

Contents lists available at SciVerse ScienceDirect

# **European Journal of Combinatorics**

journal homepage: www.elsevier.com/locate/ejc



## Nordhaus-Gaddum for treewidth

Gwenaël Joret<sup>a</sup>, David R. Wood<sup>b</sup>

- a Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium
- <sup>b</sup> Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

#### ARTICLE INFO

Article history:
Received 13 September 2011
Received in revised form
11 October 2011
Accepted 11 October 2011

#### ABSTRACT

We prove that, for every n-vertex graph G, the treewidth of G plus the treewidth of the complement of G is at least n-2. This bound is tight.

© 2012 Gwenaël Joret and David R. Wood. Published by Elsevier Ltd. All rights reserved.

Nordhaus–Gaddum-type theorems establish bounds on  $f(G)+f(\overline{G})$  for some graph parameter f, where  $\overline{G}$  is the complement of a graph G. The literature has numerous examples; see [3,8,4,6,13,14,11] for a few. Our main result is the following Nordhaus–Gaddum-type theorem for treewidth, <sup>1</sup>which is a graph parameter of particular importance in structural and algorithmic graph theory. Let tw(G) denote the treewidth of a graph G.

**Theorem 1.** For every graph G with n vertices,

$$tw(G) + tw(\overline{G}) > n - 2.$$

The following lemma is the key to the proof of Theorem 1.

**Lemma 2.** For every n-vertex graph G with no induced 4-cycle and no k-clique,

$$tw(\overline{G}) > n - k$$
.

E-mail addresses: gjoret@ulb.ac.be (G. Joret), woodd@unimelb.edu.au (D.R. Wood).

<sup>&</sup>lt;sup>1</sup> While treewidth is normally defined in terms of tree decompositions (see [2]), it can also be defined as follows. A graph G is a k-tree if  $G \cong K_{k+1}$  or G - v is a k-tree for some vertex v whose neighbours induce a k-clique. Then the t-reewidth of a graph G is the minimum integer k such that G is a spanning subgraph of a k-tree. See [1,10] for surveys on treewidth.

Let G be a graph. Two subsets of vertices A and B in Gtouch if  $A \cap B \neq \emptyset$ , or some edge of G has one endpoint in A and the other endpoint in B. A bramble in G is a set of subsets of V(G) that induce connected subgraphs and pairwise touch. A set S of vertices in G is a hitting set of a bramble B if S intersects every element of B. The order of B is the minimum size of a hitting set. Seymour and Thomas [12] proved the Treewidth Duality Theorem, which says that a graph G has treewidth at least B if and only if G contains a bramble of order at least B if B in B if B in B if B in B in

**Proof.** Let  $\mathcal{B} := \{\{v, w\} : vw \in E(\overline{G})\}$ . If  $\{v, w\}$  and  $\{x, y\}$  do not touch for some  $vw, xy \in E(\overline{G})$ , then the four endpoints are distinct and (v, x, w, y) is an induced 4-cycle in G, which is a contradiction. Thus  $\mathcal{B}$  is a bramble in  $\overline{G}$ . Let S be a hitting set for  $\mathcal{B}$ . Thus no edge in  $\overline{G}$  has both endpoints in  $V(\overline{G}) \setminus S$ . Hence  $V(G) \setminus S$  is a clique in G. Therefore  $n - |S| \le k - 1$  and  $|S| \ge n - k + 1$ . That is, the order of  $\mathcal{B}$  is at least n - k + 1. By the Treewidth Duality Theorem,  $\operatorname{tw}(\overline{G}) \ge n - k$ , as desired.  $\square$ 

**Proof of Theorem 1.** Let  $k := \operatorname{tw}(G)$ . Let H be a k-tree that contains G as a spanning subgraph. Thus H has no induced 4-cycle (it is chordal) and has no (k+2)-clique. By Lemma 2, and since  $\overline{G} \supseteq \overline{H}$ , we have  $\operatorname{tw}(\overline{G}) \ge \operatorname{tw}(\overline{H}) \ge n - k - 2$ . Therefore  $\operatorname{tw}(G) + \operatorname{tw}(\overline{G}) \ge n - 2$ .  $\square$ 

Lemma 2 immediately implies the following result of independent interest.

