Cliques in Odd-Minor-Free Graphs*

Ken-ichi Kawarabayashi ${ }^{\dagger}$ David R. Wood ${ }^{\ddagger}$

February 8, 2012

Abstract

This paper is about: (1) bounds on the number of cliques in a graph in a particular class, and (2) algorithms for listing all cliques in a graph. We present a simple algorithm that lists all cliques in an n-vertex graph in $O(n)$ time per clique. For $O(1)$-degenerate graphs, such as graphs excluding a fixed minor, we describe a $O(n)$ time algorithm for listing all cliques. We prove that graphs excluding a fixed odd-minor have $O\left(n^{2}\right)$ cliques (which is tight), and conclude a $O\left(n^{3}\right)$ time algorithm for listing all cliques.

1 Introduction

A clique in a graph ${ }^{1}$ is a set of pairwise adjacent vertices. This paper is about:
(1) bounds on the number of cliques in a graph in a particular class of graphs, and (2) algorithms for listing all cliques in a graph in such a class.

In addition to being of intrinsic interest, bounds on the number of cliques in a graph have recently been used in a proof that minor-closed graph classes are 'small' [19], and in the analysis of a linear-time algorithm for computing separators in graphs in minor-closed classes [22], which in turn has been applied in shortest path [24, 30, 31] and maximum matching [32] algorithms. Note that (1) and (2) for maximal cliques have been extensively studied; see [9] and the references therein.

[^0]This paper describes a simple algorithm that lists all cliques in a given n-vertex graph in $O(n)$ time per clique (Theorem 3). This implies that if we solve (1) for a particular class, then we immediately solve (2). Note that analogous results hold for maximal cliques: there are algorithms that list all maximal cliques in polynomial time per clique $[8,11,12,16,21,27]$ or in total time proportional to the maximum possible number of cliques in an n-vertex graph, without additional polynomial factors [7, 26].

As an example of (1), many authors have observed that every n-vertex planar graph contains $O(n)$ cliques [6, 20]. Wood [29] proved the best possible upper bound of $8(n-2)$. More generally, for each surface Σ, Dujmović et al. [5] characterised the n vertex graphs embeddable in Σ with the maximum number of cliques in terms of socalled irreducible triangulations. They also proved that if K_{ω} is the largest complete graph that embeds in Σ, then every n-vertex graph that embeds in Σ contains at most $8 n+\frac{3}{2} 2^{\omega}+o\left(2^{\omega}\right)$ cliques. Exact results and a precise characterisation of the extremal examples are obtained for graphs that embed in the plane, torus, double torus, projective plane, \mathbb{N}_{3}, and \mathbb{N}_{4}.

These results are generalised by considering H-minor-free graphs. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. Equivalently, H is a minor of G if G contains a set of vertex-disjoint trees, one tree T_{v} for each vertex v of H, such that for every edge $e=v w$ in H there is an edge \hat{e} between T_{v} and T_{w}. A graph H is an odd minor of G if, in addition, the vertices in $\bigcup_{v} V\left(T_{v}\right)$ can be 2-coloured such that for each vertex $v \in V(H)$ the edges in T_{v} are bichromatic, and for each edge $e=v w \in E(H)$, the edge \hat{e} between T_{v} and T_{w} is monochromatic. A graph is (odd-) H-minor-free if it contains no (odd-) H-minor.

Several authors have proved that for every fixed graph H, every H-minor-free graph with n vertices contains $O(n)$ cliques $[10,19,22,29]$. The best bound, due to Fomin et al. [10], states that every K_{t}-minor-free graph contains at most $c^{t \log \log t} n$ cliques, for some constant c. It is open whether such graphs have at most $c^{t} n$ cliques [29].

This paper considers (1) and (2) for graphs that exclude an odd minor. The class of odd- H-minor-free graphs is more general than the class of H-minor-free graphs. For example, the complete bipartite graph $K_{n, n}$ contains a K_{n+1} minor but contains no odd- K_{3}-minor. In fact, a graph contains no odd K_{3}-minor if and only if it is bipartite. In general, every K_{t}-minor-free graph has $O(t \sqrt{\log t} n)$ edges, and this bound is best possible [15, 25]. On the other hand, some odd- K_{t}-minor-free graphs, such as $K_{n, n}$, have $\Theta\left(n^{2}\right)$ edges. This paper proves the following theorem:

Theorem 1. For every fixed graph H, there is a constant c, such that every n vertex odd-H-minor-free graph G contains at most cn ${ }^{2}$ cliques, and these cliques can be listed in $O\left(n^{3}\right)$ time.

