CLUSTERED COLOURING IN MINOR-CLOSED CLASSES

SERGEY NORIN*, ALEX SCOTT ${ }^{\dagger}$, PAUL D. SEYMOUR ${ }^{\ddagger}$, DAVID R. WOOD ${ }^{\S}$

Received August 8, 2017
Revised July 30, 2018
Online First October 28, 2019

The clustered chromatic number of a class of graphs is the minimum integer k such that for some integer c every graph in the class is k-colourable with monochromatic components of size at most c. We prove that for every graph H, the clustered chromatic number of the class of H-minor-free graphs is tied to the tree-depth of H. In particular, if H is connected with tree-depth t, then every H-minor-free graph is $\left(2^{t+1}-4\right)$-colourable with monochromatic components of size at most $c(H)$. This provides the first evidence for a conjecture of Ossona de Mendez, Oum and Wood (2016) about defective colouring of H -minor-free graphs. If $t=3$, then we prove that 4 colours suffice, which is best possible. We also determine those minor-closed graph classes with clustered chromatic number 2. Finally, we develop a conjecture for the clustered chromatic number of an arbitrary minorclosed class.

1. Introduction

In a vertex-coloured graph, a monochromatic component is a connected component of the subgraph induced by all the vertices of one colour. A graph G is k-colourable with clustering c if each vertex can be assigned one of k colours such that each monochromatic component has at most c vertices. We shall consider such colourings, where the first priority is to minimise the number of colours, with small clustering as a secondary goal. With this

[^0]viewpoint the following definition arises. The clustered chromatic number of a graph class \mathcal{G}, denoted by $\chi_{\star}(\mathcal{G})$, is the minimum integer k such that, for some integer c, every graph in \mathcal{G} has a k-colouring with clustering c. See [24] for a survey on clustered graph colouring.

This paper studies clustered colouring in minor-closed classes of graphs. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from some subgraph of G by contracting edges. A class of graphs \mathcal{M} is minor-closed if for every graph $G \in \mathcal{M}$ every minor of G is in \mathcal{M}, and some graph is not in \mathcal{M}. For a graph H, let \mathcal{M}_{H} be the class of H-minor-free graphs (that is, not containing H as a minor). Note that we only consider simple finite graphs.

As a starting point, consider Hadwiger's Conjecture, which states that every graph containing no K_{t}-minor is properly $(t-1)$-colourable. This conjecture is easy for $t \leqslant 4$, is equivalent to the 4 -colour theorem for $t=5$, is true for $t=6$ [19], and is open for $t \geqslant 7$. The best known upper bound on the chromatic number is $O(t \sqrt{\log t})$, independently due to Kostochka [10,11] and Thomason $[21,22]$. This conjecture is widely considered to be one of the most important open problems in graph theory; see [20] for a survey.

Clustered colourings of K_{t}-minor-free graphs provide an avenue for attacking Hadwiger's Conjecture. Kawarabayashi and Mohar [9] first proved an $O(t)$ upper bound on $\chi_{\star}\left(\mathcal{M}_{K_{t}}\right)$. In particular, they proved that every K_{t}-minor-free graph is $\left\lceil\frac{31}{2} t\right\rceil$-colourable with clustering $f(t)$, for some function f. The number of colours in this result was improved to $\left\lceil\frac{7 t-3}{2}\right\rceil$ by Wood [23], to $4 t-4$ by Edwards, Kang, Kim, Oum and Seymour [5], to $3 t-3$ by Liu and Oum [13], and to $2 t-2$ by Norin [15]. Thus $\chi_{\star}\left(\mathcal{M}_{K_{t}}\right) \leqslant 2 t-2$. See $[8,7]$ for analogous results for graphs excluding odd minors. For all of these results, the function $f(t)$ is very large, often depending on constants from the Graph Minor Structure Theorem. Van den Heuvel and Wood [6] proved the first such result with $f(t)$ explicit. In particular, they proved that every K_{t}-minor-free graph is $(2 t-2)$-colourable with clustering $\left\lceil\frac{t-2}{2}\right\rceil$. The result of Edwards et al. [5] mentioned below implies that $\chi_{\star}\left(\mathcal{M}_{K_{t}}\right) \geqslant t-1$. Dvořák and Norin [4] have announced a proof that $\chi_{\star}\left(\mathcal{M}_{K_{t}}\right)=t-1$.

