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No-Three-in-Line-in-3D1

Attila Pór2 and David R. Wood3

Abstract. The no-three-in-line problem, introduced by Dudeney in 1917, asks for the maximum number of
points in the n × n grid with no three points collinear. Erdős proved that the answer is �(n). We consider the
analogous problem in three dimensions, and prove that the maximum number of points in the n × n × n grid
with no three collinear is �(n2). This result is generalised by the notion of a 3D drawing of a graph. Here
each vertex is represented by a distinct gridpoint in Z3, such that the line-segment representing each edge does
not intersect any vertex, except for its own endpoints. Note that edges may cross. A 3D drawing of a complete
graph Kn is nothing more than a set of n gridpoints with no three collinear. A slight generalisation of our first
result is that the minimum volume for a 3D drawing of Kn is �(n3/2). This compares favourably with �(n3)

when edges are not allowed to cross. Generalising the construction for Kn , we prove that every k-colourable
graph on n vertices has a 3D drawing withO(n

√
k) volume, which is optimal for the k-partite Turán graph.
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1. Introduction. In 1917 Dudeney [7] asked for the maximum number of points in
the n× n grid with no three points collinear? This question, dubbed the no-three-in-line
problem, has since been widely studied [1], [2], [5], [10]–[17]. A breakthrough came in
1951, when Erdős [10] proved that for every prime p, the set {(x, x2 mod p): 0 ≤ x ≤
p − 1} contains no three collinear points. It follows that the n × n grid contains n/2
points with no three collinear, and for all ε > 0 and n > n(ε), there are (1− ε)n points
with no three collinear. The result has been improved to (3/2 − ε)n by Hall et al. [15]
using a different construction. Ignoring constant factors, these bounds are optimal since
each gridline contains at most two points, and thus the number of points is at most 2n.
Guy and Kelley [14] conjectured that for large n the maximum number of points in the
n × n grid with no three collinear tends to (2π2/3)1/3n, which was recently revised to
πn/
√

3; see [19].
We consider the no-three-in-line-in-3D problem: what is the maximum number of

points in the n× n× n grid with no three points collinear? The following is our primary
result.
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THEOREM 1. The maximum number of points in the n × n × n grid with no three
collinear is �(n2).

Cohen et al. [4] considered a similar three-dimensional generalisation of the no-
three-in-line problem. They proved that for every prime p, no four points in the set
{(x, x2 mod p, x3 mod p): 0 ≤ x ≤ p − 1} are coplanar. It follows that the n × n × n
grid contains at least n/2 and (1− ε)n points with no four coplanar. Note that 3n is an
upper bound since each gridplane contains at most three points.

Cohen et al. [4] were motivated by three-dimensional graph visualisation. Let G be
an (undirected, finite, simple) graph with vertex set V (G) and edge set E(G). A 3D
drawing of G represents each vertex by a distinct point in Z3 (a gridpoint), such that
with each edge represented by the line segment between its endpoints, the only vertices
that an edge intersects are its own endpoints. That is, an edge does not “pass through” a
vertex. The bounding box of a 3D drawing is the minimum axis-aligned box containing
the drawing. If the bounding box has side lengths X −1, Y −1 and Z −1, then we speak
of an X × Y × Z drawing with volume X · Y · Z . That is, the volume of a 3D drawing is
the number of gridpoints in the bounding box. This definition is formulated so that 2D
drawings have positive volume.

Distinct edges in a 3D drawing cross if they intersect at a point other than a common
endpoint. Based on the observation that the endpoints of a pair of crossing edges are
coplanar, Cohen et al. [4] proved that the minimum volume for a crossing-free 3D
drawing of Kn is �(n3). The lower bound follows from the observation that no axis-
perpendicular gridplane can contain five vertices, as otherwise there is a planar K5. Note
that it is possible for four vertices to be in a single gridplane, provided that they are not in
convex position. Subsequent to the work of Cohen et al. [4], crossing-free 3D drawings
have been widely studied; see [4], [6], [8], and [18] for example. This paper initiates the
study of volume bounds for 3D drawings of graphs in which crossings are allowed. The
following simple observation is immediate:

OBSERVATION 1. A set V of n gridpoints in Z3 determines a 3D drawing of Kn if and
only if no three points in V are collinear.

