrives. Phase-i is

indicated by ‘#i’ in Figure 4.
Each phase is further subdivided into time frames, as

illustrated in Figure 5, defined by when the first packet
departs, when the first packet arrives, when the last packet
departs and when the last packet arrives.

We proceed by induction on j = 2, 3, . . . , k with the
following induction hypothesis.

1. Phase-(2j − 3) is completed before the start of phase-
(2j − 2).

2. In phase-(2j −2), the first BR
j -packet arrives before the

yL
j -packet departs.

3. Phase-(2j − 2) is completed before the start of phase-
(2j − 1).

4. In phase-(2j − 1), the first BL
j -packet arrives before the

last AR
j+1-packet departs.

The induction basis. Let j = 2. Consider the left-
hand side of Tk after the first step. For all i ≥ 1,
the BL

i -packets will be at bL
i , and the AL

i+1-packets, the
yL
i+1-packet and the wL

i+1-packet will have moved down to
vL
i+1. The AL

i+1-packets have priority over the yL
i+1-packet

and the wL
i+1-packet, so one of the AL

i+1-packets will
advance in the second step to uL

i , while the remaining
AL

i+1-packets, the yL
i+1-packet and the wL

i+1-packet will
be deflected back to their respective origins. Also at the
second step, one of the BL

i -packets will advance to uL
i

and the remainder will be deflected back to their respective
origins. Hence there is one AL

i+1-packet and one BL
i -packet

in conflict at uL
i after two steps. The BL

i -packet has priority
over the AL

i+1-packet so it will be advanced in the next
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FIGURE 5. The time line for the routing.

step to vL
i and the AL

i+1-packet will be deflected back to
vL
i+1. Hence the BL

1 -packets are free to move across to the
right-hand side two edges apart, while, for all i ≥ 2, the
AL

i -packets are blocked behind uL
i−1, the yL

i -packet and the
wL

i -packet are blocked behind vL
i and the BL

i -packets are
blocked behind vL

i (see Lemma 3.1(b)).

Now, during the first two steps, the movement of packets
in the right-hand side of Tk mirrors the movement of
packets in the left-hand side (except that there are no
BR

1 -packets and no yR-packets). That is, for i ≥ 2, one
AR

i+1-packet and one BR
i -packet will be in conflict at uR

i

after two steps. As was the case on the left-hand side, the
BR
i -packet will be advanced in the next step to vR

i and the
AR

i+1-packet will be deflected back to vR
i+1. Since there are

no BR
1 -packets, the AR

2 -packets will be free to move across
to the left-hand side two edges apart.

After four steps, the leading BL
1 -packet will be at uR

1 and
the leading AR

2 -packet will be at uL
1 . At the same time at

uL
1 , there will also be a BL

1 -packet and an AL
2 -packet. The

BL
1 -packet and the AL

2 -packet both wish to advance to v1,
while the AR

2 -packet wishes to advance to vL
2 . Since the

AR
2 -packet is not in conflict with any other packets it will

advance to vL
2 and, as discussed above, the BL

1 -packet will
advance and the AL

2 -packet will be deflected. Now because
the AR

2 -packet will be advancing to vL
2 , the AL

2 -packet
must be deflected down to bL

1 . In the following step, this
AL

2 -packet will be further deflected down to a BL
1 node (or to

xL
1 ) by an advancing BL

1 -packet and the leading AR
2 -packet

will advance to its destination in AL
2 . This process continues,

so that, for each AR
2 -packet, one AL

2 -packet is deflected down
to BL

1 . (The AL
2 -packets can be thought to be ‘making room’

in AL
2 for the arriving packets.)

Now consider when the last AR
2 -packet departs. The

wR
2 -packet will move to vR

2 where it will no longer be in
conflict with an AR

2 -packet and hence will advance to uR
1 on

the next step. Here it will be in conflict with BL
1 -packets

moving down into BR
1 . Since BL

1 -packets have priority over
the wR

2 -packet, the wR
2 -packet will be deflected back to vR

2 .
Therefore, during phase-1 (that is, while BL

1 -packets move
into BR

1 ) the wR
2 -packet will be blocked at uR

1 until all of the
BL

1 -packets have advanced past uR
1 .