Now consider the class \mathcal{M}_{H} of H-minor-free graphs for an arbitrary graph H. The maximum chromatic number of a graph in \mathcal{M}_{H} is at most $O(|V(H)| \sqrt{\log |V(H)|})$ and is at least $|V(H)|-1$ (since $K_{|V(H)|-1}$ is H -minor-free), and Hadwiger's Conjecture would imply that $|V(H)|-1$ is the answer. However, for clustered colourings, fewer colours often suffice. For example, Dvořák and Norin [4] proved that graphs embeddable on any fixed surface are 4-colourable with bounded clustering, whereas the chromatic number is $\Theta(\sqrt{g})$ for surfaces of Euler genus g. Van den Heuvel and Wood [6]
proved that $K_{2, t}$-minor-free graphs are 3 -colourable with clustering $t-1$, and that $K_{3, t}$-minor-free graphs are 6 -colourable with clustering $2 t$. These results show that $\chi_{\star}\left(\mathcal{M}_{H}\right)$ depends on the structure of H, unlike the usual chromatic number which only depends on $|V(H)|$.

At the heart of this paper is the following question: what property of H determines $\chi_{\star}\left(\mathcal{M}_{H}\right)$? The following definitions help to answer this question. Let T be a rooted tree. The depth of T is the maximum number of vertices on a root-to-leaf path in T. The closure of T is obtained from T by adding an edge between every ancestor and descendent in T. The connected treedepth of a graph H, denoted by $\overline{\mathrm{td}}(H)$, is the minimum depth of a rooted tree T such that H is a subgraph of the closure of T. This definition is a variant of the more commonly used definition of the tree-depth of H, denoted by $\operatorname{td}(H)$, which equals the maximum connected tree-depth of the connected components of H. See [14] for background on tree-depth. If H is connected, then $\operatorname{td}(H)=\overline{\operatorname{td}}(H)$. In fact, $\operatorname{td}(H)=\overline{\operatorname{td}}(H)$ unless H has two connected components H_{1} and H_{2} with $\operatorname{td}\left(H_{1}\right)=\operatorname{td}\left(H_{2}\right)=\operatorname{td}(H)$, in which case $\operatorname{td}(H)=\operatorname{td}(H)+1$. We choose to work with connected tree-depth to avoid this distinction.

The following result is the primary contribution of this paper; it is proved in Section 2.

Theorem 1. For every graph $H, \chi_{\star}\left(\mathcal{M}_{H}\right)$ is tied to the (connected) treedepth of H. In particular,

$$
\overline{\operatorname{td}}(H)-1 \leqslant \chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 2^{\overline{\mathrm{td}}(H)+1}-4 .
$$

The upper bound in Theorem 1 gives evidence for, and was inspired by, a conjecture of Ossona de Mendez, Oum and Wood [16], which we now introduce. A graph G is k-colourable with defect d if each vertex of G can be assigned one of k colours so that each vertex is adjacent to at most d neighbours of the same colour; that is, each monochromatic component has maximum degree at most d. The defective chromatic number of a graph class \mathcal{G}, denoted by $\chi_{\Delta}(\mathcal{G})$, is the minimum integer k such that, for some integer d, every graph in \mathcal{G} is k-colourable with defect d. Every colouring of a graph with clustering c has defect $c-1$. Thus, the defective chromatic number of a graph class is at most its clustered chromatic number. Ossona de Mendez et al. [16] conjectured the following behaviour for the defective chromatic number of \mathcal{M}_{H}.

