
ar
X

iv
:s

ub
m

it/
04

12
70

5
 [

m
at

h.
C

O
]

 8
 F

eb
 2

01
2

Cliques in Odd-Minor-Free Graphs ∗

Ken-ichi Kawarabayashi † David R. Wood ‡

February 8, 2012

Abstract

This paper is about: (1) bounds on the number of cliques in a graph in a

particular class, and (2) algorithms for listing all cliques in a graph. We present

a simple algorithm that lists all cliques in an n-vertex graph in O(n) time per

clique. For O(1)-degenerate graphs, such as graphs excluding a fixed minor,

we describe a O(n) time algorithm for listing all cliques. We prove that graphs

excluding a fixed odd-minor have O(n2) cliques (which is tight), and conclude

a O(n3) time algorithm for listing all cliques.

1 Introduction

A clique in a graph1 is a set of pairwise adjacent vertices. This paper is about:

(1) bounds on the number of cliques in a graph in a particular class of graphs, and

(2) algorithms for listing all cliques in a graph in such a class.

In addition to being of intrinsic interest, bounds on the number of cliques in a graph

have recently been used in a proof that minor-closed graph classes are ‘small’ [19],

and in the analysis of a linear-time algorithm for computing separators in graphs in

minor-closed classes [22], which in turn has been applied in shortest path [24, 30, 31]

and maximum matching [32] algorithms. Note that (1) and (2) for maximal cliques

have been extensively studied; see [9] and the references therein.

∗A preliminary version of this paper was published in the Proceedings of Computing: the Aus-

tralasian Theory Symposium (CATS 2012).
†National Institute of Informatics, Tokyo, Japan (k keniti@nii.ac.jp).
‡Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Aus-

tralia (woodd@unimelb.edu.au). Supported by a QEII Fellowship and Discovery Project from the

Australian Research Council.
1We consider simple finite undirected graphs G with vertex set V (G) and edge set E(G). For

each vertex v ∈ V (G), let NG(v) or simply N(v), be {w ∈ V (G) : vw ∈ E(G)}.

1

http://arxiv.org/submit/0412705/pdf

This paper describes a simple algorithm that lists all cliques in a given n-vertex

graph in O(n) time per clique (Theorem 3). This implies that if we solve (1) for a

particular class, then we immediately solve (2). Note that analogous results hold for

maximal cliques: there are algorithms that list all maximal cliques in polynomial

time per clique [8, 11, 12, 16, 21, 27] or in total time proportional to the maximum

possible number of cliques in an n-vertex graph, without additional polynomial

factors [7, 26].

As an example of (1), many authors have observed that every n-vertex planar graph

contains O(n) cliques [6, 20]. Wood [29] proved the best possible upper bound of

8(n−2). More generally, for each surface Σ, Dujmović et al. [5] characterised the n-

vertex graphs embeddable in Σ with the maximum number of cliques in terms of so-

called irreducible triangulations. They also proved that if Kω is the largest complete

graph that embeds in Σ, then every n-vertex graph that embeds in Σ contains at

most 8n + 3
2
2ω + o(2ω) cliques. Exact results and a precise characterisation of the

extremal examples are obtained for graphs that embed in the plane, torus, double

torus, projective plane, N3, and N4.

These results are generalised by considering H-minor-free graphs. A graph H is a

minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Equivalently, H is a minor of G if G contains a set of vertex-disjoint trees, one tree

Tv for each vertex v of H, such that for every edge e = vw in H there is an edge ê

between Tv and Tw. A graph H is an odd minor of G if, in addition, the vertices

in
⋃

v V (Tv) can be 2-coloured such that for each vertex v ∈ V (H) the edges in Tv

are bichromatic, and for each edge e = vw ∈ E(H), the edge ê between Tv and Tw

is monochromatic. A graph is (odd-)H-minor-free if it contains no (odd-)H-minor.

Several authors have proved that for every fixed graph H, every H-minor-free graph

with n vertices contains O(n) cliques [10, 19, 22, 29]. The best bound, due to Fomin

et al. [10], states that every Kt-minor-free graph contains at most ct log log tn cliques,

for some constant c. It is open whether such graphs have at most ctn cliques [29].

