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Abstract

This paper is about: (1) bounds on the number of cliques in a graph in a

particular class, and (2) algorithms for listing all cliques in a graph. We present

a simple algorithm that lists all cliques in an n-vertex graph in O(n) time per

clique. For O(1)-degenerate graphs, such as graphs excluding a fixed minor,

we describe a O(n) time algorithm for listing all cliques. We prove that graphs

excluding a fixed odd-minor have O(n2) cliques (which is tight), and conclude

a O(n3) time algorithm for listing all cliques.

1 Introduction

A clique in a graph1 is a set of pairwise adjacent vertices. This paper is about:

(1) bounds on the number of cliques in a graph in a particular class of graphs, and

(2) algorithms for listing all cliques in a graph in such a class.

In addition to being of intrinsic interest, bounds on the number of cliques in a graph

have recently been used in a proof that minor-closed graph classes are ‘small’ [19],

and in the analysis of a linear-time algorithm for computing separators in graphs in

minor-closed classes [22], which in turn has been applied in shortest path [24, 30, 31]

and maximum matching [32] algorithms. Note that (1) and (2) for maximal cliques

have been extensively studied; see [9] and the references therein.

∗A preliminary version of this paper was published in the Proceedings of Computing: the Aus-

tralasian Theory Symposium (CATS 2012).
†National Institute of Informatics, Tokyo, Japan (k keniti@nii.ac.jp).
‡Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Aus-

tralia (woodd@unimelb.edu.au). Supported by a QEII Fellowship and Discovery Project from the

Australian Research Council.
1We consider simple finite undirected graphs G with vertex set V (G) and edge set E(G). For

each vertex v ∈ V (G), let NG(v) or simply N(v), be {w ∈ V (G) : vw ∈ E(G)}.
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This paper describes a simple algorithm that lists all cliques in a given n-vertex

graph in O(n) time per clique (Theorem 3). This implies that if we solve (1) for a

particular class, then we immediately solve (2). Note that analogous results hold for

maximal cliques: there are algorithms that list all maximal cliques in polynomial

time per clique [8, 11, 12, 16, 21, 27] or in total time proportional to the maximum

possible number of cliques in an n-vertex graph, without additional polynomial

factors [7, 26].

As an example of (1), many authors have observed that every n-vertex planar graph

contains O(n) cliques [6, 20]. Wood [29] proved the best possible upper bound of

8(n−2). More generally, for each surface Σ, Dujmović et al. [5] characterised the n-

vertex graphs embeddable in Σ with the maximum number of cliques in terms of so-

called irreducible triangulations. They also proved that if Kω is the largest complete

graph that embeds in Σ, then every n-vertex graph that embeds in Σ contains at

most 8n + 3
2
2ω + o(2ω) cliques. Exact results and a precise characterisation of the

extremal examples are obtained for graphs that embed in the plane, torus, double

torus, projective plane, N3, and N4.

These results are generalised by considering H-minor-free graphs. A graph H is a

minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Equivalently, H is a minor of G if G contains a set of vertex-disjoint trees, one tree

Tv for each vertex v of H, such that for every edge e = vw in H there is an edge ê

between Tv and Tw. A graph H is an odd minor of G if, in addition, the vertices

in
⋃

v V (Tv) can be 2-coloured such that for each vertex v ∈ V (H) the edges in Tv

are bichromatic, and for each edge e = vw ∈ E(H), the edge ê between Tv and Tw

is monochromatic. A graph is (odd-)H-minor-free if it contains no (odd-)H-minor.

Several authors have proved that for every fixed graph H, every H-minor-free graph

with n vertices contains O(n) cliques [10, 19, 22, 29]. The best bound, due to Fomin

et al. [10], states that every Kt-minor-free graph contains at most ct log log tn cliques,

for some constant c. It is open whether such graphs have at most ctn cliques [29].

