COLOURINGS OF THE CARTESIAN PRODUCT OF GRAPHS AND MULTIPLICATIVE SIDON SETS

ATTILA PÓR, DAVID R. WOOD

Received November 10, 2005

Let \mathcal{F} be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in \mathcal{F} is \mathcal{F}-free. The \mathcal{F}-free chromatic number $\chi(G, \mathcal{F})$ of a graph G is the minimum number of colours in an \mathcal{F}-free colouring of G. For appropriate choices of \mathcal{F}, several well-known types of colourings fit into this framework, including acyclic colourings, star colourings, and distance-2 colourings. This paper studies \mathcal{F}-free colourings of the cartesian product of graphs.

Let H be the cartesian product of the graphs $G_{1}, G_{2}, \ldots, G_{d}$. Our main result establishes an upper bound on the \mathcal{F}-free chromatic number of H in terms of the maximum \mathcal{F}-free chromatic number of the G_{i} and the following number-theoretic concept. A set S of natural numbers is k-multiplicative Sidon if $a x=b y$ implies $a=b$ and $x=y$ whenever $x, y \in S$ and $1 \leq a, b \leq k$. Suppose that $\chi\left(G_{i}, \mathcal{F}\right) \leq k$ and S is a k-multiplicative Sidon set of cardinality d. We prove that $\chi(H, \mathcal{F}) \leq 1+2 k \cdot \max S$. We then prove that the maximum density of a k-multiplicative Sidon set is $\Theta(1 / \log k)$. It follows that $\chi(H, \mathcal{F}) \leq \mathcal{O}(d k \log k)$. We illustrate the method with numerous examples, some of which generalise or improve upon existing results in the literature.

1. Introduction

Sabidussi [24] proved that the chromatic number of the cartesian product of a set of graphs equals the maximum chromatic number of a graph in the

[^0]set. No such result is known for more restrictive colourings (such as acyclic, star, and distance- 2 colourings). This paper investigates such colourings of cartesian products under a general model of restriction, in which arbitrary bichromatic subgraphs are excluded. Our study leads to a number-theoretic problem regarding multiplicative Sidon sets that is of independent interest. This problem is then solved using a combination of number-theoretic and graph-theoretic approaches.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. (All graphs considered are undirected, simple, and finite.) A colouring of G is a function $c: V(G) \rightarrow \mathbb{Z}$ such that $c(v) \neq c(w)$ for every edge $v w \in E(G)$. A colouring c with $|\{c(v): v \in V(G)\}| \leq k$ is a k-colouring. The chromatic number of G, $\chi(G)$, is the minimum integer k for which there is a k-colouring of G.

Let \mathcal{F} be a family of connected bipartite graphs, each with at least three vertices, called a forbidden family. A colouring c of a graph G is \mathcal{F}-free if it contains no bichromatic subgraph in \mathcal{F}; that is, $|\{c(v): v \in V(H)\}| \geq 3$ for every subgraph H of G that is isomorphic to a graph in \mathcal{F}. The \mathcal{F}-free chromatic number of G, denoted by $\chi(G, \mathcal{F})$, is the minimum integer k for which there is an \mathcal{F}-free k-colouring of G. When $\mathcal{F}=\{H\}$ is a singleton, we write H-free instead of \mathcal{F}-free, and refer to the H-free chromatic number $\chi(G, H)$. The framework was introduced by Albertson et al. [2]; an even more general model of restrictive graph colourings is considered by Nešetřil and Ossona de Mendez [18].
\mathcal{F}-free colourings correspond to many well-studied types of colourings. Let P_{n} and C_{n} respectively be the path and cycle on n vertices. Let $\mathcal{C}:=\left\{C_{n}: n\right.$ even $\}$. Then \mathcal{C}-free colourings are the acyclic colourings $[4,5$, $10,31]$. Here each bichromatic subgraph is a forest. By a further restriction we obtain the P_{4}-free colourings, which are called star colourings, since each bichromatic subgraph is a collection of disjoint stars $[2,4,11,17,31]$. A colouring is P_{3}-free if and only if every pair of vertices at distance at most two receive distinct colours (called a distance-2 colouring). That is, $\chi\left(G, P_{3}\right)=\chi\left(G^{2}\right)$. Here G^{k} is the k-th power of G, the graph with vertex set $V(G)$, where two vertices are adjacent in G^{k} whenever they are at distance at most k in G. Often motivated by applications in frequency assignment, colourings of graph powers has recently attracted much attention $[1$, 16]. By definition,

$$
\chi(G) \leq \chi(G, \mathcal{C}) \leq \chi\left(G, P_{4}\right) \leq \chi\left(G, P_{3}\right)
$$

The cartesian product of graphs G_{1}, \ldots, G_{d}, denoted by $\tilde{G}=G_{1} \square G_{2} \square \ldots$ $\square G_{d}$, is the graph with vertex set

$$
V(\tilde{G})=\left\{\tilde{v}: \tilde{v}=\left(v_{1}, v_{2}, \ldots, v_{d}\right), v_{i} \in V\left(G_{i}\right), i \in[d]\right\}
$$

where $\tilde{v} \tilde{w} \in E(\tilde{G})$ if and only if $v_{i} w_{i} \in E\left(G_{i}\right)$ for some i, and $v_{j}=w_{j}$ for all $j \neq i$; we say that the edge $\tilde{v} \tilde{w}$ is in dimension i. Sabidussi [24] proved that

$$
\chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}\right)=\max \left\{\chi\left(G_{i}\right): 1 \leq i \leq d\right\} .
$$

This paper studies \mathcal{F}-free colourings of cartesian products. The following upper bound on the \mathcal{F}-free chromatic number of a cartesian product is our main result. Here and throughout the paper, $\gamma=0.5772 \ldots$ is Euler's constant, and logarithms are base $\boldsymbol{e}=2.718 \ldots$ unless stated otherwise.

Theorem 1. Let \mathcal{F} be a forbidden family. Let $G_{1}, G_{2}, \ldots, G_{d}$ be graphs, each with \mathcal{F}-free chromatic number $\chi\left(G_{i}, \mathcal{F}\right) \leq k+1$. Then

$$
\chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 2 k(k d-k+1)+1 .
$$

Moreover, for all $\epsilon>0$ and for large $d>d(k, \epsilon)$,

$$
\chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 1+\frac{2 e^{\gamma}}{1-\epsilon} d k \log k .
$$

We actually prove a stronger result than Theorem 1 that is expressed in terms of 'chromatic span'. This concept is introduced in Section 2. The key lemma of the paper, which relates \mathcal{F}-free colourings of a cartesian product to so-called k-multiplicative Sidon sets, is proved in Section 3. In Section 4 we study k-multiplicative Sidon sets in their own right. Our main colouring results follow.

The remaining sections contain numerous examples of the method, some of which generalise or improve upon existing results in the literature. In particular, we consider distance-2 colourings in Section 5, acyclic colourings in Section 6, and star colourings in Section 7. The most prominent illustration of our method is Example 4, which proves that every d-dimensional toroidal grid graph has a distance- 2 colouring with $\mathcal{O}(d)$ colours. The best previous comparable bound was $\mathcal{O}\left(d^{2}\right)$ for the weaker notion of star colouring.

For $p \in \mathbb{N}$, an $\mathrm{L}(p, 1)$-labelling of a graph G is a P_{3}-free colouring of G with the additional property that the colours given to adjacent vertices differ by at least p. Such colourings arise in frequency assignment problems. It is easily seen that our results generalise to this setting. See reference [21] for these and other details.