Conjecture 2 ([16]). For every graph H,

$$
\chi_{\Delta}\left(\mathcal{M}_{H}\right)=\overline{\operatorname{td}}(H)-1 .
$$

Ossona de Mendez et al. [16] proved the lower bound, $\chi_{\Delta}\left(\mathcal{M}_{H}\right) \geqslant$ $\overline{\mathrm{td}}(H)-1$, in Conjecture 2. This follows from the observation that the closure of the rooted complete c-ary tree of depth k is not $(k-1)$-colourable with clustering c. The lower bound in Theorem 1 follows since $\chi_{\Delta} \leqslant \chi_{\star}$ for every class. The upper bound in Conjecture 2 is known to hold in some special cases. Edwards et al. [5] proved it if $H=K_{t}$; that is, $\chi_{\Delta}\left(\mathcal{M}_{K_{t}}\right)=t-1$, which can be thought of as a defective version of Hadwiger's Conjecture. Ossona de Mendez et al. [16] proved the upper bound in Conjecture 2 if $\overline{\operatorname{td}}(H) \leqslant 3$ or if H is a complete bipartite graph. In particular, $\chi_{\Delta}\left(\mathcal{M}_{K_{s, t}}\right)=\min \{s, t\}$.

Theorem 1 provides some evidence for Conjecture 2 by showing that $\chi_{\Delta}\left(\mathcal{M}_{H}\right)$ and $\chi_{\star}\left(\mathcal{M}_{H}\right)$ are bounded from above by some function of $\overline{\operatorname{td}}(H)$. This was previously not known to be true.

While it is conjectured that $\chi_{\Delta}\left(\mathcal{M}_{H}\right)=\overline{\operatorname{td}}(H)-1$, the following lower bound, proved in Section 2.3, shows that $\chi_{\star}\left(\mathcal{M}_{H}\right)$ might be larger, thus providing some distinction between defective and clustered colourings.
Theorem 3. For each $k \geqslant 2$, there is a graph H_{k} with $\overline{\operatorname{td}}\left(H_{k}\right)=\operatorname{td}\left(H_{k}\right)=k$ such that

$$
\chi_{\star}\left(\mathcal{M}_{H_{k}}\right) \geqslant 2 k-2 .
$$

We conjecture an analogous upper bound:
Conjecture 4. For every graph H,

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 2 \overline{\operatorname{td}}(H)-2 .
$$

A further contribution of the paper is to precisely determine the minorclosed graph classes with clustered chromatic number 2. This result is introduced and proved in Conjecture 3. Section 4 studies clustered colourings of graph classes excluding so-called fat stars as a minor. This leads to a proof of Conjecture 4 in the $\overline{\operatorname{td}}(H)=3$ case. We conclude in Section 5 with a conjecture about the clustered chromatic number of an arbitrary minor-closed class that generalises Conjecture 4.

2. Tree-depth Bounds

The main goal of this section is to prove that $\chi_{\star}\left(\mathcal{M}_{H}\right)$ is bounded from above by some function of $\overline{\mathrm{td}}(H)$. We actually provide two proofs. The first proof depends on deep results from graph structure theory and gives no explicit bound on the clustering. The second proof is self-contained, but gives a worse upper bound on the number of colours. Both proofs have their own merits, so we include both.

Let $C\langle h, k\rangle$ be the closure of the rooted complete k-ary tree of depth h. (Here each non-leaf node has exactly k children.)

If r is a vertex in a connected graph G and $V_{i}:=\left\{v \in V(G): \operatorname{dist}_{G}(v, r)=\right.$ $i\}$ for $i \geqslant 0$, then V_{0}, V_{1}, \ldots is called the BFS layering of G starting at r.

2.1. First Proof

The first proof depends on the following Erdős-Pósa Theorem by Robertson and Seymour [18]. For a graph H and integer $p \geqslant 1$, let $p H$ be the disjoint union of p copies of H.

Theorem 5 ([18]; see [17, Lemma 3.10]). For every non-empty graph H with c connected components and for all integers $p, w \geqslant 1$, for every graph G with treewidth at most w and containing no $p H$ minor, there is a set $X \subseteq V(G)$ of size at most pwc such that $G-X$ has no H minor.

The next lemma is the heart of our proof.
Lemma 6. For all integers $h, k, w \geqslant 1$, every $C\langle h, k\rangle$-minor-free graph G of treewidth at most w is $\left(2^{h}-2\right)$-colourable with clustering $k w$.

