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Let F be a family of connected bipartite graphs, each with at least three vertices. A proper
vertex colouring of a graph G with no bichromatic subgraph in F is F-free. The F-free
chromatic number χ(G,F) of a graph G is the minimum number of colours in an F-free
colouring of G. For appropriate choices of F , several well-known types of colourings fit into
this framework, including acyclic colourings, star colourings, and distance-2 colourings.
This paper studies F-free colourings of the cartesian product of graphs.

Let H be the cartesian product of the graphs G1,G2, . . . ,Gd. Our main result estab-
lishes an upper bound on the F-free chromatic number of H in terms of the maximum
F-free chromatic number of the Gi and the following number-theoretic concept. A set S
of natural numbers is k-multiplicative Sidon if ax = by implies a = b and x = y whenever
x,y∈S and 1≤a,b≤k. Suppose that χ(Gi,F)≤k and S is a k-multiplicative Sidon set of
cardinality d. We prove that χ(H,F)≤ 1+2k ·maxS. We then prove that the maximum
density of a k-multiplicative Sidon set is Θ(1/ logk). It follows that χ(H,F)≤O(dk logk).
We illustrate the method with numerous examples, some of which generalise or improve
upon existing results in the literature.

1. Introduction

Sabidussi [24] proved that the chromatic number of the cartesian product
of a set of graphs equals the maximum chromatic number of a graph in the
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set. No such result is known for more restrictive colourings (such as acyclic,
star, and distance-2 colourings). This paper investigates such colourings of
cartesian products under a general model of restriction, in which arbitrary
bichromatic subgraphs are excluded. Our study leads to a number-theoretic
problem regarding multiplicative Sidon sets that is of independent interest.
This problem is then solved using a combination of number-theoretic and
graph-theoretic approaches.

Let G be a graph with vertex set V (G) and edge set E(G). (All graphs
considered are undirected, simple, and finite.) A colouring of G is a function
c : V (G)→Z such that c(v) �= c(w) for every edge vw∈E(G). A colouring c
with |{c(v) : v ∈ V (G)}| ≤ k is a k-colouring. The chromatic number of G,
χ(G), is the minimum integer k for which there is a k-colouring of G.

Let F be a family of connected bipartite graphs, each with at least three
vertices, called a forbidden family. A colouring c of a graph G is F-free if
it contains no bichromatic subgraph in F ; that is, |{c(v) : v ∈ V (H)}| ≥ 3
for every subgraph H of G that is isomorphic to a graph in F . The F-free
chromatic number of G, denoted by χ(G,F), is the minimum integer k for
which there is an F-free k-colouring of G. When F = {H} is a singleton,
we write H-free instead of F-free, and refer to the H-free chromatic num-
ber χ(G,H). The framework was introduced by Albertson et al. [2]; an even
more general model of restrictive graph colourings is considered by Nešeťril
and Ossona de Mendez [18].

F-free colourings correspond to many well-studied types of colourings.
Let Pn and Cn respectively be the path and cycle on n vertices. Let
C := {Cn : n even}. Then C-free colourings are the acyclic colourings [4,5,
10,31]. Here each bichromatic subgraph is a forest. By a further restric-
tion we obtain the P4-free colourings, which are called star colourings, since
each bichromatic subgraph is a collection of disjoint stars [2,4,11,17,31].
A colouring is P3-free if and only if every pair of vertices at distance at
most two receive distinct colours (called a distance-2 colouring). That is,
χ(G,P3) = χ(G2). Here Gk is the k-th power of G, the graph with vertex
set V (G), where two vertices are adjacent in Gk whenever they are at dis-
tance at most k in G. Often motivated by applications in frequency assign-
ment, colourings of graph powers has recently attracted much attention [1,
16]. By definition,

χ(G) ≤ χ(G, C) ≤ χ(G,P4) ≤ χ(G,P3) .

The cartesian product of graphs G1, . . . ,Gd, denoted by G̃=G1 �G2 � · · ·
�Gd, is the graph with vertex set

V (G̃) = {ṽ : ṽ = (v1, v2, . . . , vd), vi ∈ V (Gi), i ∈ [d]} ,
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where ṽw̃∈E(G̃) if and only if viwi ∈E(Gi) for some i, and vj =wj for all
j �= i; we say that the edge ṽw̃ is in dimension i. Sabidussi [24] proved that

χ(G1 � G2 � · · · �Gd) = max{χ(Gi) : 1 ≤ i ≤ d} .

This paper studies F-free colourings of cartesian products. The following
upper bound on the F-free chromatic number of a cartesian product is
our main result. Here and throughout the paper, γ = 0.5772 . . . is Euler’s
constant, and logarithms are base e=2.718 . . . unless stated otherwise.

Theorem 1. Let F be a forbidden family. Let G1,G2, . . . ,Gd be graphs,
each with F-free chromatic number χ(Gi,F)≤k+1. Then

χ(G1 � G2 � · · · � Gd,F) ≤ 2k(kd − k + 1) + 1 .