This paper considers (1) and (2) for graphs that exclude an odd minor. The class of

odd-H-minor-free graphs is more general than the class of H-minor-free graphs. For

example, the complete bipartite graph Kn,n contains a Kn+1 minor but contains

no odd-K3-minor. In fact, a graph contains no odd K3-minor if and only if it is

bipartite. In general, every Kt-minor-free graph has O(t
√
log tn) edges, and this

bound is best possible [15, 25]. On the other hand, some odd-Kt-minor-free graphs,

such as Kn,n, have Θ(n2) edges. This paper proves the following theorem:

Theorem 1. For every fixed graph H, there is a constant c, such that every n-

vertex odd-H-minor-free graph G contains at most cn2 cliques, and these cliques

can be listed in O(n3) time.

2

The bound on the number of cliques in Theorem 1 is best possible up to the value of

c, since Kn,n contains no odd-K3-minor and contains Θ(n2) cliques. Also note that

a polynomial bound on the number of cliques in every graph in a class is non-trivial,

since Kn contains 2n cliques.

Theorem 1 is in sharp contrast with a number of intractability results about finding

cliques: it is NP-complete to test if a graph G contains a k-clique (given G and

k) [14]; it is W [1]-complete to test if a graph G contains a k-clique (given G with

parameter k) [4]; and approximating the maximum clique size is hard [1].

2 General Graphs

Consider the following simple recursive algorithm for listing all cliques in a graph.

Cliques(G)

input : graph G

output : the set of all cliques in G

1. if V (G) = ∅ then return {∅}
2. choose v ∈ V (G)

3. return {C ∪ {v} : C ∈ Cliques(G[NG(v)]) }
⋃

Cliques(G− v)

Theorem 2. If G is an n-vertex graph then Cliques(G) returns the set of all

cliques in G.

Proof. We proceed by induction on |V (G)|. If V (G) = ∅ then ∅ is the only clique in

G, and the algorithm correctly returns the set of all cliques in G. Otherwise, each

clique C of G either contains v or does not contain v. In the first case, C is a clique

of G containing v if and only if C = S ∪ {v} for some clique S of G[NG(v)]. In

the second case, C is a clique of G not containing v if and only if C is a clique of

G− v. Therefore, by induction, the algorithm correctly returns the set of all cliques

of G.

The next algorithm outputs all cliques in O(n) time per clique.

3

AllCliques(G)

input : graph G

output : all cliques in G

1. output ∅
2. i := 1

3. Vi := V (G)

4. repeat

5. if Vi = ∅ then i := i− 1

6. else

7. choose xi ∈ Vi

8. output {x1, . . . , xi}
9. Vi+1 := Vi ∩NG(xi)

10. Vi := Vi \ {xi}
11. i := i+ 1

12. end-if

13. until i = 0

Theorem 3. If G is a graph with n vertices, then AllCliques(G) outputs all

cliques in G in O(n) time per clique.

Proof. It is easily seen that AllCliques is simply a non-recursive implementation

of Cliques, and therefore correctly outputs all cliques in G. To implement this al-

gorithm efficiently, without loss of generality, assume that V (G) = {1, 2, . . . , n}, and
the adjacency lists and the sets Vi are sorted. Thus lines 7–11 can be implemented in

O(n) time, and line 5 can be computed in O(1) time. Between outputting successive

cliques, lines 7–11 are executed once, and line 5 is executed at most n times. Thus

the algorithm takes O(n) time between outputting successive cliques.

3 Degenerate Graphs

A graph G is d-degenerate if every non-empty subgraph of G has a vertex of degree

at most d. For example, every planar graph is 5-degenerate, and every Kt-minor-free

graph is O(t
√
log t)-degenerate [15, 25]. Wood [29] proved that every d-degenerate

graph contains at most 2d(n − d + 1) cliques, and this bound is tight for a d-tree.

Below we give an algorithm for finding all cliques in a d-degenerate graph.