The bound on the number of cliques in Theorem 1 is best possible up to the value of c, since $K_{n, n}$ contains no odd- K_{3}-minor and contains $\Theta\left(n^{2}\right)$ cliques. Also note that a polynomial bound on the number of cliques in every graph in a class is non-trivial, since K_{n} contains 2^{n} cliques.

Theorem 1 is in sharp contrast with a number of intractability results about finding cliques: it is NP-complete to test if a graph G contains a k-clique (given G and k) [14]; it is $W[1]$-complete to test if a graph G contains a k-clique (given G with parameter k) [4]; and approximating the maximum clique size is hard [1].

2 General Graphs

Consider the following simple recursive algorithm for listing all cliques in a graph.

```
Cliques ( \(G\) )
input: graph \(G\)
output: the set of all cliques in \(G\)
1. if \(V(G)=\emptyset\) then return \(\{\emptyset\}\)
2. choose \(v \in V(G)\)
3. return \(\left\{C \cup\{v\}: C \in \operatorname{CLIqUES}\left(G\left[N_{G}(v)\right]\right)\right\} \cup \operatorname{Cliques}(G-v)\)
```

Theorem 2. If G is an n-vertex graph then $\operatorname{CLiques}(G)$ returns the set of all cliques in G.

Proof. We proceed by induction on $|V(G)|$. If $V(G)=\emptyset$ then \emptyset is the only clique in G, and the algorithm correctly returns the set of all cliques in G. Otherwise, each clique C of G either contains v or does not contain v. In the first case, C is a clique of G containing v if and only if $C=S \cup\{v\}$ for some clique S of $G\left[N_{G}(v)\right]$. In the second case, C is a clique of G not containing v if and only if C is a clique of $G-v$. Therefore, by induction, the algorithm correctly returns the set of all cliques of G.

The next algorithm outputs all cliques in $O(n)$ time per clique.

```
AllCliques \((G)\)
input: graph \(G\)
output: all cliques in \(G\)
1. output \(\emptyset\)
\(i:=1\)
\(V_{i}:=V(G)\)
repeat
            if \(V_{i}=\emptyset\) then \(i:=i-1\)
            else
                    choose \(x_{i} \in V_{i}\)
                output \(\left\{x_{1}, \ldots, x_{i}\right\}\)
                \(V_{i+1}:=V_{i} \cap N_{G}\left(x_{i}\right)\)
                    \(V_{i}:=V_{i} \backslash\left\{x_{i}\right\}\)
                    \(i:=i+1\)
            end-if
        until \(i=0\)
```

Theorem 3. If G is a graph with n vertices, then $\operatorname{AllCliques}(G)$ outputs all cliques in G in $O(n)$ time per clique.

Proof. It is easily seen that AllCliques is simply a non-recursive implementation of Cliques, and therefore correctly outputs all cliques in G. To implement this algorithm efficiently, without loss of generality, assume that $V(G)=\{1,2, \ldots, n\}$, and the adjacency lists and the sets V_{i} are sorted. Thus lines $7-11$ can be implemented in $O(n)$ time, and line 5 can be computed in $O(1)$ time. Between outputting successive cliques, lines $7-11$ are executed once, and line 5 is executed at most n times. Thus the algorithm takes $O(n)$ time between outputting successive cliques.

3 Degenerate Graphs

A graph G is d-degenerate if every non-empty subgraph of G has a vertex of degree at most d. For example, every planar graph is 5 -degenerate, and every K_{t}-minor-free graph is $O(t \sqrt{\log t})$-degenerate [15, 25]. Wood [29] proved that every d-degenerate graph contains at most $2^{d}(n-d+1)$ cliques, and this bound is tight for a d-tree. Below we give an algorithm for finding all cliques in a d-degenerate graph.