Thus the following result is a slight strengthening of Theorem 1:

THEOREM 2. The minimum volume for a 3D drawing of Kn is �(n3/2).

A k-colouring of a graph G is an assignment of one of k colours to each vertex, so that
adjacent vertices receive distinct colours. The chromatic number χ(G) is the minimum
k such that G is k-colourable. The Turán graph T (n, k) is the n-vertex complete k-
partite graph with �n/k	 or 
n/k� vertices in each colour class. Theorem 2 generalises
as follows:

THEOREM 3. Every k-colourable graph on n vertices has a 3D drawing with O(n
√

k)
volume. Moreover, every 3D drawing of the Turán graph T (n, k) has 
(n

√
k) volume.

Note that 2D drawings of k-colourable graphs were studied by Wood [21], who proved
an O(kn) area bound, which is best possible for the Turán graph.
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The remainder of this paper is organised as follows. In Section 2 we prove the lower
bounds in Theorems 2 and 3, which imply the upper bound in Theorem 1. In Section 3 we
prove the upper bounds in Theorems 2 and 3, which imply the lower bound in Theorem 1.

2. Lower Bounds. An axis-parallel line through a gridpoint is a gridline. A gridline
that is parallel to the X-axis (respectively, Y-axis and Z-axis) is an X-line (Y-line and
Z-line). An axis-perpendicular plane through a gridpoint is a gridplane. A gridplane that
is perpendicular to the X-axis (respectively, Y-axis and Z-axis) is an X-plane (Y-plane
and Z-plane). Let [n] := {1, 2, . . . , n}.

LEMMA 1. There are at most 2n2 points in the n × n × n grid with no three collinear.

PROOF. Every X-line contains at most two points, and there are n2 X-lines.

Lemma 1 can be generalised to give a universal lower bound on the volume of a 3D
drawing.

LEMMA 2. Every 3D drawing of a graph G has at least χ(G)3/2/
√

8 volume.

PROOF. Say G has an A × B × C drawing. The vertices on a single Z-line induce a
set of paths, as otherwise an edge passes through a vertex. The paths are 2-colourable.
Using a distinct pair of colours for each Z-line, we obtain a 2AB-colouring of G. Thus
χ(G) ≤ 2AB. Similarly, χ(G) ≤ 2AC and χ(G) ≤ 2BC . Thus 8(ABC)2 ≥ χ(G)3,
and the volume ABC ≥

√
χ(G)3/8.

LEMMA 3. Let S be a nonempty set of gridpoints. Let x (respectively, y and z) be the
number of X-lines (Y-lines and Z-lines) that contain a point in S. Then xyz ≥ |S|2.

PROOF. Number the Z-planes that contain a point in S by 1, 2, . . . , �. For each i ∈ [�],
let zi be the number of points in S that are in the i th Z-plane, and let xi (respectively,
yi ) be the number of X-lines (Y-lines) in the i th Z-plane that contain a point in S. Thus
x = ∑

i xi and y = ∑
i yi . Observe that zi ≤ xi yi . Let z∗ := max{z1, . . . , z�}. By

Lemma 10 in the Appendix, xyz∗ ≥ |S|2. Since each point in a fixed Z-plane defines a
distinct Z-line, z ≥ z∗. Thus xyz ≥ |S|2.

Note that the bound in Lemma 3 is tight when S is contained in a single gridline.
The following lemma proves the lower bound in Theorem 3.

LEMMA 4. For all n ≡ 0 (mod k), every 3D drawing of T (n, k) has at least n
√

k/8
volume.

