# Nordhaus-Gaddum for treewidth 

Gwenaël Joret ${ }^{\text {a }}$, David R. Wood ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium<br>${ }^{\text {b }}$ Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

## ARTICLE INFO

## Article history:

Received 13 September 2011
Received in revised form
11 October 2011
Accepted 11 October 2011


#### Abstract

We prove that, for every $n$-vertex graph $G$, the treewidth of $G$ plus the treewidth of the complement of $G$ is at least $n-2$. This bound is tight. © 2012 Gwenaël Joret and David R. Wood. Published by Elsevier Ltd. All rights reserved.


Nordhaus-Gaddum-type theorems establish bounds on $f(G)+f(\bar{G})$ for some graph parameter $f$, where $\bar{G}$ is the complement of a graph $G$. The literature has numerous examples; see $[3,8,4,6,13,14,11]$ for a few. Our main result is the following Nordhaus-Gaddum-type theorem for treewidth, ${ }^{1}$ which is a graph parameter of particular importance in structural and algorithmic graph theory. Let $\operatorname{tw}(G)$ denote the treewidth of a graph $G$.

Theorem 1. For every graph $G$ with $n$ vertices,

$$
\operatorname{tw}(G)+\operatorname{tw}(\bar{G}) \geq n-2
$$

The following lemma is the key to the proof of Theorem 1.
Lemma 2. For every n-vertex graph $G$ with no induced 4-cycle and no $k$-clique,
$\operatorname{tw}(\bar{G}) \geq n-k$.

[^0]Proof. Let $\mathcal{B}:=\{\{v, w\}: v w \in E(\bar{G})\}$. If $\{v, w\}$ and $\{x, y\}$ do not touch for some $v w, x y \in E(\bar{G})$, then the four endpoints are distinct and ( $v, x, w, y$ ) is an induced 4-cycle in $G$, which is a contradiction. Thus $\mathcal{B}$ is a bramble in $\bar{G}$. Let $S$ be a hitting set for $\mathcal{B}$. Thus no edge in $\bar{G}$ has both endpoints in $V(\bar{G}) \backslash S$. Hence $V(G) \backslash S$ is a clique in $G$. Therefore $n-|S| \leq k-1$ and $|S| \geq n-k+1$. That is, the order of $\mathcal{B}$ is at least $n-k+1$. By the Treewidth Duality Theorem, $\operatorname{tw}(\bar{G}) \geq n-k$, as desired.

Proof of Theorem 1. Let $k:=\operatorname{tw}(G)$. Let $H$ be a $k$-tree that contains $G$ as a spanning subgraph. Thus $H$ has no induced 4 -cycle (it is chordal) and has no ( $k+2$ )-clique. By Lemma 2 , and since $\bar{G} \supseteq \bar{H}$, we have $\mathrm{tw}(\bar{G}) \geq \operatorname{tw}(\bar{H}) \geq n-k-2$. Therefore $\mathrm{tw}(G)+\operatorname{tw}(\bar{G}) \geq n-2$.

Lemma 2 immediately implies the following result of independent interest.
Theorem 3. For every n-vertex graph $G$ with girth at least 5 ,

$$
\operatorname{tw}(\bar{G}) \geq n-3
$$

We now show that Theorem 1 is tight.
Lemma 4. Let $G$ be a graph with treewidth $k$ that contains $a(k+1)$-clique $C$ such that each vertex in $C$ has a neighbour outside of $C$. Then

$$
\operatorname{tw}(G)+\operatorname{tw}(\bar{G})=n-2
$$

Proof. We describe an $(n-k-2)$-tree $H$ that contains $\bar{G}$. Let $A:=V(G) \backslash C$ be the starting $(n-k-1)-$ clique of $H$. For each vertex $x \in C$, add $x$ to $H$ adjacent to $A \backslash\{y\}$, where $y$ is a neighbour of $x$ outside of C. Observe that $H$ is an $(n-k-2)$-tree and $\bar{G}$ is a spanning subgraph of $H$. Thus $\operatorname{tw}(\bar{G}) \leq n-k-2$ and $\mathrm{tw}(G)+\operatorname{tw}(\bar{G}) \leq n-2$, with equality by Theorem 1 .
For $k$-trees, we have the following precise result. Let $Q_{n}^{k}$ be the $k$-tree consisting of a $k$-clique $C$ with $n-k$ vertices adjacent only to $C$.