2. Chromatic Span

Let c be a colouring of a graph G. The span of c is $\max \{|c(v)-c(w)|: v w \in$ $E(G)\}$. (The number of colours is irrelevant.) The chromatic span of G,
denoted by $\Lambda(G)$, is the minimum integer k for which there is a colouring of G with span k. Note that $\Lambda(G) \leq k$ if and only if there is a homomorphism from G into P_{n}^{k} for some n.

Let $[a, b]:=[a, a+1, \ldots, b]$ and $[b]:=[1, b]$ for all integers $a \leq b$. We can assume that the range of a k-colouring is $[k]$. Thus $\Lambda(G) \leq \chi(G)-1$ for every graph G. Conversely, given a colouring c of G with span k, let $c^{\prime}(v):=$ $c(v) \bmod (k+1)$ for each vertex $v \in V(G)$. Then c^{\prime} is a $(k+1)$-colouring of G. Thus $\Lambda(G)=\chi(G)-1$. This might suggest that chromatic span is pointless. Let the \mathcal{F}-free chromatic span of a graph G, denoted by $\Lambda(G, \mathcal{F})$, be the minimum integer k for which there is an \mathcal{F}-free colouring of G with span k. Obviously $\Lambda(G, \mathcal{F}) \leq \chi(G, \mathcal{F})-1$. Conversely, given an \mathcal{F}-free colouring c of G with $\operatorname{span} k:=\Lambda(G, \mathcal{F})$, let $c^{\prime}(v):=c(v) \bmod (2 k+1)$ for each vertex $v \in V(G)$. It follows that each bichromatic subgraph of c^{\prime} is the union of disjoint bichromatic subgraphs of c. Thus c^{\prime} is \mathcal{F}-free and

$$
\begin{equation*}
\Lambda(G, \mathcal{F})+1 \leq \chi(G, \mathcal{F}) \leq 2 \cdot \Lambda(G, \mathcal{F})+1 \tag{1}
\end{equation*}
$$

This upper bound cannot be improved in general, since it is easily seen that $\Lambda\left(P_{n}^{k}, P_{3}\right)=k$ but $\chi\left(P_{n}^{k}, P_{3}\right)=2 k+1$. Thus chromatic span is of interest when considering \mathcal{F}-free colourings. We prove the following result, which with (1), implies Theorem 1.

Theorem 2. Let \mathcal{F} be a forbidden family. Let $G_{1}, G_{2}, \ldots, G_{d}$ be graphs, each with \mathcal{F}-free chromatic span $\Lambda\left(G_{i}, \mathcal{F}\right) \leq k$ (which is implied if $\chi\left(G_{i}, \mathcal{F}\right) \leq$ $k+1)$. Then

$$
\begin{aligned}
& \Lambda\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq k(k d-k+1), \quad \text { and } \\
& \chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 2 k(k d-k+1)+1 .
\end{aligned}
$$

Moreover, for all $\epsilon>0$ and for large $d>d(k, \epsilon)$,

$$
\begin{aligned}
& \Lambda\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq \frac{e^{\gamma}}{1-\epsilon} d k \log k, \quad \text { and } \\
& \chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 1+\frac{2 e^{\gamma}}{1-\epsilon} d k \log k .
\end{aligned}
$$

3. The Key Lemma

Our results depend upon the following number-theoretic concept (where $\mathbb{N}:=\{1,2, \ldots\}$ and $\left.\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right)$.

Definition 1. Let $k \in \mathbb{N}$. A set $A \subseteq \mathbb{N}$ is k-multiplicative Sidon ${ }^{1}$ if for all $x, y \in A$ and for all $a, b \in[k]$, we have $a x=b y$ implies $a=b$ and $x=y$. For brevity we write k-multiplicative rather than k-multiplicative Sidon.

Lemma 1. Let \mathcal{F} be a forbidden family. Let $G_{1}, G_{2}, \ldots, G_{d}$ be graphs, each with \mathcal{F}-free chromatic span $\Lambda\left(G_{i}, \mathcal{F}\right) \leq k$ (which is implied if $\chi\left(G_{i}, \mathcal{F}\right) \leq k+1$). Let $S:=\left\{s_{1}, s_{2}, \ldots, s_{d}\right\}$ be a k-multiplicative set. Then

$$
\Lambda\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq k \cdot \max S
$$

Proof. Let $\tilde{G}:=G_{1} \square G_{2} \square \cdots \square G_{d}$. For each $i \in[d]$, let c_{i} be an \mathcal{F}-free colouring of G_{i} with span k. For each vertex $\tilde{v} \in V(\tilde{G})$, let

$$
c(\tilde{v}):=\sum_{i \in[d]} s_{i} \cdot c_{i}\left(v_{i}\right) .
$$

For every edge $\tilde{v} \tilde{w} \in E(\tilde{G})$ in dimension i,
(2) $c(\tilde{w})-c(\tilde{v})=\left(\sum_{j \in[d]} s_{j} \cdot c_{j}\left(w_{j}\right)\right)-\left(\sum_{j \in[d]} s_{j} \cdot c_{j}\left(v_{j}\right)\right)=s_{i}\left(c_{i}\left(w_{i}\right)-c_{i}\left(v_{i}\right)\right)$.

Since $1 \leq\left|c_{i}\left(w_{i}\right)-c_{i}\left(v_{i}\right)\right| \leq k$ and $s_{i} \geq 1, c$ is a colouring of \tilde{G} with span $k \cdot \max S$.

Suppose, for the sake of contradiction, that c is not \mathcal{F}-free. That is, there is a bichromatic subgraph H of \tilde{G} that is isomorphic to some graph in \mathcal{F}. First suppose that all the edges of H have the same dimension i. By (2), and since H is connected, the edges $\left\{v_{i} w_{i}: \tilde{v} \tilde{w} \in E(H)\right\}$ induce a bichromatic subgraph of G_{i} that is isomorphic to a graph in \mathcal{F}, which is a contradiction. Thus not all the edges of H are in the same dimension. Since H is connected and has at least three vertices, H has two edges $\tilde{v} \tilde{x}$ and $\tilde{w} \tilde{x}$ with a common endpoint that are in distinct dimensions. Say $\tilde{v} \tilde{x}$ is in dimension i and $\tilde{w} \tilde{x}$ is in dimension $j \neq i$. Since H is bichromatic, $c(\tilde{v})-c(\tilde{x})=c(\tilde{w})-c(\tilde{x})$. By (2),

$$
s_{i}\left(c_{i}\left(v_{i}\right)-c_{i}\left(x_{i}\right)\right)=s_{j}\left(c_{j}\left(w_{j}\right)-c_{j}\left(x_{j}\right)\right)
$$

Since c_{i} has span k, we have $1 \leq\left|c_{i}\left(v_{i}\right)-c_{i}\left(x_{i}\right)\right| \leq k$ and $1 \leq\left|c_{j}\left(w_{j}\right)-c_{j}\left(x_{j}\right)\right| \leq k$, which implies that S is not k-multiplicative. This contradiction proves that c is an \mathcal{F}-free colouring of \tilde{G}.