PROOF. Consider an A× B×C drawing of T (n, k). Let αi (respectively, βi and γi ) be
the number of X-lines (respectively, Y-lines and Z-lines) that contain a vertex coloured
i . There are at most two distinct colours represented in each gridline, as otherwise an
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edge passes through a vertex. There are BC distinct X-lines, and at most αi X-lines
that contain a vertex coloured i . Thus

∑
i αi ≤ 2BC . Similarly

∑
i βi ≤ 2AC and∑

i γi ≤ 2AB. There are n/k vertices coloured i . Thus αiβiγi ≥ n2/k2 by Lemma 3.
By Lemma 11 in the Appendix,

(
k

(
n2

k2

)1/3
)3

≤
(∑

i

(αiβiγi )
1/3

)3

≤
(∑

i

αi

)(∑
i

βi

)(∑
i

γi

)

≤ (2BC)(2AC)(2AB).

That is, n2k ≤ 8(ABC)2, which implies that the volume ABC ≥ n
√

k/8.

Since χ(Kn) = n and Kn = T (n, n), Lemmata 2 and 4 both prove the lower bound
in Theorem 2: every 3D drawing of Kn has volume at least n3/2/

√
8.

3. Upper Bounds. The next lemma is the key idea in our upper bounds. For every
prime p, define

Vp := {(x, y, (x2 + y2) mod p): 0 ≤ x, y ≤ p − 1}.

LEMMA 5. The set Vp (p prime) contains three collinear points if and only if p ≡ 1
(mod 4).

PROOF. The result is trivial for p = 2. Now assume that p is odd. Suppose that Vp

contains three collinear points a, b and c. Then there exists a vector �v = (vx , vy, vz)

such that b = k�v + a and c = ��v + a, for distinct nonzero integers k and �. (Precisely,
vx = gcd(bx −ax , cx −ax ), vy = gcd(by−ay, cy−ay) and vz = gcd(bz−az, cz−az).)
Since b ∈ Vp,

(kvx + ax )
2 + (kvy + ay)

2 ≡ kvz + az (mod p).

That is, k2(v2
x + v2

y)+ a2
x + a2

y ≡ kvz + az − 2k(vx ax + vyay) (mod p). Since a ∈ Vp,
we have a2

x + a2
y ≡ az (mod p). Since p is a prime and k �= 0,

k(v2
x + v2

y) ≡ vz − 2(vx ax + vyay) (mod p).

By symmetry, �(v2
x + v2

y) ≡ vz − 2(vx ax + vyay) (mod p). Thus,

k(v2
x + v2

y) ≡ �(v2
x + v2

y) (mod p).

That is, (k − �)(v2
x + v2

y) ≡ 0 (mod p). Since k �= � and p is a prime, v2
x + v2

y ≡ 0
(mod p). Now vx and vy are both not zero, as otherwise a, b and c would be in a single
Z-line. Without loss of generality, vx �= 0. Thus vx has a multiplicative inverse modulo
p, and (vyv

−1
x )2 ≡ −1 (mod p). That is, −1 is a quadratic residue. A classical result

states that−1 is a quadratic residue modulo an odd prime p if and only if p ≡ 1 (mod 4).
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Now we prove the converse. Suppose that p ≡ 1 (mod 4). By the above-mentioned
result there is an integer t such that 1 + t2 ≡ 0 (mod p). We can assume that 0 ≤ t ≤
(p− 1)/2 as otherwise p− t would do. Thus (1, t, 0) ∈ Vp and (2, 2t, 0) ∈ Vp, and the
three points {(0, 0, 0), (1, t, 0), (2, 2t, 0)} are collinear.

To apply Lemma 5 we need primes p �≡ 1 (mod 4).

LEMMA 6 [3], [9].

(a) For all t ∈ N, there is a prime p �≡ 1 (mod 4) with t ≤ p ≤ 2t .
(b) For all ε > 0 and t > t (ε), there is a prime p ≡ 3 (mod 4) with t ≤ p ≤ (1+ ε)t .