Now consider when the last AR
2 -packet reaches its desti-

nation in AL
2 . Since there is the same number of AR

2 -packets
as AL

2 -packets, all of the AL
2 -packets will have been

deflected down into BL
1 . The yL

2 -packet will be at yL
2 and the

wL
2 -packet will be at wL

2 . In the next step, the yL
2 -packet and

the wL
2 -packet will both advance to vL

2 , where they will be
in conflict. The yL

2 -packet has priority over the wL
2 -packet,

so it will advance to uL
1 and the wL

2 -packet will be deflected
back to BL

2 on the next step. At uL
1 , the yL

2 -packet will be
in conflict with a departing BL

1 -packet. The BL
1 -packet has

priority in this conflict, so the yL
2 -packet will be blocked

behind uL
1 at least for the remainder of phase-1.

We have shown that during phase-1 (that is, while the
BL

1 -packets move across the backbone) all other packets can-
not depart. After the last BL

1 -packet departs, the AL
2 -packets

will be free to depart, followed by the yL
2 -packet. Once

this last BL
1 -packet arrives, thus marking the end of phase-1,

the wR
2 -packet will move to xR

1 and will be consumed, thus
freeing the BR

2 -packets to depart. This initiates the start of
phase-2. Thus induction hypothesis (1) is satisfied for j = 2.

Since there are 4k ≥ 8 packets in AL
2 and the distance

from uL
1 to AR

2 (the destination of AL
2 -packets) is 4, the first

BR
2 -packet to depart will reach uL

1 before the yL
2 -packet

has departed, hence induction hypothesis (2) is satisfied for
j = 2. Once the yL

2 -packet has passed uL
1 , the wL

2 -packet
will still not be able to pass uL

1 as the BR
2 -packets have

priority over the wL
2 -packet in a conflict at uL

1 . Only once
all of the BR

2 -packets have been consumed (that is, the end
of phase-2) will the wL

2 -packet be free to move into xL
1 . The
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packets in BL
2 are now free to move along the backbone

from left to right, thus marking the beginning of phase-3, so
induction hypothesis (3) holds for j = 2.

The AR
3 -packets start to depart once the last BR

2 -packet has
departed. Now the distance from uR

2 to uL
1 (the arrival node

for BR
2 -packets) is 4 ≤ 2k and AR

3 -packets move across the
backbone two edges apart. Hence less than 2k of the packets
from AR

3 will have departed when the last BR
2 -packet arrives

(that is, the end of phase-2). In phase-3, while packets in BL
2

move left-to-right along the backbone, AR
3 -packets continue

to move in the opposite direction. Since there are at least
2k remaining packets in AR

3 , the first packet of BL
2 arrives

(at uR
2 ) before the last AR

3 -packet departs (from uR
2 ) . Hence

induction hypothesis (4) holds for j = 2.

The induction step: We now show that the induction
hypothesis holds for j = i assuming that it holds for
j = i − 1. By induction hypothesis (4) for j = i − 1,
the first BL

j−1-packet arrives before the last AR
j -packet

departs. Hence while BL
j−1-packets move into BR

j−1 (phase-

(2j − 3)), the wR
j -packet is blocked behind uR

j−1 (since the

BL
j−1-packet has higher priority to the wR

j -packet), which

in turn blocks the BR
j -packets from departing (since the

wR
j -packet has higher priority than a BR

j -packet). Once

phase-(2j−3) is completed, the wR
j -packet moves past uR

j−1

and down into xR
j−1 and thus BR

j -packets are free to move
across the backbone. This marks the beginning of phase-
(2j − 2). Hence induction hypothesis (1) holds for j = i.

After the last BL
j−1-packet departs, the AL

j -packets move
across the backbone two edges apart. Since the distance
from vL

j−1 (the departure node for BL
j−1-packets) to uR

j−1

(the arrival node for BL
j−1-packets) is at most 4k and the

AL
j -packets move across the backbone two edges apart,

at most 2k packets from AL
j will have departed when the

last BL
j−1-packet arrives. There are at least another 2k

AL
j -packets which begin to depart while the BR

j -packets
move across the backbone at the start of phase-(2j − 2).
Since the distance from vR

j−1 (the departure node for

BR
j -packets) to uL

j−1 (the arrival node for BR
j -packets) is at

most 4k and the BR
j -packets move across the backbone two

edges apart, when the first BR
j -packet arrives, the yL

j -packet

will not have departed. By Lemma 3.1(a) the yL
j -packet

still blocks the wL
j -packet from advancing past vL

j . Hence
induction hypothesis (2) holds for j = i.