[^1]
4. k-Multiplicative Sidon Sets

Motivated by Lemma 1, in this section we study k-multiplicative sets. We measure the 'size' of a k-multiplicative set by its density. The density of $A \subseteq \mathbb{N}$ is

$$
\delta(A):=\lim _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}
$$

if the limit exists (otherwise the density is undefined). We say $A \subseteq \mathbb{N}$ is p periodic if $x \in A$ if and only if $x+p \in A$ for all $x \in \mathbb{N}$. Observe that if A is p-periodic then

$$
\begin{equation*}
\delta(A)=\frac{|A \cap[p]|}{p} . \tag{3}
\end{equation*}
$$

The following theorem is our main result regarding k-multiplicative sets.
Theorem 3. For all $k \in \mathbb{N}$, the maximum density of a k-multiplicative set is

$$
\Theta\left(\frac{1}{\log k}\right)
$$

The lower and upper bounds in Theorem 3 are proved in Theorems 4 and 5 , respectively. Fix $k \in \mathbb{N}$. Let $\mathbb{P}_{k}:=\left\{p_{1}, p_{2}, \ldots, p_{\ell}\right\}$ be the set of primes in $[k]$. Let

$$
\Pi_{k}:=\prod_{i \in[\ell]} p_{i}
$$

Every $x \in \mathbb{N}$ can be uniquely represented as

$$
x=\beta_{*}(x) \prod_{i \in[\ell]} p_{i}^{\beta_{i}(x)}
$$

where $\beta_{i}(x) \in \mathbb{N}_{0}$ and $\beta_{*}(x)$ is not divisible by p_{i} for all $i \in[\ell]$. That is, $\operatorname{gcd}\left(\beta_{*}(x), \Pi_{k}\right)=1$. Let $\beta(x)$ be the vector $\left(\beta_{1}(x), \beta_{2}(x), \ldots, \beta_{\ell}(x)\right) \in \mathbb{N}_{0}^{\ell}$. Clearly, for all $x, y \in \mathbb{N}$,

$$
\begin{equation*}
\beta(x \cdot y)=\beta(x)+\beta(y) \text { and } \beta_{*}(x \cdot y)=\beta_{*}(x) \cdot \beta_{*}(y) . \tag{4}
\end{equation*}
$$

Observe that if $a x=b y$ for some $a, b \in[k]$, then $\beta_{*}(a)=\beta_{*}(b)=1$ and by (4),

$$
\begin{equation*}
\beta_{*}(x)=\beta_{*}(y) . \tag{5}
\end{equation*}
$$

Theorem 4. For all $k \in \mathbb{N}$, the set $S_{k}:=\left\{s \in \mathbb{N}: \operatorname{gcd}\left(s, \Pi_{k}\right)=1\right\}$ is k multiplicative and has density

$$
\delta\left(S_{k}\right)=\prod_{i \in[\ell]}\left(1-\frac{1}{p_{i}}\right) \sim \frac{e^{-\gamma}}{\log k} .
$$

Proof. Suppose that $a x=b y$ for some $a, b \in[k]$ and $x, y \in S_{k}$. Thus $\beta_{*}(x)=$ $\beta_{*}(y)$ by (5). Since $\operatorname{gcd}\left(x, \Pi_{k}\right)=\operatorname{gcd}\left(y, \Pi_{k}\right)=1$, we have $\beta_{i}(x)=\beta_{i}(y)=0$ for all $i \in[\ell]$. Hence $x=y$, which implies that $a=b$, and S_{k} is k-multiplicative. Now we compute the density of S_{k}. Let φ be Euler's totient function, $\varphi(x):=$ $|\{y \in[x]: \operatorname{gcd}(x, y)=1\}|$. If $q_{1}, q_{2}, \ldots, q_{r}$ are the prime factors of x (with repetition), then

$$
\varphi(x)=x \prod_{i \in[r]}\left(1-\frac{1}{q_{i}}\right)
$$

Observe that S_{k} is Π_{k}-periodic. By (3),

$$
\delta\left(S_{k}\right)=\frac{\left|S_{k} \cap\left[\Pi_{k}\right]\right|}{\Pi_{k}}=\frac{\varphi\left(\Pi_{k}\right)}{\Pi_{k}}=\prod_{i \in[\ell]}\left(1-\frac{1}{p_{i}}\right) .
$$

By Mertens' Theorem (see [12]), $\delta\left(S_{k}\right) \sim \boldsymbol{e}^{-\gamma} / \log k$.
The following corollary is a straightforward consequence of Theorem 4.
Corollary 1. For all $k \in \mathbb{N}, \epsilon>0$, and sufficiently large $n>n(k, \epsilon)$,

$$
\frac{(1-\epsilon) n}{\boldsymbol{e}^{\gamma} \log k} \leq\left|S_{k} \cap[n]\right| \leq \frac{(1+\epsilon) n}{\boldsymbol{e}^{\gamma} \log k}
$$

We can now prove Theorem 2.
Proof of Theorem 2. Observe that $R:=\{i k+1: i \in[0, d-1]\}$ is k multiplicative. Using R as a k-multiplicative set in Lemma 1, we have $\Lambda\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq k(d k-k+1)$. This proves the first part of the theorem. Let n be the minimum integer such that $\left|S_{k} \cap[n]\right| \geq d$. By Corollary 1 , for $d>d(k, \epsilon)$,

$$
\max \left\{S_{k} \cap[n]\right\} \leq n \leq \frac{e^{\gamma}}{1-\epsilon} d \log k
$$

Using $S_{k} \cap[n]$ as a k-multiplicative set in Lemma 1, we have

$$
\Lambda\left(G_{1} \square G_{2} \square \ldots \square G_{d}, \mathcal{F}\right) \leq \frac{e^{\gamma}}{1-\epsilon} d k \log k
$$

The final claim in Theorem 2 follows from (1).

4.1. Proof of Optimality

We now prove that the lower bound in Theorem 4 is asymptotically optimal, which in turn completes the proof of Theorem 3.

Theorem 5. For all $k \in \mathbb{N}, \epsilon>0$, and sufficiently large $n>n(k, \epsilon)$, every k-multiplicative set $A \subseteq[n]$ satisfies

$$
|A| \leq \frac{(2+\epsilon) n}{\boldsymbol{e}^{\gamma} \log k}+\frac{2 n}{\sqrt[4]{k}}=(2+o(1))\left|S_{k} \cap[n]\right|=\frac{(2+o(1)) n}{\boldsymbol{e}^{\gamma} \log k}
$$

To prove Theorem 5 , we model k-multiplicative sets using graphs. Let $G_{n, k}$ be the graph with vertex set $V\left(G_{n, k}\right):=[n]$, where $x y \in E\left(G_{n, k}\right)$ whenever $a x=b y$ for some $a, b \in[k]$. Observe that a set $A \subseteq[n]$ is k-multiplicative if and only if A is an independent set of $G_{n, k}$. For each $s \in S_{k} \cap[n]$, let $G_{n, k, s}$ be the subgraph of $G_{n, k}$ induced by $X_{n, k, s}:=\left\{x \in[n]: \beta_{*}(x)=s\right\}$.

Lemma 2. The connected components of $G_{n, k}$ are $\left\{G_{n, k, s}: s \in S_{k} \cap[n]\right\}$.
Proof. If $x y \in E\left(G_{n, k}\right)$, then $\beta_{*}(x)=\beta_{*}(y)$ by (5), which implies that $x, y \in X_{n, k, s}$ for some $s \in S_{k} \cap[n]$. Thus distinct sets $X_{n, k, s}$ and $X_{n, k, t}$ are not joined by an edge of $G_{n, k}$. It remains to prove that each subgraph $G_{n, k, s}$ is connected. For each pair of vertices $x, y \in X_{n, k, s}$, let

$$
f(x, y):=\sum_{i \in[\ell]}\left|\beta_{i}(x)-\beta_{i}(y)\right|
$$

We claim that x and y are connected by a path of $f(x, y)$ edges in $G_{n, k, s}$. The proof is by induction on $f(x, y)$. If $f(x, y)=0$ then $x=y$ (since $\beta_{*}(x)=$ $\left.\beta_{*}(y)=s\right)$ and we are done. Say $f(x, y)>0$. Without loss of generality, $\beta_{i}(x)<\beta_{i}(y)$ for some i. Let $z:=p_{i} x$. Then $z \in X_{n, k, s}$ and $x z$ is an edge of $G_{n, k, s}$. Moreover, $\beta_{i}(z)=\beta_{i}(x)+1$, which implies that $f(z, y)=f(x, y)-1$. By induction, there is a path of $f(z, y)$ edges from z to y. Thus there is a path of $f(z, y)+1=f(x, y)$ edges from x to y.