Theorem 5. For every $n$-vertex $k$-tree $G$,

$$
\operatorname{tw}(G)+\operatorname{tw}(\bar{G})= \begin{cases}n-1 & \text { if } G \cong Q_{n}^{k} \\ n-2 & \text { otherwise }\end{cases}
$$

Proof. First, suppose that $G \cong Q_{n}^{k}$. Then $\bar{G}$ consists of $K_{n-k}$ and $k$ isolated vertices. Thus $\operatorname{tw}(\bar{G})=$ $n-k-1$, and $\operatorname{tw}(G)+\operatorname{tw}(\bar{G})=n-1$. Now assume that $G \not \equiv Q_{n}^{k}$. By the definition of a $k$-tree, $V(G)$ can be labelled $v_{1}, \ldots, v_{n}$ such that $\left\{v_{1}, \ldots, v_{k+1}\right\}$ is a clique, and, for $j \in\{k+2, \ldots, n\}$, the neighbourhood of $v_{j}$ in $G\left[\left\{v_{1}, \ldots, v_{j-1}\right\}\right]$ is a $k$-clique $C_{j}$. If $C_{k+2}, \ldots, C_{n}$ are all equal, then $G \cong Q_{n}^{k}$. Thus $C_{j} \neq C_{k+2}$ for some minimum integer $j$. Observe that each vertex in $C_{j}$ has a neighbour outside of $C_{j}$. The result follows from Lemma 4.

In view of Theorem 1, it is natural to also consider how large $\operatorname{tw}(G)+\operatorname{tw}(\bar{G})$ can be. Every $n$-vertex graph $G$ satisfies $\operatorname{tw}(G) \leq n-1$, implying that $\operatorname{tw}(G)+\operatorname{tw}(\bar{G}) \leq 2 n-2$. It turns out that this trivial upper bound is tight up to lower-order terms. Indeed, Perarnau and Serra [9] proved that, if $G \in \mathcal{G}(n, p)$ is a random $n$-vertex graph with edge probability $p=\omega\left(\frac{1}{n}\right)$ in the sense of Erdős and Rényi, then asymptotically almost surely $\mathrm{tw}(G)=n-o(n)$; see [5,7] for related results. Setting $p=\frac{1}{2}$, it follows that, asymptotically almost surely, $\operatorname{tw}(G)=n-o(n)$ and $\operatorname{tw}(\bar{G})=n-o(n)$, and hence $\operatorname{tw}(G)+\operatorname{tw}(\bar{G})=2 n-o(n)$. Theorems 1 and 5 can be reinterpreted as follows, where, for graphs $G_{1}$ and $G_{2}$, the union $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ (where $G_{1}$ and $G_{2}$ may intersect).

Proposition 6. For all graphs $G_{1}$ and $G_{2}$, the union $G_{1} \cup G_{2}$ contains no clique on $\operatorname{tw}\left(G_{1}\right)+\operatorname{tw}\left(G_{2}\right)+3$ vertices. This result is sharp, since there exist graphs $G_{1}$ and $G_{2}$ such that $G_{1} \cup G_{2}$ contains a clique on $\mathrm{tw}\left(G_{1}\right)+\operatorname{tw}\left(G_{2}\right)+2$ vertices.

Proof. For the first claim, we may assume that $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$. Let $S$ be a clique in $G_{1} \cup G_{2}$. Thus $\overline{G_{1}[S]}=G_{2}[S]$. By Theorem $1, \operatorname{tw}\left(G_{1}\right)+\operatorname{tw}\left(G_{2}\right) \geq \operatorname{tw}\left(G_{1}[S]\right)+\operatorname{tw}\left(G_{2}[S]\right) \geq|S|-2$. Thus $|S| \leq \operatorname{tw}\left(G_{1}\right)+\operatorname{tw}\left(G_{2}\right)+2$ as desired. The sharpness example follows from Theorem 5 .
Proposition 6 suggests studying $G_{1} \cup G_{2}$ further. For example, what is the maximum of $\chi\left(G_{1} \cup G_{2}\right)$ taken over all graphs $G_{1}$ and $G_{2}$ with $\operatorname{tw}\left(G_{1}\right) \leq k$ and $\operatorname{tw}\left(G_{2}\right) \leq k$ ? By Proposition 6, the answer is at least $2 k+2$. A minimum-degree greedy algorithm shows that $\chi\left(G_{1} \cup G_{2}\right) \leq 4 k$. This question is somewhat similar to Ringel's earth-moon problem, which asks for the maximum chromatic number of the union of two planar graphs.