First consider the following data structure. A linear ordering $\left(v_{1}, \ldots, v_{n}\right)$ of the vertices of a graph G is d-degenerate if $\left|N^{+}\left(v_{i}\right)\right| \leq d$ for each vertex v_{i}, where $N^{+}\left(v_{i}\right):=\left\{v_{j}: i<j, v_{i} v_{j} \in E(G)\right\}$. It is easily seen that a graph is d-degenerate
if and only if it has a d-degenerate vertex ordering [17]. Moreover, there are $O(d n)$ time algorithms for computing a d-degenerate ordering of a given d-degenerate graph, along with the set $N^{+}\left(v_{i}\right)$; see $[2,22]$. Also note that given a d-degenerate ordering and given the sets $N^{+}\left(v_{i}\right)$, adjacency testing can be performed in $O(d)$ time, since two vertices v_{i} and v_{j} are adjacent if and only if $v_{j} \in N^{+}\left(v_{i}\right)$ where $i<j$; see [2].

```
DegenerateCliques(G, d)
input: a d-degenerate graph G
output: all cliques in G
```

1. compute a d-degenerate ordering $\left(v_{1}, \ldots, v_{n}\right)$ of G
2. compute the sets $\left\{N^{+}\left(v_{i}\right): 1 \leq i \leq n\right\}$
3. for $i:=1, \ldots, n$ do
4. \quad AllCliques $\left(G\left[\left\{v_{i}\right\} \cup N^{+}\left(v_{i}\right)\right]\right.$
5. end-for

Theorem 4. If G is a d-degenerate n-vertex graph, then DegenerateCliques (G, d) outputs all the cliques in G in time $O\left(d 2^{d} n\right)$.

Proof. If C is a clique of $G\left[N^{+}\left(v_{i}\right)\right]$ then $C \cup\left\{v_{i}\right\}$ is a clique of G. Thus every set output by the algorithm is a clique of G. Conversely, if S is a clique of G, and i is the minimum integer such that $v_{i} \in S$, then $S \backslash\left\{v_{i}\right\}$ is a clique of $G\left[N^{+}\left(v_{i}\right)\right]$, and S is output by the algorithm. Now consider the time complexity. Since adjacency testing can be performed in $O(d)$ time, the subgraph $G\left[\left\{v_{i}\right\} \cup N^{+}\left(v_{i}\right)\right]$ can be constructed in $O\left(d^{3}\right)$ time. By Theorem 3, the call to AllCliques takes $O\left(d 2^{d}\right)$ time. Hence the total time is $O\left(d 2^{d} n\right)$.

Since H-minor free graphs are $O(t \sqrt{\log t})$-degenerate, where $t=|V(H)|$, Theorem 4 implies:

Corollary 5. For every fixed graph H, there is a linear time algorithm to list all cliques in a given H-minor-free graph.

4 Graph Minor Decomposition

This section first describes the Robertson-Seymour decomposition theorem characterising the structure of H-minor-free graphs, and then describes the analogous decomposition theorem for odd-minor-free graphs. We need a number of definitions.

An embedding refers to a 2-cell embedding of a graph in a (orientable or nonorientable) surface; that is, a drawing of the vertices and edges of the graph as points and arcs in the surface such that every face (region outlined by edges) is homeomorphic to a disk; see [18].

Let I be a linearly ordered set. A path decomposition of a graph G is a sequence ($\mathcal{B}_{i}: i \in I$) of subsets of $V(G)$ called bags such that:

1. $\bigcup_{i \in I} \mathcal{B}_{i}=V(G)$;
2. for each edge $u v \in E(G)$, there exists $i \in I$ such that both u and v are in \mathcal{B}_{i}; and
3. for each vertex $v \in V(G)$, the set $\left\{i: v \in \mathcal{B}_{i}\right\}$ is a sub-interval of I.

The width of $\left(\mathcal{B}_{i}: i \in I\right)$ is the maximum cardinality of a bag minus 1 . The pathwidth of a graph G is the minimum width over all possible path decompositions of G.

At a high level, the Robertson-Seymour decomposition theorem says that for every graph H, every H-minor-free graph can be expressed as a tree structure of pieces, where each piece is a graph that can be drawn in a surface in which H cannot be drawn, except for a bounded number of "apex" vertices and a bounded number of local areas of non-planarity called "vortices". Here the bounds depend only on H. Each piece in the decomposition is " h-almost-embeddable" where h is a constant depending on the excluded minor H. Roughly speaking, a graph G is h-almost embeddable in a surface Σ if there exists a set $A \subseteq V(G)$ of size at most h, such that $G-A$ can be obtained from a graph embedded in Σ by attaching at most h graphs of pathwidth at most h to within h faces in an orderly way. The elements of A are called apex vertices.