Lemma 3. Let $G_{n, k, s}$ be a connected component of $G_{n, k}$ with r vertices. Then the $\min \{k, r\}$ smallest elements of $X_{n, k, s}$ are $\{s, 2 s, 3 s, \ldots, \min \{k, r\} \cdot s\}$, and they form a clique of $G_{n, k, s}$.

Proof. Every element of $X_{n, k, s}$ is a multiple of s and is at least s. Now is $\in X_{n, k, s}$ for each $i \in[\min \{k, r\}]$. Thus the $\min \{k, r\}$ smallest elements of $X_{n, k, s}$ are $\{s, 2 s, 3 s, \ldots, \min \{k, r\} \cdot s\}$, which clearly form a clique of $G_{n, k, s}$.

For all $x \in[n]$, let $N_{k}(x)$ be the closed neighbourhood of x in $G_{n, k}$. That is, $y \in N_{k}(x)$ if and only if $y \in[n]$ and $a y=b x$ for some $a, b \in[k]$.

Lemma 4. Let $G_{n, k, s}$ be a connected component of $G_{n, k}$ with at least k vertices. Then $\left|N_{k}(x)\right| \geq\lfloor\sqrt{k}\rfloor$ for every $x \in X_{n, k, s}$.
Proof. By Lemma 3, the k smallest elements of $X_{n, k, s}$ are $\{s, 2 s, 3 s, \ldots, k s\}$, and they form a clique of $G_{n, k, s}$. In particular, $k s \leq n$.

Case (a). $x \leq \sqrt{k} s$: For each $a \in[\lfloor\sqrt{k}\rfloor]$, we have $a x \leq k s \leq n$. Thus $a x \in N_{k}(x)$ and $\left|N_{k}(x)\right| \geq\lfloor\sqrt{k}\rfloor$.

Case (b). $x>\sqrt{k} s$: First suppose that there is a prime p that divides x and $\sqrt{k} \leq p \leq k$. Then $\frac{a x}{p} \in[x]$ for each $a \in[p]$. Thus $\frac{a x}{p} \in N_{k}(x)$ and $\left|N_{k}(x)\right| \geq p \geq \sqrt{k}$. Now suppose that there is no prime divisor p of x with $\sqrt{k} \leq p \leq k$. Let $p_{1} \leq p_{2} \leq \cdots \leq p_{t}$ be the prime factors of x with duplication. Since $x>\sqrt{k}$, for some $\ell \in[t]$, the integer $q:=\prod_{i \in[\ell]} p_{i}$ divides x and $\sqrt{k} \leq$ $q \leq k$. Thus $\frac{a x}{q} \in[x]$ for each $a \in[q]$. Thus $\frac{a x}{q} \in N_{k}(x)$ and $\left|N_{k}(x)\right| \geq q \geq \sqrt{k}$.

Proof of Theorem 5. Let $k^{\prime}:=\lfloor\sqrt{k}\rfloor$ and $k^{\prime \prime}:=\left\lfloor\sqrt{k^{\prime}}\right\rfloor$. Note that $k^{\prime \prime} \geq 1$ and $k^{\prime \prime}>\sqrt[4]{k} / 2$. We proceed by studying the size of A within each connected component of the graph $G_{n, k^{\prime}}$. That is, we consider A as the union of the disjoint sets $\left\{A \cap X_{n, k^{\prime}, s}: s \in S_{k^{\prime}} \cap[n]\right\}$.

First consider $s \in S_{k^{\prime}} \cap[n]$ for which $\left|X_{n, k^{\prime}, s}\right| \leq k^{\prime}$. By Lemma 3, $X_{n, k^{\prime}, s}$ is a clique of $G_{n, k^{\prime}}$. Since A is k-multiplicative, A is k^{\prime}-multiplicative, and A is an independent set of $G_{n, k^{\prime}}$. Thus $\left|A \cap X_{n, k^{\prime}, s}\right| \leq 1$. The set $S_{k^{\prime}} \cap[n]$ has exactly one element in $X_{n, k^{\prime}, s}$. Thus $\mid \bigcup\left\{A \cap X_{n, k^{\prime}, s}: s \in S_{k^{\prime}} \cap[n],\left|X_{n, k^{\prime}, s}\right| \leq\right.$ $\left.k^{\prime}\right\}\left|\leq\left|S_{k^{\prime}} \cap[n]\right|\right.$. By Corollary 1 ,

$$
\begin{equation*}
\left|\bigcup\left\{A \cap X_{n, k^{\prime}, s}: s \in S_{k^{\prime}} \cap[n],\left|X_{n, k^{\prime}, s}\right| \leq k^{\prime}\right\}\right| \leq \frac{(1+\epsilon) n}{e^{\gamma} \log k^{\prime}} \leq \frac{(2+\epsilon) n}{e^{\gamma} \log k} . \tag{6}
\end{equation*}
$$

Now consider $s \in S_{k^{\prime}} \cap[n]$ for which $\left|X_{n, k^{\prime}, s}\right|>k^{\prime}$. We claim that $N_{k^{\prime}}(x) \cap$ $N_{k^{\prime}}(y)=\emptyset$ for distinct $x, y \in A$. Suppose that $z \in N_{k^{\prime}}(x) \cap N_{k^{\prime}}(y)$ for some $x, y \in A$. Then $a_{1} x=b_{1} z$ and $a_{2} y=b_{2} z$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in\left[k^{\prime}\right]$. Thus $z=a_{1} x / b_{1}=a_{2} y / b_{2}$ and $\left(a_{1} b_{2}\right) x=\left(a_{2} b_{1}\right) y$. Since $a_{1} b_{2}, a_{2} b_{1} \in[k]$ and A is k-multiplicative, $x=y$. This proves the claim. Now $N_{k^{\prime}}(x) \subseteq X_{n, k^{\prime}, s}$ for each $x \in X_{n, k^{\prime}, s}$ by Lemma 2, and $\left|N_{k^{\prime}}(x)\right| \geq k^{\prime \prime}$ by Lemma 4. Thus $\left|A \cap X_{n, k^{\prime}, s}\right| \cdot k^{\prime \prime} \leq$ $\left|X_{n, k^{\prime}, s}\right|$, and

$$
\begin{equation*}
\left|\bigcup\left\{A \cap X_{n, k^{\prime}, s}: s \in S_{k^{\prime}} \cap[n],\left|X_{n, k^{\prime}, s}\right|>k^{\prime}\right\}\right| \leq \frac{n}{k^{\prime \prime}}<\frac{2 n}{\sqrt[4]{k}} . \tag{7}
\end{equation*}
$$

Corollary 1 and Equations (6) and (7) imply that

$$
|A| \leq \frac{(2+\epsilon) n}{\boldsymbol{e}^{\gamma} \log k}+\frac{2 n}{\sqrt[4]{k}} \leq \frac{(2+o(1)) n}{\boldsymbol{e}^{\gamma} \log k}=(2+o(1))\left|S_{k} \cap[n]\right| .
$$

