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Abstract

We consider three-dimensional grid-drawings of graphs
with at most one bend per edge. Under the additional
requirement that the vertices be collinear, we prove
that the minimum volume of such a drawing is Θ(cn),
where n is the number of vertices and c is the cutwidth
of the graph. We then prove that every graph has a
three-dimensional grid-drawing with O(n3/ log2 n) vol-
ume and one bend per edge. The best previous bound
was O(n3).

1 Introduction

We consider undirected, finite, and simple graphs G
with vertex set V (G) and edge set E(G). The number
of vertices and edges of G are respectively denoted by
n = |V (G)| and m = |E(G)|. A three-dimensional poly-
line grid-drawing of a graph, henceforth called a poly-
line drawing, represents the vertices by distinct points
in Z3 (called gridpoints), and represents each edge as a
polyline between its endpoints with bends (if any) also
at gridpoints, such that distinct edges only intersect at
common endpoints, and each edge only intersects a ver-
tex that is an endpoint of that edge. A polyline drawing
with at most b bends per edge is called a b-bend drawing.
A 0-bend drawing is called a straight-line drawing.

A folklore result states that every graph has a
straight-line drawing. Thus we are interested in optimis-
ing measures of the aesthetic quality of such drawings.
The bounding box of a polyline drawing is the minimum
axis-aligned box containing the drawing. If the bound-
ing box has side lengths X − 1, Y − 1 and Z − 1, then
we speak of an X×Y ×Z polyline drawing with volume
X · Y · Z. That is, the volume of a polyline drawing is
the number of gridpoints in the bounding box.

This paper continues the study of upper bounds on
the volume and number of bends per edge in polyline
drawings. The volume of straight-line drawings has
been widely studied (see [6]). Only recently have (non-
orthogonal) polyline drawings been considered [4, 8].
Table 1 summarises the best known upper bounds on
the volume and bends per edge in polyline drawings.

Cohen et al. [2] proved that the complete graph Kn

(and hence every n-vertex graph) has a straight-line
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drawing with O(n3) volume, and that Ω(n3) volume was
necessary. Dyck et al. [8] recently proved that Kn has
a 2-bend drawing with O(n2) volume. The same con-
clusion can be reached from the O(qn) volume bound
of Dujmović and Wood [4], since trivially every graph
has a (n − 1)-queue layout. Dyck et al. [8] asked the
interesting question: what is the minimum volume in a
1-bend drawing of Kn? The best known upper bound
at the time was O(n3), while Ω(n2) is the best known
lower bound. (Bose et al. [1] proved that all polyline
drawings have Ω(n + m) volume.)

In this paper we prove two results. The first concerns
collinear polyline drawings in which all the vertices are
in a single line. Let G be a graph, and let σ be a linear
order of V (G). Let Lσ(e) and Rσ(e) denote the end-
points of each edge e such that Lσ(e) <σ Rσ(e). For
each vertex v ∈ V (G), the set {e ∈ E(G) : Lσ(e) ≤σ

v <σ Rσ(e)} is called the cut in σ at v. The cutwidth
of σ is the maximum size of a cut in σ. The cutwidth of
G is the minimum cutwidth of a linear order of V (G).

Theorem 1 Let G be a graph with n vertices and
cutwidth c. The minimum volume for a 1-bend collinear
drawing of G is Θ(cn).

Theorem 1 represents a qualitative improvement over
the O(nm) volume bound of Dujmović and Wood [4].
Our second result improves the best known upper bound
for 1-bend drawings of Kn.

Theorem 2 Every complete graph Kn, and hence ev-
ery n-vertex graph, has a 1-bend O(log n) × O(n) ×
O(n2/ log3 n) drawing with O(n3/ log2 n) volume.

It is not straightforward to compare the volume
bound in Theorem 2 with the O(kqm) bound by Du-
jmović and Wood [4] for k-colourable q-queue graphs
(see Table 1). However, since k ≤ 4q and m ≤ 2qn
(see [7]), we have that O(kqm) ∈ O(q3n), and thus the
O(kqm) bound by Dujmović and Wood [4] is no more
than the bound in Theorem 2 whenever the graph has
a O((n/ log n)2/3)-queue layout. On the other hand,
kqm ≥ m2/n. So for dense graphs with Ω(n2) edges the
O(kqm) bound by Dujmović and Wood [4] is cubic (in
n), and the bound in Theorem 2 is necessarily smaller.
In particular, Theorem 2 provides a partial solution to
the above-mentioned open problem of Dyck et al. [8]
regarding the minimum volume of a 1-bend drawing of
Kn.
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Table 1: Volume of 3D polyline drawings of graphs with n vertices and m ≥ n edges.