Proof. We proceed by induction on $h \geqslant 1$, with w and k fixed. The case $h=1$ is trivial since $C\langle 1, k\rangle$ is the 1 -vertex graph, so only the empty graph has no $C\langle 1, k\rangle$ minor, and the empty graph is 0 -colourable with clustering 0 . Now assume that $h \geqslant 2$, the claim holds for $h-1$, and G is a $C\langle h, k\rangle$-minorfree graph with treewidth at most w. Let V_{0}, V_{1}, \ldots be the BFS layering of G starting at some vertex r.

Fix $i \geqslant 1$. Then $G\left[V_{i}\right]$ contains no $k C\langle h-1, k\rangle$ as a minor, as otherwise contracting $V_{0} \cup \cdots \cup V_{i-1}$ to a single vertex gives a $C\langle h, k\rangle$ minor (since every vertex in V_{i} has a neighbour in V_{i-1}). Since G has treewidth at most w, so does $G\left[V_{i}\right]$. By Theorem 5 with $H=C\langle h-1, k\rangle$ and $c=1$, there is a set $X_{i} \subseteq V_{i}$ of size at most $k w$, such that $G\left[V_{i} \backslash X_{i}\right]$ has no $C\langle h-1, k\rangle$ minor. By induction, $G\left[V_{i} \backslash X_{i}\right]$ is ($2^{h-1}-2$)-colourable with clustering $k w$. Use one new colour for X_{i}. Thus $G\left[V_{i}\right]$ is $\left(2^{h-1}-1\right)$-colourable with clustering $k w$.

Use disjoint sets of colours for even and odd i, and colour r by one of the colours used for even i. No edge joins V_{i} with V_{j} for $j \geqslant i+2$. Thus G is $\left(2^{h}-2\right)$-coloured with clustering kw .

To drop the assumption of bounded treewidth, we use the following result of DeVos, Ding, Oporowski, Sanders, Reed, Seymour and Vertigan [3], the proof of which depends on the graph minor structure theorem.

Theorem 7 ([3]). For every graph H there is an integer w such that for every graph G containing no H-minor, there is a partition V_{1}, V_{2} of $V(G)$ such that $G\left[V_{i}\right]$ has treewidth at most w, for $i \in\{1,2\}$.

Lemma 6 and Theorem 7 imply:
Lemma 8. For all integers $h, k \geqslant 1$, there is an integer $g(h, k)$, such that every $C\langle h, k\rangle$-minor-free graph G is $\left(2^{h+1}-4\right)$-colourable with clustering at most $g(h, k)$.

Fix a graph H. By definition, H is a subgraph of $C\langle\overline{\operatorname{td}}(H)| V,(H)\rangle$. Thus every H-minor-free graph contains no $C(\overline{\mathrm{td}}(H),|V(H)|)$-minor. Hence, Lemma 8 implies

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 2^{\overline{\overline{\mathrm{t}}(H)+1}-4, ~}
$$

which is the upper bound in Theorem 1.
Note Theorem 26 below improves the $h=3$ case in Lemma 6, which leads to a small constant-factor improvement in Theorem 1 for $h \geqslant 3$.

2.2. Second Proof

We now present our second proof that $\chi_{\star}\left(\mathcal{M}_{H}\right)$ is bounded from above by some function of $\overline{\operatorname{td}}(H)$. This proof is self-contained (not using Theorems 5 and 7).

Let T be a rooted tree. Recall that the closure of T is the graph G with vertex set $V(T)$, where two vertices are adjacent in G if one is an ancestor of the other in T. The weak closure of T is the graph G with vertex set $V(T)$, where two vertices are adjacent in G if one is a leaf and the other is one of its ancestors. For $h, k \geqslant 1$, let $T\langle h, k\rangle$ be the rooted complete k-ary tree of depth h. Let $W\langle h, k\rangle$ be the weak closure of $T\langle h, k\rangle$.