First consider the following data structure. A linear ordering (v1, . . . , vn) of the

vertices of a graph G is d-degenerate if |N+(vi)| ≤ d for each vertex vi, where

N+(vi) := {vj : i < j, vivj ∈ E(G)}. It is easily seen that a graph is d-degenerate

4

if and only if it has a d-degenerate vertex ordering [17]. Moreover, there are O(dn)

time algorithms for computing a d-degenerate ordering of a given d-degenerate graph,

along with the set N+(vi); see [2, 22]. Also note that given a d-degenerate ordering

and given the sets N+(vi), adjacency testing can be performed in O(d) time, since

two vertices vi and vj are adjacent if and only if vj ∈ N+(vi) where i < j; see [2].

DegenerateCliques(G, d)

input : a d-degenerate graph G

output : all cliques in G

1. compute a d-degenerate ordering (v1, . . . , vn) of G

2. compute the sets {N+(vi) : 1 ≤ i ≤ n}
3. for i := 1, . . . , n do

4. AllCliques(G[{vi} ∪N+(vi)]

5. end-for

Theorem 4. If G is a d-degenerate n-vertex graph, then DegenerateCliques(G, d)

outputs all the cliques in G in time O(d 2dn).

Proof. If C is a clique of G[N+(vi)] then C ∪ {vi} is a clique of G. Thus every set

output by the algorithm is a clique of G. Conversely, if S is a clique of G, and i is the

minimum integer such that vi ∈ S, then S \ {vi} is a clique of G[N+(vi)], and S is

output by the algorithm. Now consider the time complexity. Since adjacency testing

can be performed in O(d) time, the subgraph G[{vi} ∪N+(vi)] can be constructed

in O(d3) time. By Theorem 3, the call to AllCliques takes O(d 2d) time. Hence

the total time is O(d 2dn).

Since H-minor free graphs are O(t
√
log t)-degenerate, where t = |V (H)|, Theorem 4

implies:

Corollary 5. For every fixed graph H, there is a linear time algorithm to list all

cliques in a given H-minor-free graph.

4 Graph Minor Decomposition

This section first describes the Robertson-Seymour decomposition theorem char-

acterising the structure of H-minor-free graphs, and then describes the analogous

decomposition theorem for odd-minor-free graphs. We need a number of definitions.

5

An embedding refers to a 2-cell embedding of a graph in a (orientable or non-

orientable) surface; that is, a drawing of the vertices and edges of the graph as

points and arcs in the surface such that every face (region outlined by edges) is

homeomorphic to a disk; see [18].

Let I be a linearly ordered set. A path decomposition of a graph G is a sequence

(Bi : i ∈ I) of subsets of V (G) called bags such that:

1.
⋃

i∈I Bi = V (G);

2. for each edge uv ∈ E(G), there exists i ∈ I such that both u and v are in Bi;

and

3. for each vertex v ∈ V (G), the set {i : v ∈ Bi} is a sub-interval of I.

The width of (Bi : i ∈ I) is the maximum cardinality of a bag minus 1. The pathwidth

of a graph G is the minimum width over all possible path decompositions of G.

At a high level, the Robertson-Seymour decomposition theorem says that for every

graph H, every H-minor-free graph can be expressed as a tree structure of pieces,

where each piece is a graph that can be drawn in a surface in which H cannot be

drawn, except for a bounded number of “apex” vertices and a bounded number of

local areas of non-planarity called “vortices”. Here the bounds depend only on H.

Each piece in the decomposition is “h-almost-embeddable” where h is a constant

depending on the excluded minor H. Roughly speaking, a graph G is h-almost

embeddable in a surface Σ if there exists a set A ⊆ V (G) of size at most h, such that

G−A can be obtained from a graph embedded in Σ by attaching at most h graphs

of pathwidth at most h to within h faces in an orderly way. The elements of A are

called apex vertices.

More precisely, , a graph G is h-almost embeddable in a surface Σ if there exists a

set A ⊆ V (G) of size at most h such that G−A can be written G0 ∪G1 ∪ · · · ∪Gh,

where

• G0 has an embedding in Σ;

• the graphs G1, . . . , Gh, called vortices, are pairwise disjoint;

• there are faces F1, . . . , Fh of G0 in Σ, and there are pairwise disjoint disks

D1, . . . ,Dh in Σ, such that for each i ∈ {1, . . . , h},

– Di ⊂ Fi and Ui := V (G0) ∩ V (Gi) = V (G0) ∩Di; and

– if Ui is linearly ordered around the boundary of Fi, then Gi has a path

decomposition (Bu : u ∈ Ui) of width less than h, such that u ∈ Bu for

each u ∈ Ui.