**Theorem 3.** For every n-vertex graph G with girth at least 5,

$$tw(\overline{G}) \ge n - 3$$
.

We now show that Theorem 1 is tight.

**Lemma 4.** Let G be a graph with treewidth k that contains a (k + 1)-clique C such that each vertex in C has a neighbour outside of C. Then

$$tw(G) + tw(\overline{G}) = n - 2.$$

**Proof.** We describe an (n-k-2)-tree H that contains  $\overline{G}$ . Let  $A := V(G) \setminus C$  be the starting (n-k-1)-clique of H. For each vertex  $x \in C$ , add x to H adjacent to  $A \setminus \{y\}$ , where y is a neighbour of x outside of C. Observe that H is an (n-k-2)-tree and  $\overline{G}$  is a spanning subgraph of H. Thus  $\operatorname{tw}(\overline{G}) \le n-k-2$  and  $\operatorname{tw}(G) + \operatorname{tw}(\overline{G}) \le n-2$ , with equality by Theorem 1.  $\square$ 

For k-trees, we have the following precise result. Let  $Q_n^k$  be the k-tree consisting of a k-clique C with n-k vertices adjacent only to C.

**Theorem 5.** For every n-vertex k-tree G,

$$tw(G) + tw(\overline{G}) = \begin{cases} n-1 & \text{if } G \cong Q_n^k \\ n-2 & \text{otherwise.} \end{cases}$$

**Proof.** First, suppose that  $G \cong Q_n^k$ . Then  $\overline{G}$  consists of  $K_{n-k}$  and k isolated vertices. Thus  $\operatorname{tw}(\overline{G}) = n-k-1$ , and  $\operatorname{tw}(G) + \operatorname{tw}(\overline{G}) = n-1$ . Now assume that  $G \ncong Q_n^k$ . By the definition of a k-tree, V(G) can be labelled  $v_1, \ldots, v_n$  such that  $\{v_1, \ldots, v_{k+1}\}$  is a clique, and, for  $j \in \{k+2, \ldots, n\}$ , the neighbourhood of  $v_j$  in  $G[\{v_1, \ldots, v_{j-1}\}]$  is a k-clique  $C_j$ . If  $C_{k+2}, \ldots, C_n$  are all equal, then  $G \cong Q_n^k$ . Thus  $C_j \neq C_{k+2}$  for some minimum integer j. Observe that each vertex in  $C_j$  has a neighbour outside of  $C_j$ . The result follows from Lemma 4.

In view of Theorem 1, it is natural to also consider how large  $\operatorname{tw}(G)+\operatorname{tw}(\overline{G})$  can be. Every n-vertex graph G satisfies  $\operatorname{tw}(G) \leq n-1$ , implying that  $\operatorname{tw}(G)+\operatorname{tw}(\overline{G}) \leq 2n-2$ . It turns out that this trivial upper bound is tight up to lower-order terms. Indeed, Perarnau and Serra [9] proved that, if  $G \in \mathcal{G}(n,p)$  is a random n-vertex graph with edge probability  $p=\omega(\frac{1}{n})$  in the sense of Erdős and Rényi, then asymptotically almost surely  $\operatorname{tw}(G)=n-o(n)$ ; see [5,7] for related results. Setting  $p=\frac{1}{2}$ , it follows that, asymptotically almost surely,  $\operatorname{tw}(G)=n-o(n)$  and  $\operatorname{tw}(\overline{G})=n-o(n)$ , and hence  $\operatorname{tw}(G)+\operatorname{tw}(\overline{G})=2n-o(n)$ . Theorems 1 and 5 can be reinterpreted as follows, where, for graphs  $G_1$  and  $G_2$ , the union  $G_1\cup G_2$  is the graph with vertex set  $V(G_1)\cup V(G_2)$  and edge set  $E(G_1)\cup E(G_2)$  (where  $G_1$  and  $G_2$  may intersect).

**Proposition 6.** For all graphs  $G_1$  and  $G_2$ , the union  $G_1 \cup G_2$  contains no clique on  $\mathsf{tw}(G_1) + \mathsf{tw}(G_2) + 3$  vertices. This result is sharp, since there exist graphs  $G_1$  and  $G_2$  such that  $G_1 \cup G_2$  contains a clique on  $\mathsf{tw}(G_1) + \mathsf{tw}(G_2) + 2$  vertices.