This paper considers (1) and (2) for graphs that exclude an odd minor. The class of

odd-H-minor-free graphs is more general than the class of H-minor-free graphs. For

example, the complete bipartite graph Kn,n contains a Kn+1 minor but contains

no odd-K3-minor. In fact, a graph contains no odd K3-minor if and only if it is

bipartite. In general, every Kt-minor-free graph has O(t
√
log tn) edges, and this

bound is best possible [15, 25]. On the other hand, some odd-Kt-minor-free graphs,

such as Kn,n, have Θ(n2) edges. This paper proves the following theorem:

Theorem 1. For every fixed graph H, there is a constant c, such that every n-

vertex odd-H-minor-free graph G contains at most cn2 cliques, and these cliques

can be listed in O(n3) time.
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The bound on the number of cliques in Theorem 1 is best possible up to the value of

c, since Kn,n contains no odd-K3-minor and contains Θ(n2) cliques. Also note that

a polynomial bound on the number of cliques in every graph in a class is non-trivial,

since Kn contains 2n cliques.

Theorem 1 is in sharp contrast with a number of intractability results about finding

cliques: it is NP-complete to test if a graph G contains a k-clique (given G and

k) [14]; it is W [1]-complete to test if a graph G contains a k-clique (given G with

parameter k) [4]; and approximating the maximum clique size is hard [1].

2 General Graphs

Consider the following simple recursive algorithm for listing all cliques in a graph.

Cliques(G)

input : graph G

output : the set of all cliques in G

1. if V (G) = ∅ then return {∅}
2. choose v ∈ V (G)

3. return {C ∪ {v} : C ∈ Cliques(G[NG(v)]) }
⋃

Cliques(G− v)

Theorem 2. If G is an n-vertex graph then Cliques(G) returns the set of all

cliques in G.

Proof. We proceed by induction on |V (G)|. If V (G) = ∅ then ∅ is the only clique in

G, and the algorithm correctly returns the set of all cliques in G. Otherwise, each

clique C of G either contains v or does not contain v. In the first case, C is a clique

of G containing v if and only if C = S ∪ {v} for some clique S of G[NG(v)]. In

the second case, C is a clique of G not containing v if and only if C is a clique of

G− v. Therefore, by induction, the algorithm correctly returns the set of all cliques

of G.

The next algorithm outputs all cliques in O(n) time per clique.
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AllCliques(G)

input : graph G

output : all cliques in G

1. output ∅
2. i := 1

3. Vi := V (G)

4. repeat

5. if Vi = ∅ then i := i− 1

6. else

7. choose xi ∈ Vi

8. output {x1, . . . , xi}
9. Vi+1 := Vi ∩NG(xi)

10. Vi := Vi \ {xi}
11. i := i+ 1

12. end-if

13. until i = 0

Theorem 3. If G is a graph with n vertices, then AllCliques(G) outputs all

cliques in G in O(n) time per clique.

Proof. It is easily seen that AllCliques is simply a non-recursive implementation

of Cliques, and therefore correctly outputs all cliques in G. To implement this al-

gorithm efficiently, without loss of generality, assume that V (G) = {1, 2, . . . , n}, and
the adjacency lists and the sets Vi are sorted. Thus lines 7–11 can be implemented in

O(n) time, and line 5 can be computed in O(1) time. Between outputting successive

cliques, lines 7–11 are executed once, and line 5 is executed at most n times. Thus

the algorithm takes O(n) time between outputting successive cliques.

3 Degenerate Graphs

A graph G is d-degenerate if every non-empty subgraph of G has a vertex of degree

at most d. For example, every planar graph is 5-degenerate, and every Kt-minor-free

graph is O(t
√
log t)-degenerate [15, 25]. Wood [29] proved that every d-degenerate

graph contains at most 2d(n − d + 1) cliques, and this bound is tight for a d-tree.

Below we give an algorithm for finding all cliques in a d-degenerate graph.