6

The pieces of the decomposition are combined according to “clique-sum” operations,

a notion which goes back to the characterisations of K3,3-minor-free and K5-minor-

free graphs by Wagner [28]. Suppose G1 and G2 are graphs with disjoint vertex

sets and let k ≥ 0 be an integer. For i = 1, 2, suppose that Wi ⊆ V (Gi) is a

k-clique in Gi. Let G′
i be obtained from Gi by deleting some (possibly no) edges

from the induced subgraph Gi[Wi] with both endpoints in Wi. Consider a bijection

h : W1 → W2. A k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by

G = G1 ⊕ G2 is the graph obtained from the union of G′
1 and G′

2 by identifying w

with h(w) for all w ∈ W1. A (≤ k)-sum is a k′-sum for some k′ ≤ k. Note that ⊕ is

not uniquely defined.

Now we can finally state a precise form of the decomposition theorem:

Theorem 6. [23, Theorem 1.3] For every graph H, there exists an integer h ≥ 0

depending only on |V (H)| such that every H-minor-free graph can be obtained by

(≤ h)-sums of graphs that are h-almost-embeddable in some surfaces in which H

cannot be embedded.

In particular, if H is fixed then a surface in which H cannot be embedded has

bounded Euler genus. Thus the summands in Theorem 6 are h-almost embeddable

in surfaces of bounded Euler genus. A graph is h-almost embeddable if it is h-almost

embeddable in a surface of Euler genus at most h.

We now describe a decomposition theorem for odd-minor-free graphs by Demaine

et al. [3]. This result generalises Theorem 6. A graph G is h-almost bipartite if

G−A is bipartite for some set A ⊆ V (G) with |A| ≤ h.

Theorem 7 ([3]). For every fixed integer t, there is a constant h such that every odd-

Kt-minor-free graph G can be obtained by (≤ h)-sums of h-almost bipartite graphs

and h-almost embeddable graphs.

5 Listing Cliques in Odd-Minor-Free Graphs

This section describes an algorithm for finding all the cliques in a graph G excluding

a fixed odd-minor. The time complexity is O(n3). Thus, we may assume that G is

represented by an adjacency matrix (which takes O(n2) time to pre-compute), and

adjacency testing can be performed in O(1) time.

Lemma 8. Let G be an h-almost-bipartite graph on n vertices. Then G contains at

most 2hn2 + 2 cliques.

Proof. G−A is bipartite for some A ⊆ V (G) with |A| ≤ h. Since G−A is triangle-

free, the cliques in G − A are precisely E(G − A) ∪ V (G − A) ∪ {∅}. There are at

7

most 1
4
(n− |A|)2 + n− |A|+ 1 such cliques. There are at most 2|A| cliques in G[A].

Every clique in G is the union of a clique in G − A and a clique in G[A]. Thus G

contains at most 2|A|(1
4
(n− |A|)2 + n− |A|+ 1) ≤ 2hn2 + 2 cliques.

Lemma 9. Let G be an h-almost embeddable graph on n vertices. Then, for some

h′ and h′′ that only depend on h, G contains at most h′n cliques, and they can be

listed in O(h′′n) time.

Proof. It is well known that G contains no Kh′-minor, for some h′ depending only

on h (see [13] for a tight bound on h′). Thus G is O(h′
√
log h′)-degenerate, and the

claim follows from Corollary 5.

Lemma 10. Let c > 0. Let G be a k-sum of graphs G1 and G2, where each Gi has

ni vertices and contains at most cn2
i cliques. Assume that n1 ≥ k2

2
+ k and G has n

vertices. Then G contains at most cn2
1 + cn2

2 cliques, which is at most cn2.

Proof. Since n1 ≥ k2

2
+ k and n2 ≥ k + 1,

n1 ≥
k2

2
+ k ≥ k2

2(n2 − k)
+ k =

2k(n2 − k) + k2

2(n2 − k)

=
k(2n2 − k)

2(n2 − k)
.

Hence 2n1n2 − 2kn1 ≥ 2kn2 − k2, implying

n2 = (n1 + n2 − k)2

= n2
1 + n2

2 + 2n1n2 − 2kn1 − 2kn2 + k2

≥ n2
1 + n2

2 .