Moreover, for all ε>0 and for large d>d(k,ε),

χ(G1 � G2 � · · · � Gd,F) ≤ 1 +
2eγ

1 − ε
dk log k .

We actually prove a stronger result than Theorem 1 that is expressed in
terms of ‘chromatic span’. This concept is introduced in Section 2. The key
lemma of the paper, which relates F-free colourings of a cartesian product
to so-called k-multiplicative Sidon sets, is proved in Section 3. In Section 4
we study k-multiplicative Sidon sets in their own right. Our main colouring
results follow.

The remaining sections contain numerous examples of the method, some
of which generalise or improve upon existing results in the literature. In par-
ticular, we consider distance-2 colourings in Section 5, acyclic colourings in
Section 6, and star colourings in Section 7. The most prominent illustration
of our method is Example 4, which proves that every d-dimensional toroidal
grid graph has a distance-2 colouring with O(d) colours. The best previous
comparable bound was O(d2) for the weaker notion of star colouring.

For p ∈ N, an L(p,1)-labelling of a graph G is a P3-free colouring of G
with the additional property that the colours given to adjacent vertices differ
by at least p. Such colourings arise in frequency assignment problems. It is
easily seen that our results generalise to this setting. See reference [21] for
these and other details.

2. Chromatic Span

Let c be a colouring of a graph G. The span of c is max{|c(v)−c(w)| : vw∈
E(G)}. (The number of colours is irrelevant.) The chromatic span of G,
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denoted by Λ(G), is the minimum integer k for which there is a colouring
of G with span k. Note that Λ(G)≤k if and only if there is a homomorphism
from G into P k

n for some n.
Let [a,b] := [a,a+ 1, . . . , b] and [b] := [1, b] for all integers a ≤ b. We can

assume that the range of a k-colouring is [k]. Thus Λ(G) ≤ χ(G)− 1 for
every graph G. Conversely, given a colouring c of G with span k, let c′(v) :=
c(v) mod (k+1) for each vertex v∈V (G). Then c′ is a (k+1)-colouring of G.
Thus Λ(G)=χ(G)−1. This might suggest that chromatic span is pointless.
Let the F-free chromatic span of a graph G, denoted by Λ(G,F), be the
minimum integer k for which there is an F-free colouring of G with span k.
Obviously Λ(G,F) ≤ χ(G,F)− 1. Conversely, given an F-free colouring c
of G with span k := Λ(G,F), let c′(v) := c(v) mod (2k+1) for each vertex
v ∈ V (G). It follows that each bichromatic subgraph of c′ is the union of
disjoint bichromatic subgraphs of c. Thus c′ is F-free and

(1) Λ(G,F) + 1 ≤ χ(G,F) ≤ 2 · Λ(G,F) + 1 .

This upper bound cannot be improved in general, since it is easily seen that
Λ(P k

n ,P3)=k but χ(P k
n ,P3)=2k+1. Thus chromatic span is of interest when

considering F-free colourings. We prove the following result, which with (1),
implies Theorem 1.

Theorem 2. Let F be a forbidden family. Let G1,G2, . . . ,Gd be graphs,
each with F-free chromatic span Λ(Gi,F)≤k (which is implied if χ(Gi,F)≤
k+1). Then

Λ(G1 �G2 � · · · � Gd,F) ≤ k(kd − k + 1) , and

χ(G1 �G2 � · · · � Gd,F) ≤ 2k(kd − k + 1) + 1 .

Moreover, for all ε>0 and for large d>d(k,ε),

Λ(G1 � G2 � · · · �Gd,F) ≤ eγ

1 − ε
dk log k , and

χ(G1 � G2 � · · · �Gd,F) ≤ 1 +
2eγ

1 − ε
dk log k .

3. The Key Lemma

Our results depend upon the following number-theoretic concept (where
N :={1,2, . . .} and N0 :=N∪{0}).
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Definition 1. Let k ∈ N. A set A ⊆ N is k-multiplicative Sidon1 if for all
x,y ∈ A and for all a,b ∈ [k], we have ax = by implies a = b and x = y. For
brevity we write k-multiplicative rather than k-multiplicative Sidon.

Lemma 1. Let F be a forbidden family. Let G1,G2, . . . ,Gd be graphs, each
with F-free chromatic span Λ(Gi,F)≤k (which is implied if χ(Gi,F)≤k+1).
Let S :={s1,s2, . . . ,sd} be a k-multiplicative set. Then

Λ(G1 � G2 � · · · � Gd,F) ≤ k · max S .

Proof. Let G̃ := G1 �G2 � · · · �Gd. For each i ∈ [d], let ci be an F-free
colouring of Gi with span k. For each vertex ṽ∈V (G̃), let

c(ṽ) :=
∑

i∈[d]

si · ci(vi) .