More precisely, a graph G is h-almost embeddable in a surface Σ if there exists a set $A \subseteq V(G)$ of size at most h such that $G-A$ can be written $G_{0} \cup G_{1} \cup \cdots \cup G_{h}$, where

- G_{0} has an embedding in Σ;
- the graphs G_{1}, \ldots, G_{h}, called vortices, are pairwise disjoint;
- there are faces F_{1}, \ldots, F_{h} of G_{0} in Σ, and there are pairwise disjoint disks D_{1}, \ldots, D_{h} in Σ, such that for each $i \in\{1, \ldots, h\}$,
- $D_{i} \subset F_{i}$ and $U_{i}:=V\left(G_{0}\right) \cap V\left(G_{i}\right)=V\left(G_{0}\right) \cap D_{i}$; and
- if U_{i} is linearly ordered around the boundary of F_{i}, then G_{i} has a path decomposition ($\mathcal{B}_{u}: u \in U_{i}$) of width less than h, such that $u \in \mathcal{B}_{u}$ for each $u \in U_{i}$.

The pieces of the decomposition are combined according to "clique-sum" operations, a notion which goes back to the characterisations of $K_{3,3}$-minor-free and K_{5}-minorfree graphs by Wagner [28]. Suppose G_{1} and G_{2} are graphs with disjoint vertex sets and let $k \geq 0$ be an integer. For $i=1,2$, suppose that $W_{i} \subseteq V\left(G_{i}\right)$ is a k-clique in G_{i}. Let G_{i}^{\prime} be obtained from G_{i} by deleting some (possibly no) edges from the induced subgraph $G_{i}\left[W_{i}\right]$ with both endpoints in W_{i}. Consider a bijection $h: W_{1} \rightarrow W_{2}$. A k-sum G of G_{1} and G_{2}, denoted by $G=G_{1} \oplus_{k} G_{2}$ or simply by $G=G_{1} \oplus G_{2}$ is the graph obtained from the union of G_{1}^{\prime} and G_{2}^{\prime} by identifying w with $h(w)$ for all $w \in W_{1}$. A $(\leq k)$-sum is a k^{\prime}-sum for some $k^{\prime} \leq k$. Note that \oplus is not uniquely defined.

Now we can finally state a precise form of the decomposition theorem:
Theorem 6. [23, Theorem 1.3] For every graph H, there exists an integer $h \geq 0$ depending only on $|V(H)|$ such that every H-minor-free graph can be obtained by $(\leq h)$-sums of graphs that are h-almost-embeddable in some surfaces in which H cannot be embedded.

In particular, if H is fixed then a surface in which H cannot be embedded has bounded Euler genus. Thus the summands in Theorem 6 are h-almost embeddable in surfaces of bounded Euler genus. A graph is h-almost embeddable if it is h-almost embeddable in a surface of Euler genus at most h.

We now describe a decomposition theorem for odd-minor-free graphs by Demaine et al. [3]. This result generalises Theorem 6. A graph G is h-almost bipartite if $G-A$ is bipartite for some set $A \subseteq V(G)$ with $|A| \leq h$.

Theorem 7 ([3]). For every fixed integert, there is a constant h such that every odd-K_{t}-minor-free graph G can be obtained by $(\leq h)$-sums of h-almost bipartite graphs and h-almost embeddable graphs.

5 Listing Cliques in Odd-Minor-Free Graphs

This section describes an algorithm for finding all the cliques in a graph G excluding a fixed odd-minor. The time complexity is $O\left(n^{3}\right)$. Thus, we may assume that G is represented by an adjacency matrix (which takes $O\left(n^{2}\right)$ time to pre-compute), and adjacency testing can be performed in $O(1)$ time.

Lemma 8. Let G be an h-almost-bipartite graph on n vertices. Then G contains at most $2^{h} n^{2}+2$ cliques.