Once the first BR
j -packet arrives and throughout phase-

(2j − 2), the wL
j -packet is still blocked behind uL

j−1 since

the BR
j -packets have priority over the wL

j -packet. After the

last BR
j -packet arrives (that is, the end of phase-(2j − 2)),

the wL
j -packet moves down to its destination in xL

j−1 and

BL
j -packets are free to move across the backbone, thus

beginning phase-(2j − 1). Hence induction hypothesis (3)
holds for j = i.

The AR
j+1-packets start to depart once the last BR

j -packet

has departed. Since the distance from vR
j+1 (the departure

node for AR
j+1-packets) to vL

j+1 (the arrival node for

AR
j+1-packets) is at most 4k and the AR

j+1-packets move
across the backbone two edges apart, at most 2k of the
AR

j+1-packets will have departed when the last BR
j -packet

arrives (that is, the end of phase-(2j − 2)). This initiates
the start of phase-(2j − 1). While packets in BL

j move

left-to-right along the backbone, AR
j+1-packets continue to

move in the opposite direction. Since there are at least 2k
remaining AR

j+1-packets, the first BL
j -packet arrives before

the last AR
j+1-packet departs. Hence induction hypothesis

(4) holds for j = i.
By the induction principle, the induction hypothesis holds

for all j ≤ k. In the phase corresponding to the routing of
say BL

i -packets, by Lemma 2.2, at least twice as many steps
are needed for the BL

i -packets to depart as there are packets
in BL

i . Similarly for a set of BR
i -packets. Hence each phase

takes at least 2(4k2) = 8k2 steps. Since there are 2k − 1
phases, the total number of steps is at least 16k3 − O(k2).
Since the number of nodes nk = 8k3 + O(k2), the total
number of steps is at least 2n − O(k2) = 2nk − o(nk).

COROLLARY 3.3. For every n ≥ n2, there exists a one-to-
one routing pattern on an n-node tree such that an oblivious
greedy hot-potato algorithm requires at least 2n−o(n) steps.

Proof. Given n, choose k such that nk ≤ n < nk+1.
Consider the n-node tree constructed from Tk by appending
a path of n − nk nodes to the end of the backbone.
With the same routing pattern described above for Tk ,
by Theorem 3.2, at least 2nk − o(nk) steps are needed
to complete the routing on this tree. Since n < nk+1 =
8(k + 1)3 + O((k + 1)2) = 8k3 + O(k2) we have n − nk ≤
O(k2) and hence the number of steps required 2nk−o(nk) =
2n − o(n).

Note that the size of the o(n) term in our lower bound
of 2n − o(n) can be reduced by having 4kc nodes in BL

i

and BR
i for some constant c ≥ 2. The number of nodes

is then nk = 8kc+1 + O(k2) and the time taken is at least
16kc+1 = 2nk − O(k2) = 2nk − O((nk)

2/(c+1)). For large
c this lower bound tends to 2nk .

4. LOWER BOUNDS FOR THE
MINIMUM-DISTANCE HEURISTIC

We now prove a lower bound of 2n − o(n) on the
number of routing steps for the minimum-distance heuristic
applied to n-node trees. To do so, we modify the
construction described in the previous section so that
essentially the same routing occurs when conflicts are
resolved using the minimum-distance heuristic. Of course,
a lower bound for the minimum-distance heuristic implies
a lower bound for an oblivious algorithm. We describe
separate lower bounds for ease of presentation.
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FIGURE 6. The tree T ′
k
.

We construct a tree T ′
k from the tree Tk by a local

replacement technique illustrated in Figure 6. In particular,
for each i, 1 ≤ i ≤ k − 1, the edge from bL

i to xL
i is replaced

by a path with 4i − 1 edges and similarly for the right-hand
side. The same routing pattern used in the previous section
is used for T ′

k .

THEOREM 4.1. For sufficiently large n, there exists a
one-to-one routing pattern on an n-node tree, such that the
minimum-distance heuristic requires at least 2n−o(n) steps.