For every edge ṽw̃∈E(G̃) in dimension i,

(2) c(w̃)−c(ṽ) =
( ∑

j∈[d]

sj ·cj(wj)
)
−

( ∑

j∈[d]

sj ·cj(vj)
)

= si

(
ci(wi)−ci(vi)

)
.

Since 1 ≤ |ci(wi)− ci(vi)| ≤ k and si ≥ 1, c is a colouring of G̃ with span
k ·maxS.

Suppose, for the sake of contradiction, that c is not F-free. That is, there
is a bichromatic subgraph H of G̃ that is isomorphic to some graph in F .
First suppose that all the edges of H have the same dimension i. By (2),
and since H is connected, the edges {viwi : ṽw̃∈E(H)} induce a bichromatic
subgraph of Gi that is isomorphic to a graph in F , which is a contradiction.
Thus not all the edges of H are in the same dimension. Since H is connected
and has at least three vertices, H has two edges ṽx̃ and w̃x̃ with a common
endpoint that are in distinct dimensions. Say ṽx̃ is in dimension i and w̃x̃ is
in dimension j �= i. Since H is bichromatic, c(ṽ)−c(x̃)=c(w̃)−c(x̃). By (2),

si

(
ci(vi) − ci(xi)

)
= sj

(
cj(wj) − cj(xj)

)
.

Since ci has span k, we have 1≤|ci(vi)−ci(xi)|≤k and 1≤|cj(wj)−cj(xj)|≤k,
which implies that S is not k-multiplicative. This contradiction proves that
c is an F-free colouring of G̃.

1 Erdős [6–8] defined a set A⊆N to be multiplicative Sidon if ab=cd implies {a,b}={c,d}
for all a,b,c,d∈A; see [22,23,25]. Additive Sidon sets have been more widely studied; see
the classical papers [9,26,27] and the recent survey by O’Bryant [19].
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4. k-Multiplicative Sidon Sets

Motivated by Lemma 1, in this section we study k-multiplicative sets. We
measure the ‘size’ of a k-multiplicative set by its density. The density of
A⊆N is

δ(A) := lim
n→∞

|A ∩ [n]|
n

if the limit exists (otherwise the density is undefined). We say A⊆N is p-
periodic if x∈A if and only if x+p∈A for all x∈N. Observe that if A is
p-periodic then

(3) δ(A) =
|A ∩ [p]|

p
.

The following theorem is our main result regarding k-multiplicative sets.

Theorem 3. For all k∈N, the maximum density of a k-multiplicative set
is

Θ

(
1

log k

)
.

The lower and upper bounds in Theorem 3 are proved in Theorems 4
and 5, respectively. Fix k∈N. Let Pk :={p1,p2, . . . ,p�} be the set of primes
in [k]. Let

Πk :=
∏

i∈[�]

pi .

Every x∈N can be uniquely represented as

x = β∗(x)
∏

i∈[�]

p
βi(x)
i ,

where βi(x) ∈ N0 and β∗(x) is not divisible by pi for all i ∈ [	]. That is,
gcd(β∗(x),Πk) = 1. Let β(x) be the vector (β1(x),β2(x), . . . ,β�(x)) ∈ N

�
0.

Clearly, for all x,y∈N,

(4) β(x · y) = β(x) + β(y) and β∗(x · y) = β∗(x) · β∗(y) .

Observe that if ax=by for some a,b∈ [k], then β∗(a)=β∗(b)=1 and by (4),

(5) β∗(x) = β∗(y) .
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Theorem 4. For all k ∈ N, the set Sk := {s ∈ N : gcd(s,Πk) = 1} is k-
multiplicative and has density

δ(Sk) =
∏

i∈[�]

(
1 − 1

pi

)
∼ e−γ

log k
.

Proof. Suppose that ax= by for some a,b∈ [k] and x,y∈Sk. Thus β∗(x)=
β∗(y) by (5). Since gcd(x,Πk)=gcd(y,Πk)=1, we have βi(x)=βi(y)=0 for
all i∈ [	]. Hence x= y, which implies that a= b, and Sk is k-multiplicative.
Now we compute the density of Sk. Let ϕ be Euler’s totient function, ϕ(x) :=
|{y ∈ [x] : gcd(x,y) = 1}|. If q1,q2, . . . ,qr are the prime factors of x (with
repetition), then

ϕ(x) = x
∏

i∈[r]

(
1 − 1

qi

)
.

Observe that Sk is Πk-periodic. By (3),

δ(Sk) =
|Sk ∩ [Πk]|

Πk
=

ϕ(Πk)
Πk

=
∏

i∈[�]

(
1 − 1

pi

)
.

By Mertens’ Theorem (see [12]), δ(Sk)∼e−γ/ logk.

The following corollary is a straightforward consequence of Theorem 4.