Proof. $G-A$ is bipartite for some $A \subseteq V(G)$ with $|A| \leq h$. Since $G-A$ is trianglefree, the cliques in $G-A$ are precisely $E(G-A) \cup V(G-A) \cup\{\emptyset\}$. There are at
most $\frac{1}{4}(n-|A|)^{2}+n-|A|+1$ such cliques. There are at most $2^{|A|}$ cliques in $G[A]$. Every clique in G is the union of a clique in $G-A$ and a clique in $G[A]$. Thus G contains at most $2^{|A|}\left(\frac{1}{4}(n-|A|)^{2}+n-|A|+1\right) \leq 2^{h} n^{2}+2$ cliques.

Lemma 9. Let G be an h-almost embeddable graph on n vertices. Then, for some h^{\prime} and $h^{\prime \prime}$ that only depend on h, G contains at most $h^{\prime} n$ cliques, and they can be listed in $O\left(h^{\prime \prime} n\right)$ time.

Proof. It is well known that G contains no $K_{h^{\prime}-\text { minor, for some } h^{\prime} \text { depending only }}$ on h (see [13] for a tight bound on h^{\prime}). Thus G is $O\left(h^{\prime} \sqrt{\log h^{\prime}}\right)$-degenerate, and the claim follows from Corollary 5.

Lemma 10. Let $c>0$. Let G be a k-sum of graphs G_{1} and G_{2}, where each G_{i} has n_{i} vertices and contains at most cn n_{i}^{2} cliques. Assume that $n_{1} \geq \frac{k^{2}}{2}+k$ and G has n vertices. Then G contains at most $c n_{1}^{2}+c n_{2}^{2}$ cliques, which is at most $c n^{2}$.

Proof. Since $n_{1} \geq \frac{k^{2}}{2}+k$ and $n_{2} \geq k+1$,

$$
\begin{aligned}
n_{1} \geq \frac{k^{2}}{2}+k \geq \frac{k^{2}}{2\left(n_{2}-k\right)}+k & =\frac{2 k\left(n_{2}-k\right)+k^{2}}{2\left(n_{2}-k\right)} \\
& =\frac{k\left(2 n_{2}-k\right)}{2\left(n_{2}-k\right)}
\end{aligned}
$$

Hence $2 n_{1} n_{2}-2 k n_{1} \geq 2 k n_{2}-k^{2}$, implying

$$
\begin{aligned}
n^{2} & =\left(n_{1}+n_{2}-k\right)^{2} \\
& =n_{1}^{2}+n_{2}^{2}+2 n_{1} n_{2}-2 k n_{1}-2 k n_{2}+k^{2} \\
& \geq n_{1}^{2}+n_{2}^{2}
\end{aligned}
$$

Each clique in G is a clique of G_{1} or G_{2}. Thus G contains at most $c n_{1}^{2}+c n_{2}^{2} \leq c n^{2}$ cliques.

Lemma 11. Let k be a positive integer. Let G_{1}, \ldots, G_{p} be graphs, such that each G_{i} has n_{i} vertices and contains at most $f(k) \cdot n_{i}^{2}$ cliques, for some function f. Furthermore, suppose that each G_{i} contains no k-clique. Let G be an n-vertex graph obtained by $(\leq k)$-sums of G_{1}, \ldots, G_{p}. Then for some function f^{\prime} depending on f and k, G contains at most $f^{\prime}(k) \cdot n^{2}$ cliques.

Proof. The construction of G defines a binary tree T rooted at some node r, and associated with each node v of T is a subgraph G_{v} of G, such that $G_{r}=G ; G_{1}, \ldots, G_{p}$ are the subgraphs associated with the leaves of T; and $G_{v}=G_{u} \oplus_{\leq k} G_{w}$ for each non-leaf node v with children u and w. Let n_{v} be the number of vertices in each G_{v}. Say G_{v} is small if $n_{v}<\frac{k^{2}}{2}+k$.

Let T^{\prime} be the subtree of T obtained by applying the following rule until it cannot be further applied: If u and w are leaf nodes with a common parent v, and both G_{u} and G_{w} are small, then delete u and w. The remainder of the proof focuses on T^{\prime}.

We now prove (by induction, working from the leaves of T^{\prime} up through the tree) that each subgraph G_{v} contains at most $f^{\prime}(k) \cdot n_{v}^{2}$ cliques, where $f^{\prime}(k):=\max \left\{f(k), 2^{k^{2}+2 k}\right\}$. If v is a leaf of T then this hypothesis holds by assumption. If v is a leaf of T^{\prime} but not of T, then G_{u} and G_{w} are small, where u and w are the children of v in T. In this case $n_{v} \leq k^{2}+2 k$, implying G_{v} contains at most $2^{k^{2}+2 k} \leq f^{\prime}(k) \cdot n_{v}^{2}$ cliques. Thus the hypothesis again holds.