4.2. An Improved Construction

While $S_{k} \cap[n]$ is a k-multiplicative set whose cardinality is within a constant factor of optimal, larger k-multiplicative sets in $[n]$ can be constructed. Recall that $\mathbb{P}_{k}=\left\{p_{1}, p_{2}, \ldots, p_{\ell}\right\}$ is the set of primes in $[k]$. Let $\alpha_{i}:=\left\lfloor\log _{p_{i}} k\right\rfloor+1$ for each $p_{i} \in \mathbb{P}_{k}$. Define

$$
T_{k}:=\left\{x \in \mathbb{N}: \beta_{i}(x) \equiv 0\left(\bmod \alpha_{i}\right), i \in[\ell]\right\} .
$$

Lemma 5. For each $k \in \mathbb{N}$, the set T_{k} is k-multiplicative.
Proof. Suppose that $a x=b y$ for some $a, b \in[k]$ and $x, y \in T_{k}$. By (4), $\beta_{i}(a)+\beta_{i}(x)=\beta_{i}(b)+\beta_{i}(y)$ for all $i \in[\ell]$. Now $\beta_{i}(x) \equiv \beta_{i}(y) \equiv 0\left(\bmod \alpha_{i}\right)$ since $x, y \in T_{k}$. Thus $\beta_{i}(a) \equiv \beta_{i}(b)\left(\bmod \alpha_{i}\right)$. Now $p_{i}^{\beta_{i}(a)} \leq a \leq k$. Thus $\beta_{i}(a) \leq\left\lfloor\log _{p_{i}} k\right\rfloor=\alpha_{i}-1$. Similarly $\beta_{i}(b) \leq \alpha_{i}-1$. Hence $\beta_{i}(a)=\beta_{i}(b)$ for all $i \in[\ell]$. Thus $a=b$ and $x=y$. Therefore T_{k} is k-multiplicative.

We now set out to determine the density of T_{k}. Observe that $S_{k}=\{x \in$ $\left.\mathbb{N}: \beta_{i}(x)=0, i \in[\ell]\right\} \subset T_{k}$. Thus (if it exists) the density of T_{k} is at least that of S_{k}.

Consider $A, B \subseteq \mathbb{N}$ with $A \cap B=\emptyset$. If $\delta(A)$ and $\delta(B)$ exist, then $\delta(A \cup B)=$ $\delta(A)+\delta(B)$. The following lemma extends this idea to an infinite union, where

$$
\bar{\delta}(A):=\sup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n} .
$$

Lemma 6. Let $A_{1}, A_{2}, \ldots \subseteq \mathbb{N}$ such that $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$. Suppose that for each $i \in \mathbb{N}, \delta\left(A_{i}\right)$ exists and $\bar{\delta}\left(A_{i}\right) \leq c \cdot \delta\left(A_{i}\right)$ for some constant $c \geq 1$. Let $A:=\bigcup_{i} A_{i}$. Then $\delta(A)=\sum_{i} \delta\left(A_{i}\right)$.
Proof. Let $\delta:=\sum_{i} \delta\left(A_{i}\right)$. Let $\epsilon>0$ be an arbitrary positive number. Let r_{ϵ} be the least integer such that

$$
\sum_{i>r_{\epsilon}} \delta\left(A_{i}\right)<\frac{\epsilon}{c} .
$$

Let n_{ϵ} be the minimum integer such that for all $n>n_{\epsilon}$ and for all $i \in\left[r_{\epsilon}\right]$,

$$
\left|\frac{\left|A_{i} \cap[n]\right|}{n}-\delta\left(A_{i}\right)\right|<\frac{\epsilon}{r_{\epsilon}} .
$$

Let $n>n_{\epsilon}, X:=A \cap[n], X_{i}:=X \cap A_{i}$ and $X^{*}:=\bigcup\left\{X_{i}: i>r_{\epsilon}\right\}$. We have $\left|X_{i}\right|<c \cdot \delta\left(A_{i}\right) n$. Thus

$$
\left|X^{*}\right|<c n \sum_{i>r_{\epsilon}} \delta\left(A_{i}\right)<\epsilon n .
$$

Therefore

$$
\begin{aligned}
\left|\frac{|X|}{n}-\delta\right| & =\left|\left(\sum_{i \in\left[r_{\epsilon}\right]} \frac{\left|X_{i}\right|}{n}-\delta\left(A_{i}\right)\right)+\frac{\left|X^{*}\right|}{n}-\sum_{i>r_{\epsilon}} \delta\left(A_{i}\right)\right| \\
& <\sum_{i \in\left[r_{\epsilon}\right]}\left|\frac{\left|X_{i}\right|}{n}-\delta\left(A_{i}\right)\right|+\frac{\left|X^{*}\right|}{n}+\sum_{i>r_{\epsilon}} \delta\left(A_{i}\right) \\
& <r_{\epsilon} \frac{\epsilon}{r_{\epsilon}}+\frac{\epsilon n}{n}+\frac{\epsilon}{c}<\epsilon\left(2+\frac{1}{c}\right)<3 \epsilon .
\end{aligned}
$$

This proves that $\delta(A)=\delta$.
Theorem 6. The set T_{k} is k-multiplicative with density

$$
\delta\left(T_{k}\right)=\delta\left(S_{k}\right) \prod_{i \in[\ell]}\left(1+\frac{1}{p_{i}^{\alpha_{i}}-1}\right)=\prod_{i \in[\ell]}\left(1-\frac{1}{p_{i}}\right)\left(1+\frac{1}{p_{i}^{\alpha_{i}}-1}\right)
$$

Proof. For all $A \subseteq \mathbb{N}$ and $t \in \mathbb{N}$, let $t \cdot A:=\{t a: a \in A\}$. If $\delta(A)$ exists then

$$
\begin{equation*}
\delta(t \cdot A)=\frac{\delta(A)}{t} \tag{8}
\end{equation*}
$$

Now, for all $v \in \mathbb{N}_{0}^{\ell}$, let

$$
S_{k}^{v}:=\left(\prod_{i \in[\ell]} p_{i}^{v_{i} \alpha_{i}}\right) \cdot S_{k}
$$

Note that $S_{k}^{v} \cap S_{k}^{w}=\emptyset$ for distinct $v, w \in \mathbb{N}_{0}^{\ell}$. For all $v \in \mathbb{N}_{0}^{\ell}$ we have $\frac{\bar{\delta}\left(S_{k}^{v}\right)}{\delta\left(S_{k}^{v}\right)}=\frac{\bar{\delta}\left(S_{k}\right)}{\delta\left(S_{k}\right)}$. Now $T_{k}=\bigcup\left\{S_{k}^{v}: v \in \mathbb{N}_{0}^{\ell}\right\}$. By Lemma 6 ,

$$
\delta\left(T_{k}\right)=\sum_{v \in \mathbb{N}_{0}^{\ell}} \delta\left(S_{k}^{v}\right)
$$

By (8) with $A=S_{k}$ and $t=\prod_{i} p_{i}^{v_{i} \alpha_{i}}$,

$$
\delta\left(T_{k}\right)=\sum_{v \in \mathbb{N}_{0}^{\ell}} \delta\left(S_{k}\right) / \prod_{i \in[\ell]} p_{i}^{v_{i} \alpha_{i}}
$$

Thus
$\delta\left(T_{k}\right)=\delta\left(S_{k}\right) \sum_{v \in \mathbb{N}_{0} \ell} \prod_{i \in[\ell]} p_{i}^{-v_{i} \alpha_{i}}=\delta\left(S_{k}\right) \prod_{i \in[\ell]} \frac{p_{i}^{\alpha_{i}}}{p_{i}^{\alpha_{i}}-1}=\delta\left(S_{k}\right) \prod_{i \in[\ell]}\left(1+\frac{1}{p_{i}^{\alpha_{i}}-1}\right)$.
The result follows by substituting the expression for $\delta\left(S_{k}\right)$ from Theorem 4.
We now show that $\delta\left(T_{k}\right)$ approaches $\delta\left(S_{k}\right)$ for large k.