First consider the following data structure. A linear ordering (v1, . . . , vn) of the

vertices of a graph G is d-degenerate if |N+(vi)| ≤ d for each vertex vi, where

N+(vi) := {vj : i < j, vivj ∈ E(G)}. It is easily seen that a graph is d-degenerate
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if and only if it has a d-degenerate vertex ordering [17]. Moreover, there are O(dn)

time algorithms for computing a d-degenerate ordering of a given d-degenerate graph,

along with the set N+(vi); see [2, 22]. Also note that given a d-degenerate ordering

and given the sets N+(vi), adjacency testing can be performed in O(d) time, since

two vertices vi and vj are adjacent if and only if vj ∈ N+(vi) where i < j; see [2].

DegenerateCliques(G, d)

input : a d-degenerate graph G

output : all cliques in G

1. compute a d-degenerate ordering (v1, . . . , vn) of G

2. compute the sets {N+(vi) : 1 ≤ i ≤ n}
3. for i := 1, . . . , n do

4. AllCliques(G[{vi} ∪N+(vi)]

5. end-for

Theorem 4. If G is a d-degenerate n-vertex graph, then DegenerateCliques(G, d)

outputs all the cliques in G in time O(d 2dn).

Proof. If C is a clique of G[N+(vi)] then C ∪ {vi} is a clique of G. Thus every set

output by the algorithm is a clique of G. Conversely, if S is a clique of G, and i is the

minimum integer such that vi ∈ S, then S \ {vi} is a clique of G[N+(vi)], and S is

output by the algorithm. Now consider the time complexity. Since adjacency testing

can be performed in O(d) time, the subgraph G[{vi} ∪N+(vi)] can be constructed

in O(d3) time. By Theorem 3, the call to AllCliques takes O(d 2d) time. Hence

the total time is O(d 2dn).

Since H-minor free graphs are O(t
√
log t)-degenerate, where t = |V (H)|, Theorem 4

implies:

Corollary 5. For every fixed graph H, there is a linear time algorithm to list all

cliques in a given H-minor-free graph.

4 Graph Minor Decomposition

This section first describes the Robertson-Seymour decomposition theorem char-

acterising the structure of H-minor-free graphs, and then describes the analogous

decomposition theorem for odd-minor-free graphs. We need a number of definitions.
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An embedding refers to a 2-cell embedding of a graph in a (orientable or non-

orientable) surface; that is, a drawing of the vertices and edges of the graph as

points and arcs in the surface such that every face (region outlined by edges) is

homeomorphic to a disk; see [18].

Let I be a linearly ordered set. A path decomposition of a graph G is a sequence

(Bi : i ∈ I) of subsets of V (G) called bags such that:

1.
⋃

i∈I Bi = V (G);

2. for each edge uv ∈ E(G), there exists i ∈ I such that both u and v are in Bi;

and

3. for each vertex v ∈ V (G), the set {i : v ∈ Bi} is a sub-interval of I.

The width of (Bi : i ∈ I) is the maximum cardinality of a bag minus 1. The pathwidth

of a graph G is the minimum width over all possible path decompositions of G.

At a high level, the Robertson-Seymour decomposition theorem says that for every

graph H, every H-minor-free graph can be expressed as a tree structure of pieces,

where each piece is a graph that can be drawn in a surface in which H cannot be

drawn, except for a bounded number of “apex” vertices and a bounded number of

local areas of non-planarity called “vortices”. Here the bounds depend only on H.

Each piece in the decomposition is “h-almost-embeddable” where h is a constant

depending on the excluded minor H. Roughly speaking, a graph G is h-almost

embeddable in a surface Σ if there exists a set A ⊆ V (G) of size at most h, such that

G−A can be obtained from a graph embedded in Σ by attaching at most h graphs

of pathwidth at most h to within h faces in an orderly way. The elements of A are

called apex vertices.