Now consider a non-leaf node v of T^{\prime}. Let u and w be the children of v. We have $G_{v}=G_{u} \oplus_{\ell} G_{w}$ for some $\ell \leq k$. By induction, G_{u} contains at most $f^{\prime}(k) \cdot n_{u}^{2}$ cliques, and G_{w} contains at most $f^{\prime}(k) \cdot n_{w}^{2}$ cliques. Suppose that G_{u} and G_{w} are both small. If u and w are both leaves in T then the above rule is applicable. Otherwise, without loss of generality, w is not a leaf in T, in which case every descendent subgraph of w is small, implying the subtree rooted at w contains two leaves for which the above rule is applicable. Hence at least one of G_{u} and G_{w} is not small. Thus Lemma 10 is applicable with $c=f^{\prime}(k)$. Hence G_{v} contains at most $f^{\prime}(k) \cdot n_{u}^{2}+f^{\prime}(k) \cdot n_{w}^{2}$ cliques, which is at most $f^{\prime}(k) \cdot n_{v}^{2}$ cliques. In particular, $G=G_{r}$ contains at most $f^{\prime}(k) \cdot n^{2}$ cliques, as claimed. Observe that the above argument actually proves that the sum of n_{u}^{2}, taken over all leaf nodes u in T^{\prime}, is at most n^{2}.

Proof of Theorem 1. By Theorem 7, G is the $(\leq h)$-sum of graphs G_{1}, \ldots, G_{p}, where each G_{i} is h-almost bipartite or h-almost embeddable in a surface of Euler genus h. By Lemmas 8 and 9 , for some h^{\prime} that only depends on h, if each G_{i} has n_{i} vertices, then G_{i} contains at most $h^{\prime} n_{i}^{2}$ cliques. Note that G contains no h-clique. By Lemma 11, G contains at most $h^{\prime \prime} n^{2}$ cliques, for some $h^{\prime \prime}$ depending only on h. By Theorem 3, the cliques in G can be output in $O\left(h^{\prime \prime} n^{2}\right)$ time by algorithm AllCliques (G).

Note that reference [3] describes a polynomial time algorithm for computing the decomposition described in Theorem 7. However, by using Theorem 3 it suffices to merely prove an upper bound on the number of cliques in an odd-minor-free graph, to obtain an efficient algorithm for listing all cliques.

Acknowledgements

Many thanks to the referees of the conference version of this paper who found some minor errors that have now been corrected.