Corollary 1. For all k∈N, ε>0, and sufficiently large n>n(k,ε),

(1 − ε)n
eγ log k

≤ |Sk ∩ [n]| ≤ (1 + ε)n
eγ log k

.

We can now prove Theorem 2.

Proof of Theorem 2. Observe that R := {ik + 1: i ∈ [0,d − 1]} is k-
multiplicative. Using R as a k-multiplicative set in Lemma 1, we have
Λ(G1 �G2 � · · · �Gd,F) ≤ k(dk − k + 1). This proves the first part of the
theorem. Let n be the minimum integer such that |Sk ∩ [n]| ≥ d. By Corol-
lary 1, for d>d(k,ε),

max{Sk ∩ [n]} ≤ n ≤ eγ

1 − ε
d log k .

Using Sk∩ [n] as a k-multiplicative set in Lemma 1, we have

Λ(G1 � G2 � · · · � Gd,F) ≤ eγ

1 − ε
dk log k .

The final claim in Theorem 2 follows from (1).
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4.1. Proof of Optimality

We now prove that the lower bound in Theorem 4 is asymptotically optimal,
which in turn completes the proof of Theorem 3.

Theorem 5. For all k ∈ N, ε > 0, and sufficiently large n > n(k,ε), every
k-multiplicative set A⊆ [n] satisfies

|A| ≤ (2 + ε)n
eγ log k

+
2n
4
√

k
= (2 + o(1))|Sk ∩ [n]| =

(2 + o(1))n
eγ log k

.

To prove Theorem 5, we model k-multiplicative sets using graphs. Let
Gn,k be the graph with vertex set V (Gn,k) :=[n], where xy∈E(Gn,k) when-
ever ax=by for some a,b∈ [k]. Observe that a set A⊆ [n] is k-multiplicative
if and only if A is an independent set of Gn,k. For each s∈Sk∩[n], let Gn,k,s

be the subgraph of Gn,k induced by Xn,k,s :={x∈ [n] : β∗(x)=s}.

Lemma 2. The connected components of Gn,k are {Gn,k,s : s∈Sk∩ [n]}.

Proof. If xy ∈ E(Gn,k), then β∗(x) = β∗(y) by (5), which implies that
x,y∈Xn,k,s for some s∈Sk∩[n]. Thus distinct sets Xn,k,s and Xn,k,t are not
joined by an edge of Gn,k. It remains to prove that each subgraph Gn,k,s is
connected. For each pair of vertices x,y∈Xn,k,s, let

f(x, y) :=
∑

i∈[�]

|βi(x) − βi(y)| .

We claim that x and y are connected by a path of f(x,y) edges in Gn,k,s.
The proof is by induction on f(x,y). If f(x,y)=0 then x=y (since β∗(x)=
β∗(y) = s) and we are done. Say f(x,y) > 0. Without loss of generality,
βi(x) < βi(y) for some i. Let z := pix. Then z ∈ Xn,k,s and xz is an edge
of Gn,k,s. Moreover, βi(z)=βi(x)+1, which implies that f(z,y)=f(x,y)−1.
By induction, there is a path of f(z,y) edges from z to y. Thus there is a
path of f(z,y)+1=f(x,y) edges from x to y.

Lemma 3. Let Gn,k,s be a connected component of Gn,k with r vertices.
Then the min{k,r} smallest elements of Xn,k,s are {s,2s,3s, . . . ,min{k,r}·s},
and they form a clique of Gn,k,s.

Proof. Every element of Xn,k,s is a multiple of s and is at least s. Now
is ∈ Xn,k,s for each i ∈ [min{k,r}]. Thus the min{k,r} smallest elements
of Xn,k,s are {s,2s,3s, . . . ,min{k,r}·s}, which clearly form a clique of Gn,k,s.

For all x∈ [n], let Nk(x) be the closed neighbourhood of x in Gn,k. That
is, y∈Nk(x) if and only if y∈ [n] and ay=bx for some a,b∈ [k].
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Lemma 4. Let Gn,k,s be a connected component of Gn,k with at least k

vertices. Then |Nk(x)|≥�
√

k� for every x∈Xn,k,s.

Proof. By Lemma 3, the k smallest elements of Xn,k,s are {s,2s,3s, . . . ,ks},
and they form a clique of Gn,k,s. In particular, ks≤n.

Case (a). x ≤
√

ks: For each a ∈ [�
√

k�], we have ax ≤ ks ≤ n. Thus
ax∈Nk(x) and |Nk(x)|≥�

√
k�.

Case (b). x >
√

ks: First suppose that there is a prime p that divides
x and

√
k ≤ p ≤ k. Then ax

p ∈ [x] for each a ∈ [p]. Thus ax
p ∈ Nk(x) and

|Nk(x)| ≥ p≥
√

k. Now suppose that there is no prime divisor p of x with√
k≤p≤k. Let p1≤p2≤·· ·≤pt be the prime factors of x with duplication.