Each clique in G is a clique of G1 or G2. Thus G contains at most cn2
1 + cn2

2 ≤ cn2

cliques.

Lemma 11. Let k be a positive integer. Let G1, . . . , Gp be graphs, such that each

Gi has ni vertices and contains at most f(k) · n2
i cliques, for some function f .

Furthermore, suppose that each Gi contains no k-clique. Let G be an n-vertex graph

obtained by (≤ k)-sums of G1, . . . , Gp. Then for some function f ′ depending on f

and k, G contains at most f ′(k) · n2 cliques.

Proof. The construction of G defines a binary tree T rooted at some node r, and

associated with each node v of T is a subgraphGv ofG, such thatGr = G; G1, . . . , Gp

are the subgraphs associated with the leaves of T ; and Gv = Gu ⊕≤k Gw for each

non-leaf node v with children u and w. Let nv be the number of vertices in each

Gv. Say Gv is small if nv <
k2

2
+ k.

8

Let T ′ be the subtree of T obtained by applying the following rule until it cannot

be further applied: If u and w are leaf nodes with a common parent v, and both Gu

and Gw are small, then delete u and w. The remainder of the proof focuses on T ′.

We now prove (by induction, working from the leaves of T ′ up through the tree) that

each subgraphGv contains at most f ′(k)·n2
v cliques, where f

′(k) := max{f(k), 2k2+2k}.
If v is a leaf of T then this hypothesis holds by assumption. If v is a leaf of T ′ but

not of T , then Gu and Gw are small, where u and w are the children of v in T . In

this case nv ≤ k2 + 2k, implying Gv contains at most 2k
2+2k ≤ f ′(k) · n2

v cliques.

Thus the hypothesis again holds.

Now consider a non-leaf node v of T ′. Let u and w be the children of v. We have

Gv = Gu⊕ℓGw for some ℓ ≤ k. By induction, Gu contains at most f ′(k) ·n2
u cliques,

and Gw contains at most f ′(k) ·n2
w cliques. Suppose that Gu and Gw are both small.

If u and w are both leaves in T then the above rule is applicable. Otherwise, without

loss of generality, w is not a leaf in T , in which case every descendent subgraph of w

is small, implying the subtree rooted at w contains two leaves for which the above

rule is applicable. Hence at least one of Gu and Gw is not small. Thus Lemma 10 is

applicable with c = f ′(k). Hence Gv contains at most f ′(k) · n2
u + f ′(k) · n2

w cliques,

which is at most f ′(k) ·n2
v cliques. In particular, G = Gr contains at most f ′(k) ·n2

cliques, as claimed. Observe that the above argument actually proves that the sum

of n2
u, taken over all leaf nodes u in T ′, is at most n2.

Proof of Theorem 1. By Theorem 7, G is the (≤ h)-sum of graphs G1, . . . , Gp, where

each Gi is h-almost bipartite or h-almost embeddable in a surface of Euler genus

h. By Lemmas 8 and 9, for some h′ that only depends on h, if each Gi has ni

vertices, then Gi contains at most h′n2
i cliques. Note that G contains no h-clique.

By Lemma 11, G contains at most h′′ n2 cliques, for some h′′ depending only on

h. By Theorem 3, the cliques in G can be output in O(h′′ n2) time by algorithm

AllCliques(G).

Note that reference [3] describes a polynomial time algorithm for computing the

decomposition described in Theorem 7. However, by using Theorem 3 it suffices to

merely prove an upper bound on the number of cliques in an odd-minor-free graph,

to obtain an efficient algorithm for listing all cliques.

Acknowledgements

Many thanks to the referees of the conference version of this paper who found some

minor errors that have now been corrected.

9

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and

Mario Szegedy. Proof verification and the hardness of approximation prob-

lems. J. ACM, 45(3):501–555, 1998. doi: 10.1145/278298.278306.

[2] Marek Chrobak and David Eppstein. Planar orientations with low

out-degree and compaction of adjacency matrices. Theoret. Comput. Sci.,

86(2):243–266, 1991. doi: 10.1016/0304-3975(91)90020-3.