PROOF. Part (a) is a strengthening of Bertrand’s Postulate due to Erdős [9]. Baker et al.
[3] proved that for all sufficiently large t , the interval [t, t + t0.525] contains a prime. The
proof can be modified to give primes ≡ 3 (mod 4) in the same interval [Glyn Harman,
personal communication, 2004]. Clearly this implies (b).

We can now prove the upper bound in Theorem 2.

LEMMA 7. Every complete graph Kn has a 3D drawing with at most (2 + o(1))n3/2

volume, and for all ε > 0 and n > n(ε), Kn has a 3D drawing with at most (1+ ε)n3/2

volume.

PROOF. By Lemma 6 with t = �√n	, there is a prime p �≡ 1 (mod 4) with �√n	 ≤
p ≤ 2�√n	 and p ≤ (1+ ε)�√n	. By Observation 1 and Lemma 5, the set Vp defines a
p×p×p drawing of Kp2 . By choosing the appropriate vertices, we obtain a �n/p	×p×p
drawing of Kn . The volume is at most (2+ o(1))n3/2 and (1+ ε)n3/2.

The same proof gives the lower bound in Theorem 1.

LEMMA 8. The n × n × n grid contains at least n2/4 points with no three collinear.
For all ε > 0 and n > n(ε), the n × n × n grid contains at least (1− ε)n2 points with
no three collinear.

Lemma 7 generalises to give the following construction of a 3D drawing of T (n, k).

LEMMA 9. Every Turán graph T (n, k) has a 3D drawing with at most (2+ o(1))n
√

k
volume. For all ε > 0 and k > k(ε), T (n, k) has a 3D drawing with at most (1+ ε)n√k
volume.

PROOF. Index the colour classes {(x, y): 0 ≤ x, y ≤ �√k	 − 1}. By Lemma 6, there
is a prime p �≡ 1 (mod 4) with �√k	 ≤ p ≤ 2�√k	 and p ≤ (1 + ε)�√k	. For each
i ∈ [�n/k	], position the i th vertex in colour class (x, y) at (x, y, i p+ (x2+y2) mod p).

Each colour class occupies its own Z-line. Thus, if an edge passes through a vertex,
then three vertices from distinct colour classes are collinear. Observe that for every vertex
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at (ax , ay, az), we have a2
x + a2

y ≡ az (mod p). Thus the same argument from Lemma 5
applies here, and no three vertices from distinct colour classes are collinear. Thus no
edge passes through a vertex, and we obtain a 3D drawing of T (n, k). The bounding box
is �√k	×�√k	× p�n/k	. The volume is (1+o(1))np, which is at most (2+o(1))n

√
k

and (1+ ε)n√k.

Pach et al. [18] proved that every k-colourable graph on n vertices is a subgraph of
T (2n + 2k, 2k − 1). Thus Lemma 9 implies the upper bound in Theorem 3.

COROLLARY 1. Every k-colourable graph on n vertices has a 3D drawing with (4
√

2+
o(1))n

√
k volume. For all ε > 0 and k > k(ε), every k-colourable graph on n vertices

has a 3D drawing with (2
√

2+ ε)n√k volume.

4. Open Problems

OPEN PROBLEM 1. Does every k-colourable graph have a crossing-free 3D drawing
withO(kn2) volume? The best known upper bound isO(k2n2) due to Pach et al. [18]. A
O(kn2) bound would match the�(n3) bound for the minimum volume of a crossing-free
3D drawing of Kn .