Since x>
√

k, for some 	∈ [t], the integer q :=
∏

i∈[�] pi divides x and
√

k≤
q≤k. Thus ax

q ∈ [x] for each a∈ [q]. Thus ax
q ∈Nk(x) and |Nk(x)|≥q≥

√
k.

Proof of Theorem 5. Let k′ := �
√

k� and k′′ := �
√

k′�. Note that k′′ ≥ 1
and k′′> 4

√
k/2. We proceed by studying the size of A within each connected

component of the graph Gn,k′ . That is, we consider A as the union of the
disjoint sets {A∩Xn,k′,s : s∈Sk′∩ [n]}.

First consider s ∈ Sk′ ∩ [n] for which |Xn,k′,s| ≤ k′. By Lemma 3, Xn,k′,s

is a clique of Gn,k′ . Since A is k-multiplicative, A is k′-multiplicative, and
A is an independent set of Gn,k′ . Thus |A∩Xn,k′,s|≤1. The set Sk′∩ [n] has
exactly one element in Xn,k′,s. Thus

∣∣⋃{A∩Xn,k′,s : s∈Sk′ ∩ [n], |Xn,k′,s| ≤
k′}

∣∣≤|Sk′ ∩ [n]|. By Corollary 1,

(6)
∣∣∣
⋃

{A ∩ Xn,k′,s : s ∈ Sk′ ∩ [n], |Xn,k′,s| ≤ k′}
∣∣∣ ≤

(1 + ε)n
eγ log k′ ≤

(2 + ε)n
eγ log k

.

Now consider s∈Sk′∩ [n] for which |Xn,k′,s|>k′. We claim that Nk′(x)∩
Nk′(y) = ∅ for distinct x,y ∈ A. Suppose that z ∈ Nk′(x)∩Nk′(y) for some
x,y ∈ A. Then a1x = b1z and a2y = b2z for some a1,a2, b1, b2 ∈ [k′]. Thus
z = a1x/b1 = a2y/b2 and (a1b2)x = (a2b1)y. Since a1b2,a2b1 ∈ [k] and A is
k-multiplicative, x=y. This proves the claim. Now Nk′(x)⊆Xn,k′,s for each
x∈Xn,k′,s by Lemma 2, and |Nk′(x)|≥k′′ by Lemma 4. Thus |A∩Xn,k′,s|·k′′≤
|Xn,k′,s|, and

(7)
∣∣∣
⋃

{A ∩ Xn,k′,s : s ∈ Sk′ ∩ [n], |Xn,k′,s| > k′}
∣∣∣ ≤

n

k′′ <
2n
4
√

k
.

Corollary 1 and Equations (6) and (7) imply that

|A| ≤ (2 + ε)n
eγ log k

+
2n
4
√

k
≤ (2 + o(1))n

eγ log k
= (2 + o(1))|Sk ∩ [n]| .
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4.2. An Improved Construction

While Sk∩[n] is a k-multiplicative set whose cardinality is within a constant
factor of optimal, larger k-multiplicative sets in [n] can be constructed. Re-
call that Pk ={p1,p2, . . . ,p�} is the set of primes in [k]. Let αi :=�logpi

k�+1
for each pi∈Pk. Define

Tk := {x ∈ N : βi(x) ≡ 0 (mod αi), i ∈ [	]} .

Lemma 5. For each k∈N, the set Tk is k-multiplicative.

Proof. Suppose that ax = by for some a,b ∈ [k] and x,y ∈ Tk. By (4),
βi(a)+ βi(x) = βi(b)+ βi(y) for all i ∈ [	]. Now βi(x) ≡ βi(y) ≡ 0 (mod αi)
since x,y ∈ Tk. Thus βi(a) ≡ βi(b) (mod αi). Now p

βi(a)
i ≤ a ≤ k. Thus

βi(a)≤�logpi
k�=αi−1. Similarly βi(b)≤αi−1. Hence βi(a)=βi(b) for all

i∈ [	]. Thus a=b and x=y. Therefore Tk is k-multiplicative.

We now set out to determine the density of Tk. Observe that Sk = {x∈
N : βi(x)=0, i∈ [	]}⊂Tk . Thus (if it exists) the density of Tk is at least that
of Sk.

Consider A,B⊆N with A∩B=∅. If δ(A) and δ(B) exist, then δ(A∪B)=
δ(A) + δ(B). The following lemma extends this idea to an infinite union,
where

δ(A) := sup
n→∞

|A ∩ [n]|
n

.

Lemma 6. Let A1,A2, . . .⊆N such that Ai∩Aj =∅ whenever i �=j. Suppose
that for each i∈N, δ(Ai) exists and δ(Ai)≤c ·δ(Ai) for some constant c≥1.
Let A :=

⋃
i Ai. Then δ(A)=

∑
i δ(Ai).

Proof. Let δ :=
∑

i δ(Ai). Let ε>0 be an arbitrary positive number. Let rε

be the least integer such that
∑

i>rε

δ(Ai) <
ε

c
.