Lemma 9. For $h, k \geqslant 2$, the graph $W\langle h, k\rangle$ contains $C\langle h, k-1\rangle$ as a minor.
Proof. Let r be the root vertex. Colour r blue. For each non-leaf vertex v, colour $k-1$ children of v blue and colour the other child of v red. Let X be the set of blue vertices v in $T\langle h, k\rangle$, such that every ancestor of v is blue. Note that X induces a copy of $T\langle h, k-1\rangle$ in $T\langle h, k\rangle$. Let v be a non-leaf vertex in X. Let w be the red child of v, and let T_{v} be the subtree of $T\langle h, k\rangle$ rooted at w. Then every leaf of T_{v} is adjacent in $W\langle h, k\rangle$ to v and to every ancestor of v. Contract T_{v} and the edge $v w$ into v. Now v is adjacent to every ancestor of v in X. Do this for each non-leaf vertex in X. Note that T_{u} and T_{v} are disjoint for distinct non-leaf vertices $u, v \in X$. Thus, we obtain $C\langle h, k-1\rangle$ as a minor of $W\langle h, k\rangle$.

A model of a graph H in a graph G is a collection $\left\{J_{x}: x \in V(H)\right\}$ of pairwise disjoint subtrees of G such that for every $x y \in E(H)$ there is an edge of G with one end in $V\left(J_{x}\right)$ and the other end in $V\left(J_{y}\right)$. Observe that a graph contains H as a minor if and only if it contains a model of H.

Lemma 10. For $h \geqslant 2$ and $k \geqslant 1$, if a graph G contains $W\langle h, 6 k\rangle$ as a minor, then G contains subgraphs G^{\prime} and $G^{\prime \prime}$, both containing $W\langle h, k\rangle$ as a minor, such that $\left|V\left(G^{\prime}\right) \cap V\left(G^{\prime \prime}\right)\right| \leqslant 1$.

Proof. Let $\left\{J_{x}: x \in V(W\langle h, 6 k\rangle)\right\}$ be a model of $W\langle h, 6 k\rangle$ in G. Let r be the root vertex of $W\langle h, 6 k\rangle$. We may assume that for each leaf vertex x of $T\langle h, 6 k\rangle$, there is exactly one edge between J_{x} and J_{r}.

Let Q be a tree obtained from J_{r} by splitting vertices, where:

- Q has maximum degree at most 3 ,
- J_{r} is a minor of Q; let $\left\{Q_{v}: v \in V\left(J_{r}\right)\right\}$ be the model of J_{r} in Q, so each edge $v w$ of J_{r} corresponds to an edge of Q between Q_{v} and Q_{w},
- there is a set L of leaf vertices in Q, and a bijection ϕ from L to the set of leaves of $T\langle h, 6 k\rangle$, such that for each leaf x of $T\langle h, 6 k\rangle$, if the edge between J_{x} and J_{r} in G is incident with vertex v in J_{r}, then $\phi^{-1}(x)$ is a vertex z in $L \cap Q_{v}$, in which case we say x and z are associated.

Let $L^{\prime} \subseteq L$. Apply the following 'propagation' process in $T\langle h, 6 k\rangle$. Initially, say that the vertices in $\phi\left(L^{\prime}\right)$ are alive with respect to L^{\prime}. For each parent vertex y of leaves in $T\langle h, 6 k\rangle$, if at least $2 k$ of its $6 k$ children are alive with respect to L^{\prime}, then y is also alive with respect to L^{\prime}. Now propagate up $T\langle h, 6 k\rangle$, so that a non-leaf vertex y of $T\langle h, 6 k\rangle$ is alive if and only if at least $2 k$ of its children are alive with respect to L^{\prime}. Say L^{\prime} is good if r is alive with respect to L^{\prime}.

For an edge $v w$ of Q let $L_{v w}$ be the set of vertices in L in the subtree of $Q-v w$ containing v, and let $L_{w v}$ be the set of vertices in L in the subtree of $Q-v w$ containing w. Since L is the disjoint union of $L_{v w}$ and $L_{w v}$, every leaf vertex of $T\langle h, 6 k\rangle$ is in exactly one of $\phi\left(L_{v w}\right)$ or $\phi\left(L_{w v}\right)$. By induction, every vertex in $T\langle h, 6 k\rangle$ is alive with respect to $L_{v w}$ or $L_{w v}$ (possibly both). In particular, $L_{v w}$ or $L_{w v}$ is good (possibly both).