[3] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi

Kawarabayashi. Decomposition, approximation, and coloring of odd-

minor-free graphs. In Proc. of 21st Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA ’10), pp. 329–344. ACM Press, 2010.

http://portal.acm.org/citation.cfm?id=1873629.

[4] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability

and completeness. II. On completeness for W [1]. Theoret. Comput. Sci., 141(1-

2):109–131, 1995. doi: 10.1016/0304-3975(94)00097-3.

[5] Vida Dujmović, Gašper Fijavž, Gwenaël Joret, David R. Wood,

and Thom Sulanke. On the maximum number of cliques in a graph

embedded in a surface. European J. Combin., 32(8):1244–1252, 2011.

doi: 10.1016/j.ejc.2011.04.001.

[6] David Eppstein. Connectivity, graph minors, and subgraph multiplicity. J.

Graph Theory, 17(3):409–416, 1993. doi: 10.1002/jgt.3190170314.

[7] David Eppstein. Small maximal independent sets and faster ex-

act graph coloring. J. Graph Algorithms Appl., 7(2):131–140, 2003.

http://jgaa.info/accepted/2003/Eppstein2003.7.2.pdf.

[8] David Eppstein. All maximal independent sets and dynamic dom-

inance for sparse graphs. ACM Trans. Algorithms, 5(4):#38, 2009.

doi: 10.1145/1597036.1597042.

[9] David Eppstein, Maarten Löffler, and Darren Strash. List-

ing all maximal cliques in sparse graphs in near-optimal time. In Ot-

fried Cheong, Kyung-Yong Chwa, and Kunsoo Park, eds., Proc.

of 21st International Symposium on Algorithms and Computation (ISAAC

2010), vol. 6506 of Lecture Notes in Computer Science, pp. 403–414. 2010.

doi: 10.1007/978-3-642-17517-6 36. arXiv: 1006.5440.

[10] Fedor V. Fomin, Sang il Oum, and Dimitrios M. Thilikos. Rank-width

and tree-width of H-minor-free graphs. European J. Combin., 31(7):1617–1628,

2010. doi: 10.1016/j.ejc.2010.05.003.

10

http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1016/0304-3975(91)90020-3
http://portal.acm.org/citation.cfm?id=1873629
http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.1016/j.ejc.2011.04.001
http://dx.doi.org/10.1002/jgt.3190170314
http://jgaa.info/accepted/2003/Eppstein2003.7.2.pdf
http://dx.doi.org/10.1145/1597036.1597042
http://dx.doi.org/10.1007/978-3-642-17517-6_36
http://arxiv.org/abs/1006.5440
http://dx.doi.org/10.1016/j.ejc.2010.05.003

[11] Alain Gély, Lhouari Nourine, and Bachir Sadi. Enumeration aspects of

maximal cliques and bicliques. Discrete Appl. Math., 157(7):1447–1459, 2009.

doi: 10.1016/j.dam.2008.10.010.

[12] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadim-

itriou. On generating all maximal independent sets. Inform. Process. Lett.,

27(3):119–123, 1988. doi: 10.1016/0020-0190(88)90065-8.

[13] Gwenaël Joret and David R. Wood. Complete graph minors and the

graph minor structure theorem. 2011. arXiv: 1105.3549.

[14] Richard M. Karp. Reducibility among combinatorial problems. In R. E.

Miller and J. W. Thatcher, eds., Complexity of Computer Communica-

tions, pp. 85–103. Plenum Press, 1972.

[15] Alexandr V. Kostochka. Lower bound of the Hadwiger number

of graphs by their average degree. Combinatorica, 4(4):307–316, 1984.

doi: 10.1007/BF02579141. MR: 0779891.

[16] Eugene L. Lawler, Jan Karel Lenstra, and Alexander H. G. Rin-

nooy Kan. Generating all maximal independent sets: NP-hardness

and polynomial-time algorithms. SIAM J. Comput., 9(3):558–565, 1980.

doi: 10.1137/0209042.

[17] Don R. Lick and Arthur T. White. k-degenerate graphs. Canad. J. Math.,

22:1082–1096, 1970. doi: 10.4153/CJM-1970-125-1.

[18] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hop-

kins University Press, Baltimore, U.S.A., 2001.

[19] Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan.