Let nε be the minimum integer such that for all n>nε and for all i∈ [rε],
∣∣∣∣
|Ai ∩ [n]|

n
− δ(Ai)

∣∣∣∣ <
ε

rε
.

Let n > nε, X := A∩ [n], Xi := X ∩Ai and X∗ :=
⋃
{Xi : i > rε}. We have

|Xi|<c ·δ(Ai)n. Thus

|X∗| < cn
∑

i>rε

δ(Ai) < εn .
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Therefore ∣∣∣∣
|X|
n

− δ

∣∣∣∣ =
∣∣∣∣

( ∑

i∈[rε]

|Xi|
n

− δ(Ai)
)

+
|X∗|
n

−
∑

i>rε

δ(Ai)
∣∣∣∣

<
∑

i∈[rε]

∣∣∣∣
|Xi|
n

− δ(Ai)
∣∣∣∣ +

|X∗|
n

+
∑

i>rε

δ(Ai)

< rε
ε

rε
+

εn

n
+

ε

c
< ε

(
2 +

1
c

)
< 3ε .

This proves that δ(A)=δ.

Theorem 6. The set Tk is k-multiplicative with density

δ(Tk) = δ(Sk)
∏

i∈[�]

(
1 +

1
pαi

i − 1

)
=

∏

i∈[�]

(
1 − 1

pi

)(
1 +

1
pαi

i − 1

)
.

Proof. For all A⊆N and t∈N, let t ·A :={ta : a∈A}. If δ(A) exists then

(8) δ(t · A) = δ(A)
t

.

Now, for all v∈N
�
0, let

Sv
k :=

( ∏

i∈[�]

pviαi
i

)
· Sk .

Note that Sv
k∩Sw

k =∅ for distinct v,w∈N
�
0. For all v∈N

�
0 we have δ(Sv

k)

δ(Sv
k) = δ(Sk)

δ(Sk) .

Now Tk =
⋃
{Sv

k : v∈N
�
0}. By Lemma 6,

δ(Tk) =
∑

v∈N
�
0

δ(Sv
k) .

By (8) with A=Sk and t=
∏

i p
viαi
i ,

δ(Tk) =
∑

v∈N
�
0

δ(Sk)
/ ∏

i∈[�]

pviαi
i .

Thus

δ(Tk) = δ(Sk)
∑

v∈N
�
0

∏

i∈[�]

p−viαi
i = δ(Sk)

∏

i∈[�]

pαi
i

pαi
i − 1

= δ(Sk)
∏

i∈[�]

(
1+

1
pαi

i − 1

)
.

The result follows by substituting the expression for δ(Sk) from Theorem 4.

We now show that δ(Tk) approaches δ(Sk) for large k.
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Proposition 1. For all k∈N,

δ(Sk) < δ(Tk) = ck · δ(Sk) ,

for some constant ck→1 for large k.

Proof. By the Prime Number Theorem, 	≤O(k/ logk). Thus

ck =
∏

i

(
1 +

1
pαi

i − 1

)
<

∏

i

(
1 +

1
k − 1

)
≤

(
1 +

1
k − 1

)O(k/ log k)

≤ exp(O(1/ log k)) → 1 .

The case k = 2 was previously studied by Tamura [29] and Allouche
et al. [3]. Observe that T2 = {22i(2j +1): i,j ∈ N0}. Theorem 6 with k = 2
was proved by Allouche et al. [3], who also proved that T2 has the maximum
density out of all 2-multiplicative sets. Interesting relationships with the
Thue–Morse sequence were also discovered.

Proposition 2 ([3]). The set T2 is 2-multiplicative and has density 2/3.
For all d∈N, the d-th smallest element of T2 is at most 3d/2+O(logd).

Theorem 7. Let F be a forbidden family. Let G1,G2, . . . ,Gd be graphs,
each with Λ(Gi,F)≤ 2 or χ(Gi,F)≤ 3. Let t be the d-th smallest element
of T2. Then

Λ(G1 � G2 � · · · �Gd,F) ≤ 2t ≤ 3d + O(log d) , and

χ(G1 � G2 � · · · �Gd,F) ≤ 4t + 1 ≤ 6d + O(log d) .

Proof. By (1), χ(Gi,F) ≤ 3 implies Λ(Gi,F) ≤ 2. The result follows by
applying Lemma 1 with the d smallest elements in T2 from Proposition 2.

5. P3-free Colourings

Recall that a colouring is P3-free if vertices at distance at most two receive
distinct colours. Let ∆(G) be the maximum degree of the graph G. Since a
vertex and its neighbours receive distinct colours in a P3-free colouring,

(10) χ(G,P3) ≥ ∆(G) + 1 .