More precisely, , a graph G is h-almost embeddable in a surface Σ if there exists a

set A ⊆ V (G) of size at most h such that G−A can be written G0 ∪G1 ∪ · · · ∪Gh,

where

• G0 has an embedding in Σ;

• the graphs G1, . . . , Gh, called vortices, are pairwise disjoint;

• there are faces F1, . . . , Fh of G0 in Σ, and there are pairwise disjoint disks

D1, . . . ,Dh in Σ, such that for each i ∈ {1, . . . , h},

– Di ⊂ Fi and Ui := V (G0) ∩ V (Gi) = V (G0) ∩Di; and

– if Ui is linearly ordered around the boundary of Fi, then Gi has a path

decomposition (Bu : u ∈ Ui) of width less than h, such that u ∈ Bu for

each u ∈ Ui.
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The pieces of the decomposition are combined according to “clique-sum” operations,

a notion which goes back to the characterisations of K3,3-minor-free and K5-minor-

free graphs by Wagner [28]. Suppose G1 and G2 are graphs with disjoint vertex

sets and let k ≥ 0 be an integer. For i = 1, 2, suppose that Wi ⊆ V (Gi) is a

k-clique in Gi. Let G′
i be obtained from Gi by deleting some (possibly no) edges

from the induced subgraph Gi[Wi] with both endpoints in Wi. Consider a bijection

h : W1 → W2. A k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by

G = G1 ⊕ G2 is the graph obtained from the union of G′
1 and G′

2 by identifying w

with h(w) for all w ∈ W1. A (≤ k)-sum is a k′-sum for some k′ ≤ k. Note that ⊕ is

not uniquely defined.

Now we can finally state a precise form of the decomposition theorem:

Theorem 6. [23, Theorem 1.3] For every graph H, there exists an integer h ≥ 0

depending only on |V (H)| such that every H-minor-free graph can be obtained by

(≤ h)-sums of graphs that are h-almost-embeddable in some surfaces in which H

cannot be embedded.

In particular, if H is fixed then a surface in which H cannot be embedded has

bounded Euler genus. Thus the summands in Theorem 6 are h-almost embeddable

in surfaces of bounded Euler genus. A graph is h-almost embeddable if it is h-almost

embeddable in a surface of Euler genus at most h.

We now describe a decomposition theorem for odd-minor-free graphs by Demaine

et al. [3]. This result generalises Theorem 6. A graph G is h-almost bipartite if

G−A is bipartite for some set A ⊆ V (G) with |A| ≤ h.

Theorem 7 ([3]). For every fixed integer t, there is a constant h such that every odd-

Kt-minor-free graph G can be obtained by (≤ h)-sums of h-almost bipartite graphs

and h-almost embeddable graphs.

5 Listing Cliques in Odd-Minor-Free Graphs

This section describes an algorithm for finding all the cliques in a graph G excluding

a fixed odd-minor. The time complexity is O(n3). Thus, we may assume that G is

represented by an adjacency matrix (which takes O(n2) time to pre-compute), and

adjacency testing can be performed in O(1) time.

Lemma 8. Let G be an h-almost-bipartite graph on n vertices. Then G contains at

most 2hn2 + 2 cliques.

Proof. G−A is bipartite for some A ⊆ V (G) with |A| ≤ h. Since G−A is triangle-

free, the cliques in G − A are precisely E(G − A) ∪ V (G − A) ∪ {∅}. There are at
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most 1
4
(n− |A|)2 + n− |A|+ 1 such cliques. There are at most 2|A| cliques in G[A].

Every clique in G is the union of a clique in G − A and a clique in G[A]. Thus G

contains at most 2|A|(1
4
(n− |A|)2 + n− |A|+ 1) ≤ 2hn2 + 2 cliques.

Lemma 9. Let G be an h-almost embeddable graph on n vertices. Then, for some

h′ and h′′ that only depend on h, G contains at most h′n cliques, and they can be

listed in O(h′′n) time.

Proof. It is well known that G contains no Kh′-minor, for some h′ depending only

on h (see [13] for a tight bound on h′). Thus G is O(h′
√
log h′)-degenerate, and the

claim follows from Corollary 5.

Lemma 10. Let c > 0. Let G be a k-sum of graphs G1 and G2, where each Gi has

ni vertices and contains at most cn2
i cliques. Assume that n1 ≥ k2

2
+ k and G has n

vertices. Then G contains at most cn2
1 + cn2

2 cliques, which is at most cn2.