Proposition 1. For all $k \in \mathbb{N}$,

$$
\delta\left(S_{k}\right)<\delta\left(T_{k}\right)=c_{k} \cdot \delta\left(S_{k}\right),
$$

for some constant $c_{k} \rightarrow 1$ for large k.
Proof. By the Prime Number Theorem, $\ell \leq \mathcal{O}(k / \log k)$. Thus

$$
\begin{aligned}
c_{k}=\prod_{i}\left(1+\frac{1}{p_{i}^{\alpha_{i}}-1}\right)<\prod_{i}\left(1+\frac{1}{k-1}\right) & \leq\left(1+\frac{1}{k-1}\right)^{\mathcal{O}(k / \log k)} \\
& \leq \exp (\mathcal{O}(1 / \log k)) \rightarrow 1
\end{aligned}
$$

The case $k=2$ was previously studied by Tamura [29] and Allouche et al. [3]. Observe that $T_{2}=\left\{2^{2 i}(2 j+1): i, j \in \mathbb{N}_{0}\right\}$. Theorem 6 with $k=2$ was proved by Allouche et al. [3], who also proved that T_{2} has the maximum density out of all 2-multiplicative sets. Interesting relationships with the Thue-Morse sequence were also discovered.

Proposition 2 ([3]). The set T_{2} is 2-multiplicative and has density $2 / 3$. For all $d \in \mathbb{N}$, the d-th smallest element of T_{2} is at most $3 d / 2+\mathcal{O}(\log d)$.

Theorem 7. Let \mathcal{F} be a forbidden family. Let $G_{1}, G_{2}, \ldots, G_{d}$ be graphs, each with $\Lambda\left(G_{i}, \mathcal{F}\right) \leq 2$ or $\chi\left(G_{i}, \mathcal{F}\right) \leq 3$. Let t be the d-th smallest element of T_{2}. Then

$$
\begin{aligned}
& \Lambda\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 2 t \leq 3 d+\mathcal{O}(\log d), \quad \text { and } \\
& \chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, \mathcal{F}\right) \leq 4 t+1 \leq 6 d+\mathcal{O}(\log d) .
\end{aligned}
$$

Proof. By (1), $\chi\left(G_{i}, \mathcal{F}\right) \leq 3$ implies $\Lambda\left(G_{i}, \mathcal{F}\right) \leq 2$. The result follows by applying Lemma 1 with the d smallest elements in T_{2} from Proposition 2.

5. P_{3}-free Colourings

Recall that a colouring is P_{3}-free if vertices at distance at most two receive distinct colours. Let $\Delta(G)$ be the maximum degree of the graph G. Since a vertex and its neighbours receive distinct colours in a P_{3}-free colouring,

$$
\begin{equation*}
\chi\left(G, P_{3}\right) \geq \Delta(G)+1 \tag{10}
\end{equation*}
$$

Let $Q_{d}:=K_{2} \square K_{2} \square \cdots \square K_{2}$ be the d-dimensional hypercube. P_{3}-free colourings of Q_{d} (and more generally, colourings of powers of Q_{d}) have been extensively studied [15,20,28,32,30]. Wan [30] proved that

$$
d+1 \leq \chi\left(Q_{d}, P_{3}\right) \leq 2^{\left\lceil\log _{2}(d+1)\right\rceil} \leq 2 d
$$

While our methods are not powerful enough to obtain the above upper bound, for grid graphs we have the following result, which was first proved by Fertin et al. [10].

Example 1 ([10]). Every d-dimensional grid graph $G:=P_{n_{1}} \square P_{n_{2}} \square \cdots$ $\square P_{n_{d}}$ satisfies $\chi\left(G, P_{3}\right) \leq 2 d+1$, with equality if every $n_{i} \geq 3$.

Proof. The lower bound follows from (10) since $\Delta(G)=2 d$ if every $n_{i} \geq 3$. Colour the i-th vertex in P_{n} by i. We obtain a P_{3}-free colouring of P_{n} with span 1. Thus $\Lambda\left(P_{n}, P_{3}\right)=1$, and the upper bound follows from Theorem 2 with $k=1$.

Example 1 highlights the utility of chromatic span. A weaker bound on $\chi\left(G, P_{3}\right)$ is obtained if the P_{3}-free chromatic number, $\chi\left(P_{n}, P_{3}\right)=3$, is used rather than the P_{3}-free chromatic span, $\Lambda\left(P_{n}, P_{3}\right)=1$.

Example 2. Let G be the d-dimensional graph $G:=P_{n_{1}}^{2} \square P_{n_{2}}^{2} \square \cdots \square P_{n_{d}}^{2}$. Let t be the d-th smallest element of T_{2}. Then

$$
\chi\left(G, P_{3}\right) \leq 4 t+1 \leq 6 d+\mathcal{O}(\log d),
$$

and if each $n_{i} \geq 5$ then $\chi\left(G, P_{3}\right) \geq 4 d+1$.
Proof. Equation (10) implies the lower bound since $\Delta(G)=4 d$ if each $n_{i} \geq 5$. Obviously $\Lambda\left(P_{n}^{2}, P_{3}\right) \leq 2$. Thus the upper bound follows from Theorem 7 .

Example 3. Let G be the graph $P_{n_{1}}^{k} \square P_{n_{2}}^{k} \square \cdots \square P_{n_{d}}^{k}$. If $n_{i}, n_{j} \geq k$ for some $i \neq j$, then $\chi\left(G, P_{3}\right) \geq k^{2}$, and if every $n_{i} \geq 2 k+1$ then $\chi\left(G, P_{3}\right) \geq 2 d k+1$. As an upper bound,

$$
\chi\left(G, P_{3}\right) \leq 2 k(k d-k+1)+1 .
$$

Moreover, for all $\epsilon>0$ and for large $d>d(k, \epsilon)$,

$$
\chi\left(G, P_{3}\right) \leq 1+\frac{2 \boldsymbol{e}^{\gamma}}{1-\epsilon} d k \log k .
$$

Proof. If $n_{i}, n_{j} \geq k$ then G^{2} contains a k^{2}-vertex clique, and $\chi\left(G, P_{3}\right)=$ $\chi\left(G^{2}\right) \geq k^{2}$. The second lower bound follows from (10) since $\Delta(G)=2 d k$ if every $n_{i} \geq 2 k+1$. Obviously $\Lambda\left(P_{n}^{k}, P_{3}\right) \leq k$. Thus the upper bounds follow from Theorem 2.

Example 4. The d-dimensional toroidal grid $G:=C_{n_{1}} \square C_{n_{2}} \square \cdots \square C_{n_{d}}$ satisfies

$$
2 d+1 \leq \chi\left(G, P_{3}\right) \leq 4 t+1 \leq 6 d+\mathcal{O}(\log d)
$$

where t is the d-th smallest element of T_{2}.