Let Qd := K2 �K2 � · · · �K2 be the d-dimensional hypercube. P3-free
colourings of Qd (and more generally, colourings of powers of Qd) have been
extensively studied [15,20,28,32,30]. Wan [30] proved that

d + 1 ≤ χ(Qd, P3) ≤ 2�log2(d+1)� ≤ 2d .



COLOURINGS OF THE CARTESIAN PRODUCT OF GRAPHS. . . 461

While our methods are not powerful enough to obtain the above upper
bound, for grid graphs we have the following result, which was first proved
by Fertin et al. [10].

Example 1 ([10]). Every d-dimensional grid graph G := Pn1 �Pn2 � · · ·
�Pnd

satisfies χ(G,P3)≤2d+1, with equality if every ni≥3.

Proof. The lower bound follows from (10) since ∆(G)=2d if every ni ≥ 3.
Colour the i-th vertex in Pn by i. We obtain a P3-free colouring of Pn with
span 1. Thus Λ(Pn,P3) = 1, and the upper bound follows from Theorem 2
with k=1.

Example 1 highlights the utility of chromatic span. A weaker bound on
χ(G,P3) is obtained if the P3-free chromatic number, χ(Pn,P3)=3, is used
rather than the P3-free chromatic span, Λ(Pn,P3)=1.

Example 2. Let G be the d-dimensional graph G := P 2
n1

�P 2
n2

� · · · �P 2
nd

.
Let t be the d-th smallest element of T2. Then

χ(G,P3) ≤ 4t + 1 ≤ 6d + O(log d) ,

and if each ni≥5 then χ(G,P3)≥4d+1.

Proof. Equation (10) implies the lower bound since ∆(G)=4d if each ni≥5.
Obviously Λ(P 2

n ,P3)≤2. Thus the upper bound follows from Theorem 7.

Example 3. Let G be the graph P k
n1

�P k
n2

� · · · �P k
nd

. If ni,nj ≥k for some

i �=j, then χ(G,P3)≥k2, and if every ni≥2k+1 then χ(G,P3)≥2dk+1. As
an upper bound,

χ(G,P3) ≤ 2k(kd − k + 1) + 1 .

Moreover, for all ε>0 and for large d>d(k,ε),

χ(G,P3) ≤ 1 +
2eγ

1 − ε
dk log k .

Proof. If ni,nj ≥ k then G2 contains a k2-vertex clique, and χ(G,P3) =
χ(G2)≥ k2. The second lower bound follows from (10) since ∆(G) = 2dk if
every ni ≥ 2k +1. Obviously Λ(P k

n ,P3) ≤ k. Thus the upper bounds follow
from Theorem 2.

Example 4. The d-dimensional toroidal grid G := Cn1 �Cn2 � · · · �Cnd

satisfies
2d + 1 ≤ χ(G,P3) ≤ 4t + 1 ≤ 6d + O(log d) ,

where t is the d-th smallest element of T2.
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Proof. The lower bound follows from (10) since G is 2d-regular. Say Cn =
(v1,v2, . . . ,vn). By considering the vertex ordering

(
v1, vn; v2, vn−1; . . . ; vi, vn−i+1; . . . ; v�n/2	, v�n/2�

)

of Cn, we see that Cn⊂P 2
n . Thus the upper bound follows from Example 2.

Fertin et al. [11] studied P4-free colourings of toroidal grids, and proved
that the minimum number of colours is at most 2d2 + d + 1, and at most
2d+1 in the case that 2d+1 divides each ni. Thus Example 4 gives a linear
upper bound on the P3-free chromatic number of toroidal grids, where even
for the weaker notion of P4-free colourings, only a quadratic upper bound
was previously known.

Example 5. Let G be the graph Ck
n1

�Ck
n2

� · · · �Ck
nd

. If ni,nj ≥k for some

i �=j, then χ(G,P3)≥k2, and if every ni≥2k+1 then χ(G,P3)≥2dk+1. As
an upper bound,

χ(G,P3) ≤ 4k(2kd − 2k + 1) + 1 .

Moreover, for all ε>0 and for large d>d(k,ε),

χ(G,P3) ≤ 1 +
4eγ

1 − ε
d · k log(2k) .

Proof. The lower bounds are the same as in Example 3. As proved in
Example 4, Cn ⊂ P 2

n . Thus Ck
n ⊂ P 2k

n , and the upper bound follows from
Example 3.

6. Acyclic Colourings

Recall that a colouring with no bichromatic cycle is acyclic. The acyclic
chromatic number of every graph G (with at least one edge) satisfies the
following well-known lower bound [10], where d(G) := |E(G)|

|V (G)| :

(11) χ(G, C) > d(G) + 1 .

It is easily seen that a cartesian product satisfies

(12) d(G1 �G2 � · · · � Gd) =
∑

i∈[d]

d(Gi) .