It is convenient to defer the proof of this result until later.
We now establish lower bounds for the number of steps
used by the minimum-distance heuristic applied to trees of
bounded degree. To do so we replace the Ai and Bi sets
of nodes used in the construction of Tk by complete d-ary
trees for some constant d . In particular, we define a tree Td,α

which is parameterized by an even integer d ≥ 2 and odd
integer α ≥ 3. Let k = dα/4. Clearly k ≥ 2 is an integer.
k represents the number of times the basic construction is
repeated along the backbone, as was the case previously.
As shown in Figure 7, Td,α is defined as follows.

• The backbone and the uibi edges are the same as in Tk .
• For each i, 1 ≤ i ≤ k, there is a complete d-ary tree

of height 2α − 1 rooted at bL
i ; the leaves of this tree

are the nodes BL
i . From bL

i to xL
i there is a path with

4i + 2α − 3 edges.
• For each i, 1 ≤ i ≤ k, there is a complete d-ary tree

of height 2α − 1 rooted at bR
i ; the leaves of this tree

are the nodes BR
i . From bR

i to xR
i there is a path with

4i + 2α − 3 edges.
• For each i, 2 ≤ i ≤ k, there is a path with α − 1 edges

from vL
i to a new node aL

i and there is a complete d-ary
tree of height α rooted at aL

i ; the leaves of this tree are
the nodes AL

i . From vL
i there are paths each with 2α−1

edges to wL
i and to yL

i .
• For each i, 2 ≤ i ≤ k, there is a path with α − 1 edges

from vR
i to a new node aR

i and there is a complete d-ary
tree of height α rooted at aR

i ; the leaves of this tree are

the nodes AR
i . From vR

i there is a path with 2α − 1
edges to wR

i .

We define the origin and destination of packets to be the
same as with the tree Tk (and T ′

k). Note that initially packets
are only at the leaves of the complete d-ary subtrees in Td,α.

It is easily seen that the colouring of the nodes shown in
Figure 7 is consistent; in particular, the Ai , Bi , yi , wi and
xi nodes are coloured black.

The number of nodes in the d-ary subtree of height α is

dα+1 − 1

d − 1
= 4dk − 1

d − 1
.

There are dα = 4k leaves in the d-ary subtree of height α.
Hence there are 4k nodes in each Ai , which is the same as in
Tk (and in T ′

k). The number of nodes in the d-ary subtree of
height 2α − 1 is

d2α − 1

d − 1
= (dα)2 − 1

d − 1
= 16k2 − 1

d − 1
.

There are d2α−1 = (dα)2/d = 16k2/d leaves in the d-ary
subtree of height 2α − 1. Hence there are 16k2/d nodes in
each Bi . The number of nodes in Td,α, denoted by nd,α, is

nd,α = 2k

(
16k2 − 1

d − 1

)
+ (2k − 2)

(
4kd − 1

d − 1

)
+ O(k2)

= 32k3

d − 1
+ O

(
dk2

d − 1

)
. (2)

THEOREM 4.2. For every even constant d ≥ 2 and
odd α ≥ 3 the number of steps for the minimum-distance
heuristic to route the above one-to-one routing pattern on
the tree Td,α is at least

2

(
d − 1

d

)
nd,α − o(nd,α).

Proof. Observe that the distances from BL
i to uL

i and from
AL

i+1 to uL
i are both 2α (and similarly on the right-hand

side). Therefore, after 2α steps, the same pattern of conflicts
will be initiated on Td,α as on Tk . We now show that,
for each conflict occurring in the tree Tk , the minimum-
distance heuristic applied to Td,α gives the same priority
as the conflict resolution strategy employed for an oblivious
algorithm applied to Tk .

For each conflict which occurs in Tk , Table 1 shows the
node where the conflict occurs, the node the packets wish
to move to, the destination of the packets involved and
the distances to the respective destinations of the packets.
We order the packets by non-decreasing distance, and,
where the distances are equal, the conflict resolution strategy
employed for an oblivious algorithm on Tk is employed
again. It is easily verified that in each conflict the resulting
priorities correspond precisely to the priorities which
were specified under an oblivious algorithm. Therefore
essentially the same routing of packets will occur on Tk
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FIGURE 7. The tree Td,α .

TABLE 1. Distances to the destinations of packets in conflicts.