Proof. The lower bound follows from (10) since G is $2 d$-regular. Say $C_{n}=$ $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. By considering the vertex ordering

$$
\left(v_{1}, v_{n} ; v_{2}, v_{n-1} ; \ldots ; v_{i}, v_{n-i+1} ; \ldots ; v_{\lfloor n / 2\rfloor}, v_{\lceil n / 2\rceil}\right)
$$

of C_{n}, we see that $C_{n} \subset P_{n}^{2}$. Thus the upper bound follows from Example 2 .
Fertin et al. [11] studied P_{4}-free colourings of toroidal grids, and proved that the minimum number of colours is at most $2 d^{2}+d+1$, and at most $2 d+1$ in the case that $2 d+1$ divides each n_{i}. Thus Example 4 gives a linear upper bound on the P_{3}-free chromatic number of toroidal grids, where even for the weaker notion of P_{4}-free colourings, only a quadratic upper bound was previously known.

Example 5. Let G be the graph $C_{n_{1}}^{k} \square C_{n_{2}}^{k} \square \cdots \square C_{n_{d}}^{k}$. If $n_{i}, n_{j} \geq k$ for some $i \neq j$, then $\chi\left(G, P_{3}\right) \geq k^{2}$, and if every $n_{i} \geq 2 k+1$ then $\chi\left(G, P_{3}\right) \geq 2 d k+1$. As an upper bound,

$$
\chi\left(G, P_{3}\right) \leq 4 k(2 k d-2 k+1)+1 .
$$

Moreover, for all $\epsilon>0$ and for large $d>d(k, \epsilon)$,

$$
\chi\left(G, P_{3}\right) \leq 1+\frac{4 e^{\gamma}}{1-\epsilon} d \cdot k \log (2 k) .
$$

Proof. The lower bounds are the same as in Example 3. As proved in Example 4, $C_{n} \subset P_{n}^{2}$. Thus $C_{n}^{k} \subset P_{n}^{2 k}$, and the upper bound follows from Example 3.

6. Acyclic Colourings

Recall that a colouring with no bichromatic cycle is acyclic. The acyclic chromatic number of every graph G (with at least one edge) satisfies the following well-known lower bound [10], where $\bar{d}(G):=\frac{|E(G)|}{\mid V(G)}$:

$$
\begin{equation*}
\chi(G, \mathcal{C})>\bar{d}(G)+1 . \tag{11}
\end{equation*}
$$

It is easily seen that a cartesian product satisfies

$$
\begin{equation*}
\bar{d}\left(G_{1} \square G_{2} \square \cdots \square G_{d}\right)=\sum_{i \in[d]} \bar{d}\left(G_{i}\right) . \tag{12}
\end{equation*}
$$

The following theorem, which was proved for paths by Fertin et al. [10], gives a special case when a $(k+1)$-colouring can be obtained from a colouring with span k, rather than the $(2 k+1)$-colouring guaranteed by (1).

Proposition 3. For all trees $T_{1}, T_{2}, \ldots, T_{d}$, the acyclic chromatic number

$$
\chi\left(T_{1} \square T_{2} \square \cdots \square T_{d}, \mathcal{C}\right) \leq d+1,
$$

with equality if every $\left|V\left(T_{i}\right)\right| \geq d$.
Proof. Let $\tilde{G}:=T_{1} \square T_{2} \square \cdots \square T_{d}$. First we prove the lower bound. By (11) and (12), and since $\left|V\left(T_{i}\right)\right| \geq d$,

$$
\chi(\tilde{G}, \mathcal{C})>\bar{d}(\tilde{G})+1=1+\sum_{i \in[d]} \frac{\left|V\left(T_{i}\right)\right|-1}{\left|V\left(T_{i}\right)\right|}=d+1-\sum_{i \in[d]} \frac{1}{\left|V\left(T_{i}\right)\right|} \geq d .
$$

Hence $\chi(\tilde{G}, \mathcal{C}) \geq d+1$.
Now we prove the upper bound. Root each tree T_{i} at some vertex r_{i}. For each vertex $v \in V\left(T_{i}\right)$, let $c_{i}(v)$ be the distance between r_{i} and v in T_{i}. Then c_{i} is a colouring of T_{i} with span one. For each vertex $\tilde{v} \in V(\tilde{G})$, let

$$
c(\tilde{v}):=\sum_{i \in[d]} i \cdot c_{i}\left(v_{i}\right) .
$$

For each edge $\tilde{v} \tilde{w} \in E(\tilde{G})$ in dimension i,

$$
\begin{align*}
c(\tilde{w})-c(\tilde{v}) & =\left(\sum_{j=1}^{d} j \cdot c_{j}\left(w_{j}\right)\right)-\left(\sum_{j=1}^{d} j \cdot c_{j}\left(v_{j}\right)\right) \tag{13}\\
& =i\left(c_{i}\left(w_{i}\right)-c_{i}\left(v_{i}\right)\right)= \pm i .
\end{align*}
$$

Thus c is a colouring of \tilde{G} with span d. Let $c^{\prime}(\tilde{v}):=c(\tilde{v}) \bmod (d+1)$. Obviously c^{\prime} is a $(d+1)$-colouring of \tilde{G}. We claim that c^{\prime} is acyclic.

Consider each edge of T_{i} to be oriented away from the root r_{i}. Orient each edge $\tilde{v} \tilde{w} \in E(\tilde{G})$ in dimension i according to the orientation of $v_{i} w_{i}$. That is, orient \tilde{v} to \tilde{w} so that $c_{i}\left(w_{i}\right)-c_{i}\left(v_{i}\right)=1$. Clearly the orientation of \tilde{G} is acyclic.

Suppose that on the contrary there is a vertex $\tilde{v} \in V(\tilde{G})$ that has two incoming edges $\tilde{u} \tilde{v}$ and $\tilde{w} \tilde{v}$ for which $c^{\prime}(\tilde{u})=c^{\prime}(\tilde{w})$. Thus $c(\tilde{u}) \equiv c(\tilde{w})$ $(\bmod (d+1))$ and

$$
c(\tilde{u})-c(\tilde{v}) \equiv c(\tilde{w})-c(\tilde{v})(\bmod (d+1)) .
$$

Let i and j be the dimensions of $\tilde{u} \tilde{v}$ and $\tilde{w} \tilde{v}$, respectively. By (13),

$$
i\left(c_{i}\left(u_{i}\right)-c_{i}\left(v_{i}\right)\right) \equiv j\left(c_{j}\left(w_{j}\right)-c_{j}\left(v_{j}\right)\right) \quad(\bmod (d+1)) .
$$

By the orientation of edges, $c_{i}\left(u_{i}\right)-c_{i}\left(v_{i}\right)=1$ and $c_{j}\left(w_{j}\right)-c_{j}\left(v_{j}\right)=1$. Thus $i \equiv j(\bmod (d+1))$, which implies that $i=j$. Hence $\tilde{u}=\tilde{w}$ since v_{i} has
only one incoming edge in T_{i} (from its parent). Thus every vertex of \tilde{G} has at most one incoming edge in each bichromatic subgraph H (with respect to the colouring c^{\prime}). Hence H has an acyclic orientation with at most one incoming edge at each vertex. Therefore H is a forest, and c^{\prime} is the desired acyclic colouring of \tilde{G}.