graph family bends per edge volume reference
arbitrary 0 O(n3) Cohen et al. [2]
arbitrary 0 O(m4/3n) Dujmović and Wood [6]
maximum degree ∆ 0 O(∆mn) Dujmović and Wood [6]
bounded chromatic number 0 O(n2) Pach et al. [9]
bounded chromatic number 0 O(m2/3n) Dujmović and Wood [6]
bounded maximum degree 0 O(n3/2) Dujmović and Wood [6]
H-minor free (H fixed) 0 O(n3/2) Dujmović and Wood [6]
bounded tree-width 0 O(n) Dujmović and Wood [5]
k-colourable q-queue 1 O(kqm) Dujmović and Wood [4]
arbitrary 1 O(nm) Dujmović and Wood [4]
cutwidth c 1 O(cn) Theorem 1
arbitrary 1 O(n3/ log2 n) Theorem 2
q-queue 2 O(qn) Dujmović and Wood [4]
q-queue (constant ε > 0) O(1) O(mqε) Dujmović and Wood [4]
q-queue O(log q) O(m log q) Dujmović and Wood [4]

2 Proof of Theorem 1

First we prove the lower bound in Theorem 1.

Lemma 3 Let G be a graph with n vertices and
cutwidth c. Then every 1-bend collinear drawing of G
has at least cn/2 volume.

Proof. Consider a 1-bend collinear drawing of G in an
X × Y ×Z bounding box. Let L be the line containing
the vertices. If L is not contained in a grid-plane, then
X, Y, Z ≥ n, and the volume is at least n3 ≥ cn.

Now assume, without loss of generality, that L is con-
tained in the Z = 0 plane. Let σ be a linear order of
the vertices determined by L. Let B be the set of bends
corresponding to the edges in the largest cut in σ. Then
|B| ≥ c. For every line L′ parallel to L, there is at most
one bend in B on L′, as otherwise there is a crossing.

First suppose that L is axis-parallel. Without loss of
generality, L is the X-axis. Then X ≥ n. The grid-
points in the bounding box can be covered by Y Z lines
parallel to L. Thus Y Z ≥ |B| ≥ c, and the volume
XY Z ≥ cn.

Now suppose that L is not axis-parallel. Thus X ≥ n
and Y ≥ n. The gridpoints in the bounding box can be
covered by Z(X + Y ) lines parallel to L. Thus Z(X +
Y ) ≥ |B| ≥ c, and the volume XY Z ≥ XY c/(X+Y ) ≥
cn/2. �

To prove the upper bound in Theorem 1 we will need
the following lemma, which is a slight generalisation of a
well known result. (For example, Pach et al. [9] proved
the case X = Y ). We say two gridpoints v and w in the
plane are visible if the segment vw contains no other
gridpoint.

Lemma 4 The number of gridpoints {(x, y) : 1 ≤ x ≤
X, 1 ≤ y ≤ Y } that are visible from the origin is at least
3XY/2π2.

Proof. Without loss of generality X ≤ Y . Let N be the
desired number of gridpoints. For each 1 ≤ x ≤ X, let
Nx be the number of gridpoints (x, y) that are visible
from the origin, such that 1 ≤ y ≤ Y . A gridpoint
(x, y) is visible from the origin if and only if x and y are
coprime. Let φ(x) be the number of positive integers
less than x that are coprime with x (Euler’s φ function).
Thus Nx ≥ φ(x), and

N =
X∑

x=1

Nx ≥
X∑

x=1

φ(x) ≈ 3X2

π2
.

If X ≥ Y/2, then N ≥ 3XY/2π2, and we are done. Now
assume that Y ≥ 2X. If x and y are coprime, then x
and y + x are coprime. Thus Nx ≥ bY/xc · φ(x). Thus,

N ≥
X∑

x=1

⌊
Y

x

⌋
· φ(x) ≥

(
Y −X

X

) X∑
x=1

φ(x)

≈ 3(Y −X)X
π2

≥ 3XY

2π2

�

Now we prove the following strengthening of the up-
per bound in Theorem 1.

Lemma 5 Let G be a graph with n vertices and
cutwidth c. For all integers X ≥ 1, G has a 1-bend
collinear X ×O(c/X)× n drawing with the vertices on
the Z-axis. The volume is O(cn).
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Proof. Let σ be a vertex ordering of G with cutwidth
c. For all pairs of distinct edges e and f , say e ≺ f
whenever Rσ(e) ≤σ Lσ(f). Then � is a partial or-
der on E(G), where an antichain in � is a cut in
σ. By Dilworth’s Theorem [3], there is a partition of
E(G) into chains E1, E2, . . . , Ec, such that each Ei =
(ei,1, ei,2, . . . , ei,ki

) and Rσ(ei,j) ≤σ Lσ(ei,j+1) for all
1 ≤ j ≤ ki − 1.

By Lemma 4 with Y = d4π2c/3Xe, there is a set
S = {(xi, yi) : 1 ≤ i ≤ c, 1 ≤ xi ≤ X, 1 ≤ yi ≤ Y }
of gridpoints that are visible from the origin. Position
the ith vertex in σ at (0, 0, i) on the Z-axis, and po-
sition the bend for each edge ei,j at (xi, yi, j). Edges
in distinct chains are contained in distinct planes that
only intersect in the Z-axis. Thus such edges do not
cross. Edges within each chain Ei do not cross since no
two edges in Ei are nested or crossing in σ, and the Z-
coordinates of the bends of the edges in Ei agrees with
the order of their endpoints on the Z-axis, as illustrated
in Figure 1. The bounding box is X × d4π2c/3Xe × n,
since the number of edges in a single chain is at most
n− 1. �

Figure 1: Construction in Lemma 5.