Suppose that both $L_{v w}$ and $L_{w v}$ are good. Then at least $2 k$ children of r are alive with respect to $L_{v w}$, and at least $2 k$ children of r are alive with respect to $L_{w v}$. Thus there are disjoint sets A and B, each consisting of k children of r, where every vertex in A is alive with respect to $L_{v w}$, and every vertex in B is alive with respect to $L_{w v}$. We now define a set of vertices, said to be chosen by v, all of which are alive with respect to $L_{v w}$. First, each vertex in A is chosen by v. Then for each non-leaf vertex z chosen by
v, choose k children of z that are also alive with respect to $L_{v w}$, and say they are chosen by v. Continue this process down to the leaves of $T\langle h, 6 k\rangle$. We now define the graph G^{\prime}, which is initially empty. For each vertex z chosen by v, add the subgraph J_{z} to G^{\prime}. Furthermore, for each leaf vertex z of $T\langle h, 6 k\rangle$ chosen by v and for each ancestor y of z chosen by v, add the edge in G between J_{z} and J_{y} to G^{\prime}. Define $G^{\prime \prime}$ analogously with respect to B and $L_{w v}$. At this point, G^{\prime} and $G^{\prime \prime}$ are disjoint.

The edge $v w$ in Q either corresponds to an edge or a vertex of J_{r}. First suppose that $v w$ corresponds to an edge $a b$ of J_{r}, where v is in Q_{a} and w is in Q_{b}. Let J_{r}^{1} be the subtree of $J_{r}-a b$ containing a. Add J_{r}^{1} to G^{\prime}, plus the edge in G between J_{r}^{1} and J_{z} for each leaf z of $T\langle h, 6 k\rangle$ chosen by v. Similarly, let J_{r}^{2} be the subtree of $J_{r}-a b$ containing b, and add J_{r}^{2} to $G^{\prime \prime}$, plus the edge in G between J_{r}^{2} and J_{z} for each leaf z of $T\langle h, 6 k\rangle$ chosen by w. Observe that G^{\prime} and $G^{\prime \prime}$ are disjoint, and they both contain $W\langle h, k\rangle$ as a minor, as desired.

Now consider the case in which $v w$ corresponds to a vertex z in J_{r}; that is, v and w are both in Q_{z}. Let J_{r}^{1} be the subtree of J_{r} corresponding to the subtree of $Q-v w$ containing v (which includes z). Add J_{r}^{1} to G^{\prime}, plus the edge in G between J_{r}^{1} and J_{z} for each leaf z of $T\langle h, 6 k\rangle$ chosen by v. Similarly, let J_{r}^{2} be the subtree of J_{r} corresponding to the subtree of $Q-v w$ containing w (which includes z). Add J_{r}^{2} to $G^{\prime \prime}$, plus the edge in G between J_{r}^{2} and J_{z} for each leaf z of $T\langle h, 6 k\rangle$ chosen by w. Observe that both G^{\prime} and $G^{\prime \prime}$ contain $W\langle h, k\rangle$ as a minor, and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{z\}$, as desired.

We may therefore assume that for each edge $v w$ of Q, exactly one of $L_{v w}$ and $L_{w v}$ is good. Orient $v w$ towards v if $L_{v w}$ is good, and towards w if $L_{w v}$ is good. Since at most one leaf of $T\langle h, 6 k\rangle$ is associated with each leaf of Q, each edge incident with a leaf of Q is oriented away from the leaf. Since Q is a tree, Q contains a sink vertex v, which is therefore not a leaf. Let w_{1}, w_{2} and possibly w_{3} be the neighbours of v in Q. Let L_{i} be the set of vertices in L in the subtree of $Q-v w_{i}$ containing w_{i}. Since $v w_{i}$ is oriented towards v, with respect to $v w_{i}$, the set L_{i} is not good. Since no leaf of $T\langle h, 6 k\rangle$ is associated with v, the sets $\phi\left(L_{1}\right), \phi\left(L_{2}\right)$ and $\phi\left(L_{3}\right)$ partition the leaves of $T\langle h, 6 k\rangle$. Since each non-leaf vertex y in $T\langle h, 6 k\rangle$ has $6 k$ children, y is alive with respect to at least one of L_{1}, L_{2} or L_{3}. In particular, at least one of L_{1}, L_{2} or L_{3} is good. This is a contradiction.

