Three dimensional graph drawing with fixed vertices and one bend per edge

David R. Wood ${ }^{\neq}$

A three-dimensional grid-drawing of a graph represents the vertices by distinct points in \mathbb{Z}^{3} (called grid-points), and represents each edge as a polyline between its endpoints with bends (if any) also at gridpoints, such that distinct edges only intersect at common endpoints, and each edge only intersects a vertex that is an endpoint of that edge. This topic has been previously studied in [1-5]. We focus on the problem of producing such a drawing, where the vertices are fixed at given grid-points. This variant has been previously studied in [5, 6]. Meijer and Wismath [5] recently proved the following theorem:

Theorem 1. For every graph G with n vertices, given fixed locations for the vertices of G in \mathbb{Z}^{3}, there is a three-dimensional grid-drawing of G with at most three bends per edge.

We prove the same result with one bend per edge.
Theorem 2. For every graph G with n vertices and m edges, given fixed locations for the vertices of G in \mathbb{Z}^{3}, there is a three-dimensional grid-drawing of G with one bend per edge.

Proof. Consider each edge $v w$ of G in turn. Say $v=(a, b, c)$ and $w=(p, q, r)$ in \mathbb{Z}^{3}. Choose $x \in\{a-1, a+1\} \backslash\{p\}$ and $y \in\{q-1, q+1\} \backslash\{b\}$. Let $L(v, w):=\{(x, y, z): z \in \mathbb{Z}\}$. Observe that $L(v, w)$ is contained in a vertical line, and every point in $L(v, w)$ is visible from both v and w. That is, a segment from v or w to any point in $L(v, w)$ passes through no other point in \mathbb{Z}^{3}. Choose a point $(x, y, z) \in L(v, w)$ such that (1) no vertex of G is positioned at (x, y, z), (2) the segment between v and (x, y, z) does not intersect any already drawn edge segment, and (3) the segment between w and (x, y, z) does not intersect any already drawn edge segment. Rule (1) forbids less than n points in $L(v, w)$. Note that no edge-segment is drawn as a vertical line by this algorithm. Thus each edge-segment that is already drawn intersects the vertical line containing $L(v, w)$ in at most one point. Hence rule (2) forbids at most one point in $L(v, w)$ for each edge-segment that is already drawn. In total, rule (2) forbids less than $2 m$ points in $L(v, w)$. Similarly, rule (3) forbids less than $2 m$ points in $L(v, w)$. Since $L(v, w)$ has infinitely many points, there is a point $(x, y, z) \in L(v, w)$ satisfying (1), (2) and (3). Draw $v w$ with one bend at (x, y, z). Then $v w$ passes through no vertex and intersects no other edge (except of course at v or w).

The volume of a three-dimensional grid-drawing is the number of grid points in a minimum axisaligned box that contains the drawing. Meijer and Wismath [5] considered the volume of the drawing

[^0]produced by Theorem 1 to be "unconstrained", although they did provide volume bounds for a different result with the vertices in the plane. Meijer and Wismath [5] state that "the general 3D point-set embeddability problem in which the specified point-set is not constrained to a plane remains as an interesting open problem if the volume must be constrained." We now show that the drawings produced by Theorem 2 have constrained volume. In fact, in a certain sense the volume is optimal.

Say the initial vertex set is contained in an $X \times Y \times Z$ bounding box, without loss of generality, $[1, X] \times[1, Y] \times[1, Z]$. Then for each edge, the algorithm may choose the bend point (x, y, z) with $x \in[0, X+1]$ and $y \in[0, Y+1]$ and $z \in[1, \max \{Z, n+4 m\}]$. Thus the drawing is contained in an $(X+2) \times(Y+2) \times \max \{Z, n+4 m\}$ bounding box.

We now show that in a special case, this volume bound is best possible. Say $G=K_{n}$ with the vertices at $(1,0,0), \ldots,(n, 0,0)$. Using the above notation, $X=n$ and $Y=1$ and $Z=1$. The above volume upper bound is $(X+2)(Y+2) \max \{Z, n+4 m\} \leqslant O\left(n^{3}\right)$. Morin and Wood [6] proved that every 1-bend drawing of an n-vertex graph G with vertices fixed on a line has volume at least $k n / 2$ where k is the cutwidth of G. The cutwidth of K_{n} equals $\left\lfloor n^{2} / 4\right\rfloor$. Thus the volume of any 1-bend drawing of K_{n}, with these vertex locations, is at least $n^{3} / 8$, which is within a constant factor of the above volume upper bound.

References

[1] Prosenjit Bose, Jurek Czyzowicz, Pat Morin, and David R. Wood. The maximum number of edges in a three-dimensional grid-drawing. J. Graph Algorithms Appl., 8(1):21-26, 2004. doi: 10.7155/jgaa.00079.
[2] Olivier Devillers, Hazel Everett, Sylvain Lazard, Maria Pentcheva, and Stephen Wismath. Drawing K_{n} in three dimensions with one bend per edge. J. Graph Algorithms Appl., 10(2):287-295, 2006. doi: 10.7155/jgaa. 00128.
[3] Vida Dujmović and David R. Wood. Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci., 7:155-202, 2005. http://dmtcs.episciences.org/346. MR: 2164064.
[4] B. Dyck, J. Joevenazzo, E. Nickle, J. Wilsdon, and Stephen K. Wismath. Drawing K_{n} in three dimensions with two bends per edge. Technical Report TR-CS-01-04, Department of Mathematics and Computer Science, University of Lethbridge, 2004.
[5] Henk Meijer and Stephen Wismath. Point-set embedding in three dimensions. J. Graph Algorithms Appl., 19(1):243-257, 2015. doi: 10.7155/jgaa. 00355.
[6] Pat Morin and David R. Wood. Three-dimensional 1-bend graph drawings,. J. Graph Algorithms Appl., 8(3):357-366, 2004. doi: 10.7155/jgaa.00095.

[^0]: June 30, 2016
 \# School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash. edu). Research supported by the Australian Research Council.