The constants in Lemma 5 can be tweaked as follows.

Lemma 6 Let G be a graph with n vertices and
cutwidth c. Then G has a 1-bend collinear 3×d c−2

2 e×n
drawing. The volume is at most 3(c− 1)n/2.

Proof. Let S = {(−1, 0), (1, 0)} ∪ {(x, 1), (x,−1) :
−1 ≤ x ≤ d(c − 6)/2e}. Then S consists of at least
c gridpoints that are visible from the origin. The result
follows from the proof of Lemma 5. �

Since the cutwidth of Kn is n2/4 we have:

Corollary 7 The minimum volume for a 1-bend
collinear drawing of the complete graph Kn is Θ(n3).
For all X ≥ 1, Kn has a 1-bend collinear X×O(n2/X)×
n drawing with the vertices on the Z-axis. Furthermore,
Kn has a 1-bend collinear 3× dn2/8e × n drawing with
volume at most 3n3/8.�

3 Proof of Theorem 2

Let P = d 1
2 log4 ne and Q = dn/P e. Let V (Kn) =

{va,i : 1 ≤ a ≤ P, 1 ≤ i ≤ Q}. Position each vertex va,i

at
(2a, aQ + i, 0) .

For each 1 ≤ a ≤ P , the set of vertices {va,i : 1 ≤ i ≤ Q}
induces a complete graph KQ, which is drawn using
Corollary 7 (with the dimensions permuted) in the box

[2a, 2a + P ]× [aQ + 1, (a + 1)Q]× [0,−cQ2/P ] ,

for some constant c. For all 1 ≤ a < b ≤ P , orient each
edge e = (va,i, vb,j), and position the bend for e at

re = (2a + 1, bQ + j, 4P−a Q− i) ,

as illustrated in Figure 2. We say va,ire is an outgoing
segment at va,i, and revb,j is an incoming segment at
vb,j .

X

Z
Y

Figure 2: Construction of 1-bend drawing of Kn.

Thus the bounding box is O(P ) × O(n) × O(4P Q +
Q2/P ), which is O(log n) × O(n) × O(n3/2/ log n +
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n2/ log3 n), which is O(log n) × O(n) × O(n2/ log3 n).
Hence the volume is O(n3/ log2 n). It remains to prove
that there are no edge crossings. By Corollary 7 all
edges below the Z = 0 plane do not cross. We now only
consider edges above the Z = 0 plane.

Each point in an outgoing segment at va,i has an X-
coordinate in [2a, 2a + 1]. Thus an outgoing segment at
some vertex va1,i1 does not intersect an outgoing seg-
ment at some vertex va2,i2 whenever a1 6= a2. Clearly
an outgoing segment at va,i1 is not coplanar with an
outgoing segment at va,i2 whenever i1 6= i2, and thus
these segments do not cross. Since each bend is assigned
a unique gridpoint, any two outgoing segments at the
same vertex va,i do not cross. Thus no two outgoing
segments cross.

Each point in an incoming segment at vb,j has a Y -
coordinate of bQ + j. Thus incoming segments at dis-
tinct vertices do not cross. Since each bend is assigned
a unique gridpoint, any two incoming segments at the
same vertex do not cross. Thus no two incoming seg-
ments cross.

To prove that an incoming segment does not cross an
outgoing segment, we claim that in the projection of the
edges on the Y = 0 plane, an incoming segment does
not cross an outgoing segment. In the remainder of the
proof we work solely in the Y = 0 plane, and use (X, Z)
coordinates.

The projection in the Y = 0 plane of an outgoing
segment at a vertex va,i is the segment

s1 = (2a, 0) → (2a + 1, 4P−a Q− i) .

The projection in the Y = 0 plane of the incoming seg-
ment of an edge (vc,k, vd,`) is the segment

s2 = (2c + 1, 4P−c Q− k) → (2d, 0).

For there to be a crossing clearly we must have c <
a < d. To prove that there is no crossing it suffices to
show that the Z-coordinate of s2 is greater than the Z-
coordinate of s1 when X = 2a + 1. Now s2 is contained
in the line

Z =
4P−c Q− k

2c + 1− 2d
(X − 2d) .

Thus the Z-coordinate of s2 at X = 2a + 1 is at least

4P−c Q−Q

2c + 1− 2d
(2a + 1− 2d) .

Thus it suffices to prove that

4P−c Q−Q

2c + 1− 2d
(2a + 1− 2d) > 4P−a Q . (1)

Clearly (1) is implied if it is proved with a = c + 1 and
d = c + 2. In this case, (1) reduces to

4P−c − 1
3

> 4P−c−1 .

That is, 4P−c−1 > 1, which is true, since c ≤ P − 2.
This completes the proof.
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