**Proof.** For the first claim, we may assume that  $V(G_1) = V(G_2)$  and  $E(G_1) \cap E(G_2) = \emptyset$ . Let S be a clique in  $G_1 \cup G_2$ . Thus  $\overline{G_1[S]} = G_2[S]$ . By Theorem 1,  $\operatorname{tw}(G_1) + \operatorname{tw}(G_2) \ge \operatorname{tw}(G_1[S]) + \operatorname{tw}(G_2[S]) \ge |S| - 2$ . Thus  $|S| \le \operatorname{tw}(G_1) + \operatorname{tw}(G_2) + 2$  as desired. The sharpness example follows from Theorem 5.  $\square$ 

Proposition 6 suggests studying  $G_1 \cup G_2$  further. For example, what is the maximum of  $\chi(G_1 \cup G_2)$  taken over all graphs  $G_1$  and  $G_2$  with  $\operatorname{tw}(G_1) \leq k$  and  $\operatorname{tw}(G_2) \leq k$ ? By Proposition 6, the answer is at least 2k+2. A minimum-degree greedy algorithm shows that  $\chi(G_1 \cup G_2) \leq 4k$ . This question is somewhat similar to Ringel's earth-moon problem, which asks for the maximum chromatic number of the union of two planar graphs.

### Acknowledgements

This work was supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique. Gwenaël Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS), and is also supported by an Endeavour Fellowship from the Australian Government. David Wood is supported by a QEII Research Fellowship from the Australian Research Council (ARC).

#### References

- Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1–2) (1998) 1–45. doi:10.1016/S0304-3975(97)00228-4.
- [2] Reinhard Diestel, Graph Theory, 4th ed. in: Graduate Texts in Mathematics, vol. 173, Springer, 2010, http://diestel-graph-theory.com/.
- [3] Zoltan Füredi, Alexandr V. Kostochka, Riste Škrekovski, Michael Stiebitz, Douglas B. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, J. Graph Theory 50 (4) (2005) 273–292. doi:10.1002/jgt.20113.
- [4] G. Gutin, Alexandr V. Kostochka, Bjarne Toft, On the Hajós number of graphs, Discrete Math. 213 (1–3) (2000) 153–161. doi:10.1016/S0012-365X(99)00175-2.
- [5] Ton Kloks, Hans Bodlaender, Only few graphs have bounded treewidth. Tech. Rep. RRR-CS-92-35, Utrecht University, Netherlands, 1992. http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-35.pdf.
- [6] Alexandr V. Kostochka, On Hadwiger numbers of a graph and its complement, in: A. Hajnal, L. Lovasz, V.T. Sos (Eds.), Finite And Infinite Sets, in: Colloquia Mathematica Societatis Janos Bolyai, vol. 37, 1981, pp. 537–545.
- [7] Choongbum Lee, Joonkyung Lee, Sang il Oum, Rank-width of random graphs, J. Graph Theory, in press, (doi:10.1002/jgt.20620).
- [8] E.A. Nordhaus, Jerry W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
- [9] Guillem Perarnau, Oriol Serra, On the tree-depth of random graphs, 2011. http://arxiv.org/abs/1104.2132.
- [10] Bruce A. Reed, Tree width and tangles: a new connectivity measure and some applications, in: Surveys In Combinatorics, in: London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, 1997, pp. 87–162. doi:10.1017/CBO9780511662119.006.
- [11] Bruce Reed, Robin Thomas, Clique minors in graphs and their complements, J. Combin. Theory Ser. B 78 (1) (2000) 81–85. doi: 10.1006/jctb.1999.1930.
- [12] Paul D. Seymour, Robin Thomas, Graph searching and a min-max theorem for tree-width, J. Combin. Theory Ser. B 58 (1) (1993) 22–33. doi:10.1006/jctb.1993.1027.
- [13] Michael Stiebitz, On Hadwiger's number—a problem of the Nordhaus–Gaddum type, Discrete Math. 101 (1–3) (1992) 307–317. doi:10.1016/0012-365X(92)90611-I.
- [14] Michael Stiebitz, On Hadwiger numbers of a graph and its complement, in: Contemporary Methods in Graph Theory, Bibliographisches Inst, Mannheim, 1990, pp. 557–568.