Conflict at Move to Packet Destination Distance Priority

uL
i vL

i BL
i BR

i 4i + 2α − 2 First

AL
i+1 AR

i+1 4i + 2α − 2 Second

uL
i

bL
i

BR
i+1 BL

i
2α First (since i ≥ 1)

wL
i+1 xL

i
4i + 2α − 2 Second

uR
i bR

i BL
i BR

i 2α First (since i ≥ 1)

wR
i+1 xR

i 4i + 2α − 2 Second

uR
i

vR
i

BR
i

BL
i−1 4i + 2α − 4 First

AR
i+1 AL

i+1 4i + 2α − 2 Second

vL
i

uL
i−1 AL

i
AR
i

4i + 2α − 5 First

yL
i wR

i 4i + 2α − 5 Second

wL
i xL

i−1 4i + 2α − 5 Third

BL
i BR

i 4i + 2α − 3 Fourth

vR
i uR

i−1 AR
i AL

i 4i + 2α − 5 First

wR
i

xR
i−1 4i + 2α − 5 Second

BR
i

BL
i−1 4i + 2α − 5 Third

under the specified conflict resolution strategy, as on Td,α

with the minimum-distance heuristic. In particular, the
phases, as defined on Tk , will be disjoint.

As in Lemma 2.6 the time taken for each set of Bi -packets
to depart is twice the number of Bi -packets; that is, each
phase takes at least 2(16k2/d) = 32k2/d steps. The number
of phases is 2k − 1, so the total number of routing steps is at

least

(2k − 1)32k2

d
= 64k3

d
− O

(
k2

d

)

=
(
d − 1

d

)(
64k3

d − 1

)
− O

(
k2

d

)
.
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By (2),
64k3

d − 1
= 2nd,α − O

(
dk2

d − 1

)
,

thus the total number of routing steps is at least

d − 1

d

(
2nd,α − O

(
dk2

d − 1

))
− O

(
k2

d

)

= 2

(
d − 1

d

)
nd,α − O(k2).

We now show that k2 = o(nd,α). By (2)

k2

nd,α

<
k2(d − 1)

32k3 <
d

32k
=
(

d

32

)(
4

dα

)
= d1−α

8
,

which tends to zero as α → ∞ (for constant d). Hence
k2 = o(nd,α) and the total number of routing steps is at least

2

(
d − 1

d

)
nd,α − o(nd,α). ✷

Since the maximum degree of Td,α is d + 2, we have the
following result.

COROLLARY 4.3. For all d ≥ 4, there exists an infinite
family of one-to-one packet routing problems on n-node
trees with maximum degree d for which the minimum-
distance heuristic takes at least 2((d − 3)/(d − 2))n −
o(n) steps.

We now show that Theorem 4.1 follows from Theo-
rem 4.2.

Proof of Theorem 4.1. It is easily verified that all distances
on T ′

k are the same as on Td,α with α = 1. Hence Table 1
with α = 1 describes the distances to the destinations of
packets involved in each conflict on T ′

k . Therefore the same
routing of packets will occur on T ′

k with the minimum-
distance heuristic as on Tk under the specified conflict
resolution strategy. In particular, the phases, as defined for
an oblivious algorithm on Tk , will be disjoint. It is easily
seen that the tree T ′

k has 8k3 + O(k2) nodes, so if T ′
k has

n′
k nodes, by Theorem 3.2, at least 2n′

k − o(n′
k) steps are

required to route the specified pattern. For an arbitrary
n ≥ n′

2, as in Corollary 3.3, we choose the maximum k such
that n ≥ n′

k and add a path with n − n′
k nodes to the end

of the backbone of T ′
k . Applying the same argument as in

Corollary 3.3 it follows that the minimum-distance heuristic
requires at least 2n − o(n) steps to route the pattern.

5. CONCLUSION

In this paper we have established a tight bound of 2n− o(n)

for the number of steps required for one-to-one packet
routing on trees using an oblivious hot-potato routing
algorithm and using the minimum-distance heuristic. For
trees of maximum degree d we have shown a lower bound
of 2((d − 3)/(d − 2))n − o(n) using the minimum-distance
heuristic. For the maximum-distance heuristic we have a

lower bound of n and an upper bound of 2(n − 1). It is
an open problem to close this gap in the bounds on the
performance of the maximum-distance heuristic for one-to-
one packet routing on trees.
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