Proof. Since n1 ≥ k2

2
+ k and n2 ≥ k + 1,

n1 ≥
k2

2
+ k ≥ k2

2(n2 − k)
+ k =

2k(n2 − k) + k2

2(n2 − k)

=
k(2n2 − k)

2(n2 − k)
.

Hence 2n1n2 − 2kn1 ≥ 2kn2 − k2, implying

n2 = (n1 + n2 − k)2

= n2
1 + n2

2 + 2n1n2 − 2kn1 − 2kn2 + k2

≥ n2
1 + n2

2 .

Each clique in G is a clique of G1 or G2. Thus G contains at most cn2
1 + cn2

2 ≤ cn2

cliques.

Lemma 11. Let k be a positive integer. Let G1, . . . , Gp be graphs, such that each

Gi has ni vertices and contains at most f(k) · n2
i cliques, for some function f .

Furthermore, suppose that each Gi contains no k-clique. Let G be an n-vertex graph

obtained by (≤ k)-sums of G1, . . . , Gp. Then for some function f ′ depending on f

and k, G contains at most f ′(k) · n2 cliques.

Proof. The construction of G defines a binary tree T rooted at some node r, and

associated with each node v of T is a subgraphGv ofG, such thatGr = G; G1, . . . , Gp

are the subgraphs associated with the leaves of T ; and Gv = Gu ⊕≤k Gw for each

non-leaf node v with children u and w. Let nv be the number of vertices in each

Gv. Say Gv is small if nv <
k2

2
+ k.
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Let T ′ be the subtree of T obtained by applying the following rule until it cannot

be further applied: If u and w are leaf nodes with a common parent v, and both Gu

and Gw are small, then delete u and w. The remainder of the proof focuses on T ′.

We now prove (by induction, working from the leaves of T ′ up through the tree) that

each subgraphGv contains at most f ′(k)·n2
v cliques, where f

′(k) := max{f(k), 2k2+2k}.
If v is a leaf of T then this hypothesis holds by assumption. If v is a leaf of T ′ but

not of T , then Gu and Gw are small, where u and w are the children of v in T . In

this case nv ≤ k2 + 2k, implying Gv contains at most 2k
2+2k ≤ f ′(k) · n2

v cliques.

Thus the hypothesis again holds.

Now consider a non-leaf node v of T ′. Let u and w be the children of v. We have

Gv = Gu⊕ℓGw for some ℓ ≤ k. By induction, Gu contains at most f ′(k) ·n2
u cliques,

and Gw contains at most f ′(k) ·n2
w cliques. Suppose that Gu and Gw are both small.

If u and w are both leaves in T then the above rule is applicable. Otherwise, without

loss of generality, w is not a leaf in T , in which case every descendent subgraph of w

is small, implying the subtree rooted at w contains two leaves for which the above

rule is applicable. Hence at least one of Gu and Gw is not small. Thus Lemma 10 is

applicable with c = f ′(k). Hence Gv contains at most f ′(k) · n2
u + f ′(k) · n2

w cliques,

which is at most f ′(k) ·n2
v cliques. In particular, G = Gr contains at most f ′(k) ·n2

cliques, as claimed. Observe that the above argument actually proves that the sum

of n2
u, taken over all leaf nodes u in T ′, is at most n2.

Proof of Theorem 1. By Theorem 7, G is the (≤ h)-sum of graphs G1, . . . , Gp, where

each Gi is h-almost bipartite or h-almost embeddable in a surface of Euler genus

h. By Lemmas 8 and 9, for some h′ that only depends on h, if each Gi has ni

vertices, then Gi contains at most h′n2
i cliques. Note that G contains no h-clique.

By Lemma 11, G contains at most h′′ n2 cliques, for some h′′ depending only on

h. By Theorem 3, the cliques in G can be output in O(h′′ n2) time by algorithm

AllCliques(G).

Note that reference [3] describes a polynomial time algorithm for computing the

decomposition described in Theorem 7. However, by using Theorem 3 it suffices to

merely prove an upper bound on the number of cliques in an odd-minor-free graph,

to obtain an efficient algorithm for listing all cliques.
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