The following theorem, which was proved for paths by Fertin et al. [10],
gives a special case when a (k+1)-colouring can be obtained from a colouring
with span k, rather than the (2k+1)-colouring guaranteed by (1).
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Proposition 3. For all trees T1,T2, . . . ,Td, the acyclic chromatic number

χ(T1 � T2 � · · · � Td, C) ≤ d + 1 ,

with equality if every |V (Ti)|≥d.

Proof. Let G̃ :=T1 �T2 � · · · �Td. First we prove the lower bound. By (11)
and (12), and since |V (Ti)|≥d,

χ(G̃, C) > d(G̃) + 1 = 1 +
∑

i∈[d]

|V (Ti)| − 1
|V (Ti)|

= d + 1 −
∑

i∈[d]

1
|V (Ti)|

≥ d .

Hence χ(G̃,C)≥d+1.
Now we prove the upper bound. Root each tree Ti at some vertex ri. For

each vertex v∈V (Ti), let ci(v) be the distance between ri and v in Ti. Then
ci is a colouring of Ti with span one. For each vertex ṽ∈V (G̃), let

c(ṽ) :=
∑

i∈[d]

i · ci(vi) .

For each edge ṽw̃∈E(G̃) in dimension i,

(13)
c(w̃) − c(ṽ) =

( d∑

j=1

j · cj(wj)
)
−

( d∑

j=1

j · cj(vj)
)

= i
(
ci(wi) − ci(vi)

)
= ±i .

Thus c is a colouring of G̃ with span d. Let c′(ṽ) := c(ṽ) mod (d+1). Obvi-
ously c′ is a (d+1)-colouring of G̃. We claim that c′ is acyclic.

Consider each edge of Ti to be oriented away from the root ri. Orient
each edge ṽw̃ ∈ E(G̃) in dimension i according to the orientation of viwi.
That is, orient ṽ to w̃ so that ci(wi)−ci(vi)=1. Clearly the orientation of G̃
is acyclic.

Suppose that on the contrary there is a vertex ṽ ∈ V (G̃) that has
two incoming edges ũṽ and w̃ṽ for which c′(ũ) = c′(w̃). Thus c(ũ) ≡ c(w̃)
(mod (d+1)) and

c(ũ) − c(ṽ) ≡ c(w̃) − c(ṽ) (mod (d + 1)) .

Let i and j be the dimensions of ũṽ and w̃ṽ, respectively. By (13),

i(ci(ui) − ci(vi)) ≡ j(cj(wj) − cj(vj)) (mod (d + 1)) .

By the orientation of edges, ci(ui)−ci(vi)=1 and cj(wj)−cj(vj)=1. Thus
i ≡ j (mod (d + 1)), which implies that i = j. Hence ũ = w̃ since vi has
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only one incoming edge in Ti (from its parent). Thus every vertex of G̃ has
at most one incoming edge in each bichromatic subgraph H (with respect
to the colouring c′). Hence H has an acyclic orientation with at most one
incoming edge at each vertex. Therefore H is a forest, and c′ is the desired
acyclic colouring of G̃.

7. P4-free Colourings

Recall that a colouring with no bichromatic P4 is a star colouring.

Example 6. For trees T1,T2, . . . ,Td, the star chromatic number

χ(T1 � T2 � · · · � Td, P4) ≤ 2d + 1 .

Proof. Root each tree Ti at some vertex ri. For each vertex v ∈V (Ti), let
ci(v) be the distance between ri and v in Ti. (This is the same colouring
used in Proposition 3.) Obviously ci is a P4-free colouring of Ti with span
one. The result follows from Theorem 2 with k = 1. Also note that the
same lower bound from Proposition 3 applies for the star chromatic num-
ber.

Example 7. Let G be a minor-closed graph family that is not the class
of all graphs. Then there is a constant c = c(G) such that for all graphs
G1,G2, . . . ,Gd∈G,

χ(G1 �G2 � · · · � Gd, P4) ≤ cd .

Proof. Nešeťril and Ossona de Mendez [17] proved that there is a constant c1

(bounded by a small quadratic function of the maximum chromatic number
of a graph in G) such that every graph G ∈ G has star-chromatic number
χ(G,P4) ≤ c1. By Theorem 1, there is constant c2 (bounded by a small
quadratic function of c1) such that χ(G1 �G2 � · · · �Gd,P4)≤c2d.

Note

In related recent work, Jamison et al. [14] independently proved Proposi-
tion 3, and Jamison and Matthews [13] studied acyclic colourings of carte-
sian products of cliques (Hamming graphs).
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Jockusch, Simon Plouffe and Bruce E. Sagan: A relative of the Thue–Morse
sequence, Discrete Math. 139(1–3) (1995), 455–461.

[4] Noga Alon, Colin McDiarmid and Bruce Reed: Acyclic coloring of graphs,
Random Structures Algorithms 2(3) (1991), 277–288.

[5] Oleg V. Borodin: On acyclic colorings of planar graphs, Discrete Math. 25(3)
(1979), 211–236.
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