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998. doi: 10.1145/278298.278306.
[2] Marek Chrobak and David Eppstein. Planar orientations with low out-degree and compaction of adjacency matrices. Theoret. Comput. Sci., 86(2):243-266, 1991. doi: 10.1016/0304-3975(91)90020-3.
[3] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi KAWARABAYASHI. Decomposition, approximation, and coloring of odd-minor-free graphs. In Proc. of 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '10), pp. 329-344. ACM Press, 2010. http://portal.acm.org/citation.cfm?id=1873629.
[4] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness. II. On completeness for W [1]. Theoret. Comput. Sci., 141(1-2):109-131, 1995. doi: 10.1016/0304-3975(94)00097-3.
[5] Vida Dujmović, Gašper Fijavž, Gwenaël Joret, David R. Wood, and Thom Sulanke. On the maximum number of cliques in a graph embedded in a surface. European J. Combin., 32(8):1244-1252, 2011. doi: 10.1016/j.ejc.2011.04.001.
[6] David Eppstein. Connectivity, graph minors, and subgraph multiplicity. J. Graph Theory, 17(3):409-416, 1993. doi: 10.1002/jgt. 3190170314.
[7] David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl., 7(2):131-140, 2003. http://jgaa.info/accepted/2003/Eppstein2003.7.2.pdf.
[8] David Eppstein. All maximal independent sets and dynamic dominance for sparse graphs. ACM Trans. Algorithms, 5(4):\#38, 2009. doi: 10.1145/1597036.1597042.
[9] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in sparse graphs in near-optimal time. In Отfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, eds., Proc. of 21st International Symposium on Algorithms and Computation (ISAAC 2010), vol. 6506 of Lecture Notes in Computer Science, pp. 403-414. 2010. doi: 10.1007/978-3-642-17517-6_36. arXiv: 1006.5440.
[10] Fedor V. Fomin, Sang il Oum, and Dimitrios M. Thilikos. Rank-width and tree-width of H-minor-free graphs. European J. Combin., 31(7):1617-1628, 2010. doi: 10.1016/j.ejc.2010.05.003.
[11] Alain Gély, Lhouari Nourine, and Bachir Sadi. Enumeration aspects of maximal cliques and bicliques. Discrete Appl. Math., 157(7):1447-1459, 2009. doi: 10.1016/j.dam.2008.10.010.
[12] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. On generating all maximal independent sets. Inform. Process. Lett., 27(3):119-123, 1988. doi: 10.1016/0020-0190(88)90065-8.
[13] GwenaËl Joret and David R. Wood. Complete graph minors and the graph minor structure theorem. 2011. arXiv: 1105.3549.
[14] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, eds., Complexity of Computer Communications, pp. 85-103. Plenum Press, 1972.
[15] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307-316, 1984. doi: 10.1007/BF02579141. MR: 0779891.
[16] Eugene L. Lawler, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan. Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput., 9(3):558-565, 1980. doi: 10.1137/0209042.
[17] Don R. Lick and Arthur T. White. k-degenerate graphs. Canad. J. Math., 22:1082-1096, 1970. doi: 10.4153/CJM-1970-125-1.
[18] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins University Press, Baltimore, U.S.A., 2001.
[19] Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan. Proper minor-closed families are small. J. Combin. Theory Ser. B, 96(5):754757, 2006. doi: 10.1016/j.jctb.2006.01.006.
[20] Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for planar graphs. Inform. Process. Lett., 13(4-5):131-133, 1981. doi: 10.1016/0020-0190(81)90041-7.
[21] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely specified sequential switching functions. IRE Trans. Electron. Comput., EC-8:356-367, 1959.
[22] Bruce Reed and David R. Wood. A linear time algorithm to find a separator in a graph excluding a minor. ACM Transactions on Algorithms, 5(4):\#39, 2009. doi: $10.1145 / 1597036.1597043$.
[23] Neil Robertson and Paul D. Seymour. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B, 89(1):43-76, 2003. doi: 10.1016/S0095-8956(03)00042-X.
[24] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. Discrete Appl. Math., 157(4):673-684, 2009. doi: 10.1016/j.dam.2008.08.002.
[25] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984. doi: 10.1017/S0305004100061521. MR: 0735367, Zbl: 0551.05047.
[26] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci., 363(1):28-42, 2006. doi: 10.1016/j.tcs.2006.06.015.
[27] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM J. Comput., 6(3):505-517, 1977. doi: 10.1137/0206036.
[28] Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570-590, 1937. doi: 10.1007/BF01594196. MR: 1513158. Zbl: 0017.19005.
[29] David R. Wood. On the maximum number of cliques in a graph. Graphs Combin., 23(3):337-352, 2007. doi: 10.1007/s00373-007-0738-8. MR: 2320588.
[30] Christian Wulff-Nilsen. Faster shortest path algorithm for H-minor free graphs with negative edge weights. 2010. arXiv: 1008.1048.
[31] Raphael Yuster. Single source shortest paths in H-minor free graphs. Theoret. Comput. Sci., 411(34-36):3042-3047, 2010. doi: 10.1016/j.tcs.2010.04.028.
[32] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '07), pp. 108-117. SIAM, 2007. http://portal.acm.org/citation.cfm?id=1283396.

[^0]: *A preliminary version of this paper was published in the Proceedings of Computing: the Australasian Theory Symposium (CATS 2012).
 ${ }^{\dagger}$ National Institute of Informatics, Tokyo, Japan (k_keniti@nii.ac.jp).
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (woodd@unimelb.edu.au). Supported by a QEII Fellowship and Discovery Project from the Australian Research Council.
 ${ }^{1}$ We consider simple finite undirected graphs G with vertex set $V(G)$ and edge set $E(G)$. For each vertex $v \in V(G)$, let $N_{G}(v)$ or simply $N(v)$, be $\{w \in V(G): v w \in E(G)\}$.