7. P_{4}-free Colourings

Recall that a colouring with no bichromatic P_{4} is a star colouring.
Example 6. For trees $T_{1}, T_{2}, \ldots, T_{d}$, the star chromatic number

$$
\chi\left(T_{1} \square T_{2} \square \cdots \square T_{d}, P_{4}\right) \leq 2 d+1
$$

Proof. Root each tree T_{i} at some vertex r_{i}. For each vertex $v \in V\left(T_{i}\right)$, let $c_{i}(v)$ be the distance between r_{i} and v in T_{i}. (This is the same colouring used in Proposition 3.) Obviously c_{i} is a P_{4}-free colouring of T_{i} with span one. The result follows from Theorem 2 with $k=1$. Also note that the same lower bound from Proposition 3 applies for the star chromatic number.

Example 7. Let \mathcal{G} be a minor-closed graph family that is not the class of all graphs. Then there is a constant $c=c(\mathcal{G})$ such that for all graphs $G_{1}, G_{2}, \ldots, G_{d} \in \mathcal{G}$,

$$
\chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, P_{4}\right) \leq c d
$$

Proof. Nešetřil and Ossona de Mendez [17] proved that there is a constant c_{1} (bounded by a small quadratic function of the maximum chromatic number of a graph in \mathcal{G}) such that every graph $G \in \mathcal{G}$ has star-chromatic number $\chi\left(G, P_{4}\right) \leq c_{1}$. By Theorem 1, there is constant c_{2} (bounded by a small quadratic function of $\left.c_{1}\right)$ such that $\chi\left(G_{1} \square G_{2} \square \cdots \square G_{d}, P_{4}\right) \leq c_{2} d$.

Note

In related recent work, Jamison et al. [14] independently proved Proposition 3, and Jamison and Matthews [13] studied acyclic colourings of cartesian products of cliques (Hamming graphs).

References

[1] Geir Agnarsson and Magnús M. Halldórsson: Coloring powers of planar graphs, SIAM J. Discrete Math. 16(4) (2003), 651-662.
[2] Michael O. Albertson, Glenn G. Chappell, Hal A. Kierstead, André Kündgen and Radhika Ramamurthi: Coloring with no 2-colored P_{4} 's, Electron. J. Combin. 11 (2004), \#R26.
[3] Jean-Paul Allouche, André Arnold, Jean Berstel, Srečko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan: A relative of the Thue-Morse sequence, Discrete Math. 139(1-3) (1995), 455-461.
[4] Noga Alon, Colin McDiarmid and Bruce Reed: Acyclic coloring of graphs, Random Structures Algorithms 2(3) (1991), 277-288.
[5] Oleg V. Borodin: On acyclic colorings of planar graphs, Discrete Math. 25(3) (1979), 211-236.
[6] Paul Erdős: On sequences of integers no one of which divides the product of two others and some related problems, Izvestiya Naustno-Issl. Inst. Mat. i Meh. Tomsk 2 (1938), 74-82.
[7] Paul Erdős: On some applications of graph theory to number theoretic problems, Publ. Ramanujan Inst. No. 1 (1968/1969), 131-136.
[8] Paul Erdős: Some applications of graph theory to number theory, in: The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ.), pp. 77-82, Springer, Berlin, 1969.
[9] Paul Erdős and Pál Turán: On a problem of Sidon in additive number theory, and on some related problems; J. London Math. Soc. 16 (1941), 212-215.
[10] Guillaume Fertin, Emmanuel Godard and André Raspaud: Acyclic and k distance coloring of the grid, Inform. Process. Lett. 87(1) (2003), 51-58.
[11] Guillaume Fertin, André Raspaud and Bruce Reed: On star coloring of graphs, J. Graph Theory 47(3) (2004), 163-182.
[12] Godfrey H. Hardy and Edward M. Wright: An introduction to the theory of numbers, Oxford University Press, 5th edn., 1979.
[13] Robert E. Jamison and Gretchen L. Matthews: On the acyclic chromatic number of Hamming graphs, Graphs Combin. 24(4) (2008), 349-360.
[14] Robert E. Jamison, Gretchen L. Matthews and John Villalpando: Acyclic colorings of products of trees, Inform. Process. Lett. 99(1) (2006), 7-12.
[15] Dongsoo S. Kim, Ding-Zhu Du and Panos M. Pardalos: A coloring problem on the n-cube, Discrete Appl. Math. 103(1-3) (2000), 307-311.
[16] Daniel Král': Coloring powers of chordal graphs, SIAM J. Discrete Math. 18(3) (2004), 451-461.
[17] Jaroslav Nešetřil and Patrice Ossona de Mendez: Colorings and homomorphisms of minor closed classes, in: Discrete and Computational Geometry, The Goodman-Pollack Festschrift (Boris Aronov, Saugata Basu, János Pach and Micha Sharir, eds.), vol. 25 of Algorithms and Combinatorics, pp. 651-664, Springer, 2003.
[18] Jaroslav Nešetřil and Patrice Ossona de Mendez: Tree-depth, subgraph coloring and homomorphism bounds, European J. Combin. 27(6) (2006), 1022-1041.
[19] Kevin O'Bryant: A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin. (2004), \#DS11.
[20] Patric R. J. Östergård: On a hypercube coloring problem, J. Combin. Theory Ser. A 108(2) (2004), 199-204.
[21] Attila Pór and David R. Wood: Colourings of the cartesian product of graphs and multiplicative Sidon sets, arXiv:math/0511262, (2005).
[22] Imre Z. Ruzsa: Erdős and the integers, J. Number Theory 79(1) (1999), 115-163.
[23] Imre Z. Ruzsa: Additive and multiplicative Sidon sets, Acta Math. Hungar. 112(4) (2006), 345-354.
[24] Gert Sabidussi: Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957), 515-525.
[25] András Sárközy: Unsolved problems in number theory, Period. Math. Hungar. 42(1-2) (2001), 17-35.
[26] Simon Sidon: Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen, Math. Ann. 106 (1932), 536-539.
[27] James Singer: A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43(3) (1938), 377-385.
[28] ZdZisŁaw Skupień: Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15(1) (1995), 89-106.
[29] Jun-ichi Tamura: Partitions of the set of positive integers, nonperiodic sequences, and transcendence; Sūrikaisekikenkyūsho Kōkyūroku 961 (1996), 161-182.
[30] Peng-Jun Wan: Near-optimal conflict-free channel set assignments for an optical cluster-based hypercube network, J. Comb. Optim. 1(2) (1997), 179-186.
[31] David R. Wood: Acyclic, star and oriented colourings of graph subdivisions, Discrete Math. Theor. Comput. Sci. 7(1) (2005), 37-50.
[32] Sanming Zhou: A channel assignment problem for optical networks modelled by Cayley graphs, Theoret. Comput. Sci. 310(1-3) (2004), 501-511.

Attila Pór
Department of Mathematics
Western Kentucky University
1906 College Heights Boulevard
Bowling Green, KY 42101-1078
USA
attila.por@wku.edu

David R. Wood
QEII Research Fellow
Department of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010
Australia
woodd@unimelb.edu.au

[^0]: Mathematics Subject Classification (2000): 05C15, 11N99
 Research initiated at the Department of Applied Mathematics and the Institute for Theoretical Computer Science, Charles University, Prague, Czech Republic. Supported by project LN00A056 of the Ministry of Education of the Czech Republic, and by the European Union Research Training Network COMBSTRU (Combinatorial Structure of Intractable Problems).

[^1]: ${ }^{1}$ Erdős [6-8] defined a set $A \subseteq \mathbb{N}$ to be multiplicative Sidon if $a b=c d$ implies $\{a, b\}=\{c, d\}$ for all $a, b, c, d \in A$; see $[22,23,25]$. Additive Sidon sets have been more widely studied; see the classical papers [9,26,27] and the recent survey by O'Bryant [19].