## Acknowledgements

This work was supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique. Gwenaël Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), and is also supported by an Endeavour Fellowship from the Australian Government. David Wood is supported by a QEII Research Fellowship from the Australian Research Council (ARC).

## References

[1] Hans L. Bodlaender, A partial $k$-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209(1-2)(1998) 1-45. doi:10.1016/S0304-3975(97)00228-4.
[2] Reinhard Diestel, Graph Theory, 4th ed. in: Graduate Texts in Mathematics, vol. 173, Springer, 2010, http://diestel-graphtheory.com/.
[3] Zoltan Füredi, Alexandr V. Kostochka, Riste Škrekovski, Michael Stiebitz, Douglas B. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, J. Graph Theory 50 (4) (2005) 273-292. doi:10.1002/jgt.20113.
[4] G. Gutin, Alexandr V. Kostochka, Bjarne Toft, On the Hajós number of graphs, Discrete Math. 213 (1-3) (2000) 153-161. doi:10.1016/S0012-365X(99)00175-2.
[5] Ton Kloks, Hans Bodlaender, Only few graphs have bounded treewidth. Tech. Rep. RRR-CS-92-35, Utrecht University, Netherlands, 1992. http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-35.pdf.
[6] Alexandr V. Kostochka, On Hadwiger numbers of a graph and its complement, in: A. Hajnal, L. Lovasz, V.T. Sos (Eds.), Finite And Infinite Sets, in: Colloquia Mathematica Societatis Janos Bolyai, vol. 37, 1981, pp. 537-545.
[7] Choongbum Lee, Joonkyung Lee, Sang il Oum, Rank-width of random graphs, J. Graph Theory, in press, (doi:10.1002/jgt.20620).
[8] E.A. Nordhaus, Jerry W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[9] Guillem Perarnau, Oriol Serra, On the tree-depth of random graphs, 2011. http://arxiv.org/abs/1104.2132.
[10] Bruce A. Reed, Tree width and tangles: a new connectivity measure and some applications, in: Surveys In Combinatorics, in: London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, 1997, pp. 87-162. doi:10.1017/CBO9780511662119.006.
[11] Bruce Reed, Robin Thomas, Clique minors in graphs and their complements, J. Combin. Theory Ser. B 78 (1) (2000) 81-85. doi:10.1006/jctb.1999.1930.
[12] Paul D. Seymour, Robin Thomas, Graph searching and a min-max theorem for tree-width, J. Combin. Theory Ser. B 58 (1) (1993) 22-33. doi:10.1006/jctb.1993.1027.
[13] Michael Stiebitz, On Hadwiger's number-a problem of the Nordhaus-Gaddum type, Discrete Math. 101 (1-3) (1992) 307-317. doi:10.1016/0012-365X(92)90611-I.
[14] Michael Stiebitz, On Hadwiger numbers of a graph and its complement, in: Contemporary Methods in Graph Theory, Bibliographisches Inst, Mannheim, 1990, pp. 557-568.


[^0]:    E-mail addresses: gjoret@ulb.ac.be (G. Joret), woodd@unimelb.edu.au (D.R. Wood).
    1 While treewidth is normally defined in terms of tree decompositions (see [2]), it can also be defined as follows. A graph $G$ is a $k$-tree if $G \cong K_{k+1}$ or $G-v$ is a $k$-tree for some vertex $v$ whose neighbours induce a $k$-clique. Then the treewidth of a graph $G$ is the minimum integer $k$ such that $G$ is a spanning subgraph of a $k$-tree. See $[1,10]$ for surveys on treewidth.
    Let $G$ be a graph. Two subsets of vertices $A$ and $B$ in Gtouch if $A \cap B \neq \emptyset$, or some edge of $G$ has one endpoint in $A$ and the other endpoint in B. A bramble in $G$ is a set of subsets of $V(G)$ that induce connected subgraphs and pairwise touch. A set $S$ of vertices in $G$ is a hitting set of a bramble $\mathcal{B}$ if $S$ intersects every element of $\mathscr{B}$. The order of $\mathscr{B}$ is the minimum size of a hitting set. Seymour and Thomas [12] proved the Treewidth Duality Theorem, which says that a graph $G$ has treewidth at least $k$ if and only if $G$ contains a bramble of order at least $k+1$.