OPEN PROBLEM 2. What is vol(n, d, �)? For � ∈ [d − 1], let vol(n, d, �) be the min-
imum bounding box volume for n points in Zd , such that no � + 2 points are in any
�-dimensional subspace. The box can be partitioned into vol(n, d, �)(d−�)/d subspaces
of dimension � (each with at most � + 1 vertices). Thus n ≤ (� + 1)vol(n, d, �)(d−�)/d

and

vol(n, d, �) ≥
(

n

�+ 1

)d/(d−�)
.(1)

Consider the case of vol(n, d, d − 1). Erdős [10] and Cohen et al. [4] proved that
vol(n, 2, 1) ∈ �(n2) and vol(n, 3, 2) ∈ �(n3), respectively. Let V = {(x, x2 mod
p, . . . , xd mod p): 0 ≤ x ≤ n − 1}, where p is a prime with n − 1 ≤ p ≤ 2n. The

proofs of Erdős [10] and Cohen et al. [4] generalise to show that V contains no d + 1
points in any (d − 1)-dimensional subspace. Thus vol(n, d, d − 1) ≤ 2d−1nd . By (1),
vol(n, d, d − 1) ∈ �(nd) for constant d.

OPEN PROBLEM 3. What is vol(n, d, 1)? Erdős [10] proved that vol(n, 2, 1) ∈ �(n2).
Theorem 2 proves that vol(n, 3, 1) ∈ �(n3/2). This problem is unsolved for all constant
d ≥ 4. If d ≥ log2 n then trivially vol(n, d, 1) ∈ �(n): just place the vertices at
{(x1, . . . , xd): xi ∈ {0, 1}}.

OPEN PROBLEM 4. What is vol(n, d, 2)? This case is interesting as it relates to crossing-
free drawings. Cohen et al. [4] proved vol(n, 3, 2) ∈ �(n3). Wood [20] proved that Kn

has a 2× 2× · · · × 2 crossing-free d-dimensional drawing for d = 2 log n+O(1); thus
vol(n, d, 2) ∈ O(n2). What is the minimum volume of a crossing-free drawing of Kn

irrespective of dimension?
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Appendix. Useful Inequalities

LEMMA 10. Let {xi , yi , zi : i ∈ [�]} be a set of positive real numbers such that xi yi ≥ zi

for all i ∈ [�]. Let z∗ := max{z1, . . . , z�}. Then

(∑
i

xi

)(∑
i

yi

)
≥
(∑

i

zi

)2

/z∗.

PROOF. By decreasing xi or yi we can assume that xi yi= zi for all i . Thus (xi yj )(xj yi )=
zi zj for all i, j . Hence xi yj + xj yi ≥ 2

√
zi zj . Therefore

(∑
i

xi

)(∑
i

yi

)
=
(∑

i

xi yi +
∑
i< j

(
xi yj + xj yi

)) ≥
(∑

i

zi +
∑
i< j

2
√

zi zj

)
.

Now z∗ ≥ zi for all i . Thus(∑
i

xi

)(∑
i

yi

)
z∗ ≥

∑
i

zi z∗ +
∑
i< j

2
√

zi zj z∗ ≥
∑

i

z2
i +

∑
i< j

2zi zj =
(∑

i

zi

)2

,

as claimed.

LEMMA 11. For all positive real numbers αi , βi , γi ,(∑
i

(αiβiγi )
1/3

)3

≤
(∑

i

αi

)(∑
i

βi

)(∑
i

γi

)
.

PROOF. Hölder’s inequality states that if p > 1 and 1/p + 1/q = 1, then

∑
i

xi yi ≤
(∑

i

x p
i

)1/p(∑
i

yq
i

)1/q

.(2)

Apply (2), first with p = 3
2 and q = 3, then with p = q = 2. We have

∑
i

(xi yi )zi ≤
(∑

i

(xi yi )
3/2

)2/3(∑
i

z3
i

)1/3

=
(∑

i

x3/2
i y3/2

i

)2/3(∑
i

z3
i

)1/3

≤
(∑

i

x3
i

)1/3(∑
i

y3
i

)1/3(∑
i

z3
i

)1/3

.

The result follows by substituting αi = x3
i , βi = y3

i and γi = z3
i .
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