Proper minor-closed families are small. J. Combin. Theory Ser. B, 96(5):754–

757, 2006. doi: 10.1016/j.jctb.2006.01.006.

[20] Christos H. Papadimitriou and Mihalis Yannakakis. The clique

problem for planar graphs. Inform. Process. Lett., 13(4-5):131–133, 1981.

doi: 10.1016/0020-0190(81)90041-7.

[21] M. C. Paull and S. H. Unger. Minimizing the number of states in incom-

pletely specified sequential switching functions. IRE Trans. Electron. Comput.,

EC-8:356–367, 1959.

[22] Bruce Reed and David R. Wood. A linear time algorithm to find a separa-

tor in a graph excluding a minor. ACM Transactions on Algorithms, 5(4):#39,

2009. doi: 10.1145/1597036.1597043.

11

http://dx.doi.org/10.1016/j.dam.2008.10.010
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://arxiv.org/abs/1105.3549
http://dx.doi.org/10.1007/BF02579141
http://www.ams.org/mathscinet-getitem?mr=MR0779891
http://dx.doi.org/10.1137/0209042
http://dx.doi.org/10.4153/CJM-1970-125-1
http://dx.doi.org/10.1016/j.jctb.2006.01.006
http://dx.doi.org/10.1016/0020-0190(81)90041-7
http://dx.doi.org/10.1145/1597036.1597043

[23] Neil Robertson and Paul D. Seymour. Graph minors. XVI. Exclud-

ing a non-planar graph. J. Combin. Theory Ser. B, 89(1):43–76, 2003.

doi: 10.1016/S0095-8956(03)00042-X.

[24] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths

in linear time on minor-closed graph classes, with an application to

Steiner tree approximation. Discrete Appl. Math., 157(4):673–684, 2009.

doi: 10.1016/j.dam.2008.08.002.

[25] Andrew Thomason. An extremal function for contractions of

graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261–265, 1984.

doi: 10.1017/S0305004100061521. MR: 0735367, Zbl: 0551.05047.

[26] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The

worst-case time complexity for generating all maximal cliques and com-

putational experiments. Theoret. Comput. Sci., 363(1):28–42, 2006.

doi: 10.1016/j.tcs.2006.06.015.

[27] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa.

A new algorithm for generating all the maximal independent sets. SIAM J.

Comput., 6(3):505–517, 1977. doi: 10.1137/0206036.

[28] Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann.,

114:570–590, 1937. doi: 10.1007/BF01594196. MR: 1513158. Zbl: 0017.19005.

[29] David R. Wood. On the maximum number of cliques in a graph. Graphs

Combin., 23(3):337–352, 2007. doi: 10.1007/s00373-007-0738-8. MR: 2320588.

[30] Christian Wulff-Nilsen. Faster shortest path algorithm for H-minor free

graphs with negative edge weights. 2010. arXiv: 1008.1048.

[31] Raphael Yuster. Single source shortest paths in H-minor free graphs. The-

oret. Comput. Sci., 411(34–36):3042–3047, 2010. doi: 10.1016/j.tcs.2010.04.028.

[32] Raphael Yuster and Uri Zwick. Maximum matching in graphs

with an excluded minor. In Proc. 18th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA ’07), pp. 108–117. SIAM, 2007.

http://portal.acm.org/citation.cfm?id=1283396.

12

http://dx.doi.org/10.1016/S0095-8956(03)00042-X
http://dx.doi.org/10.1016/j.dam.2008.08.002
http://dx.doi.org/10.1017/S0305004100061521
http://www.ams.org/mathscinet-getitem?mr=MR0735367
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0551.05047
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1137/0206036
http://dx.doi.org/10.1007/BF01594196
http://www.ams.org/mathscinet-getitem?mr=MR1513158
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0017.19005
http://dx.doi.org/10.1007/s00373-007-0738-8
http://www.ams.org/mathscinet-getitem?mr=MR2320588
http://arxiv.org/abs/1008.1048
http://dx.doi.org/10.1016/j.tcs.2010.04.028
http://portal.acm.org/citation.cfm?id=1283396

	1 Introduction
	2 General Graphs
	3 Degenerate Graphs
	4 Graph Minor Decomposition
	5 Listing Cliques in Odd-Minor-Free Graphs