Theorem 11. Let $f(h):=\frac{1}{6}\left(4^{h}-4\right)$ for every $h \geqslant 1$. Then there is a function $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for every $k \geqslant 1$, every graph either contains $W\langle h, k\rangle$ as a minor or is $f(h)$-colourable with clustering $g(h, k)$.

Proof. We proceed by induction on $h \geqslant 1$. In the base case, $h=1$, since $W\langle 1, k\rangle$ is the 1-vertex graph, the result holds with $f(1)=g(1, k)=0$. Now assume that $h \geqslant 2$ and the result holds for $h-1$ and all k.

Let G be a graph, which we may assume is connected. Let V_{0}, V_{1}, \ldots be a BFS layering of G.

Fix $i \geqslant 1$. Let s be the maximum integer such that $G\left[V_{i}\right]$ contains s disjoint subgraphs G_{1}, \ldots, G_{s} each containing a $W\left\langle h-1, \max \left\{1,6^{k-s}\right\} k\right\rangle$ minor. First suppose that $s \geqslant k$. Then $G\left[V_{i}\right]$ contains k disjoint subgraphs each containing a $W\langle h-1, k\rangle$ minor. Contracting $V_{0} \cup \cdots \cup V_{i-1}$ to a single vertex gives a $W\langle h, k\rangle$ minor (since every vertex in V_{i} has a neighbour in V_{i-1}), and we are done. Now assume that $s \leqslant k-1$.

If $s=0$, then $G\left[V_{i}\right]$ contains no $W\left\langle h-1,6^{k-1} k\right\rangle$ minor. By induction, $G\left[V_{i}\right]$ is $f(h-1)$-colourable with clustering $g\left(h-1,6^{k-1} k\right)$.

Now consider the case that $s \in[1, k-1]$. Apply Lemma 10 to G_{j} for each $j \in[1, r]$. Thus G_{j} contains subgraphs G_{j}^{\prime} and $G_{j}^{\prime \prime}$, both containing $W\left\langle h-1,6^{k-s-1} k\right\rangle$ as a minor, such that $\left|V\left(G_{j}^{\prime}\right) \cap V\left(G_{j}^{\prime \prime}\right)\right| \leqslant 1$. Let $X:=$ $\bigcup_{j=1}^{s}\left(V\left(G_{j}^{\prime}\right) \cap V\left(G_{j}^{\prime \prime}\right)\right)$. Thus $|X| \leqslant s \leqslant k-1$. Let $A:=G\left[V_{i}\right]-\bigcup_{j=1}^{s} V\left(G_{j}^{\prime}\right)$ and $B:=G\left[V_{i}\right]-\bigcup_{j=1}^{s} V\left(G_{j}^{\prime \prime}\right)$. By the maximality of s, the subgraph A contains no $W\left\langle h-1,6^{k-s-1} k\right\rangle$ minor (as otherwise $A, G_{1}^{\prime}, \ldots, G_{s}^{\prime}$ would give $s+1$ pairwise disjoint subgraphs satisfying the requirements). By induction, A is $f(h-1)$ colourable with clustering $g\left(h-1,6^{k} k\right)$ since $6^{k-s-1} k \leqslant 6^{k} k$. Similarly, B is $f(h-1)$-colourable with clustering $g\left(h-1,6^{k} k\right)$. By construction, each vertex in $G\left[V_{i}\right]$ is in at least one of X, A or B. Use one new colour for X, which has size at most $s \leqslant k-1$.

In both cases, $G\left[V_{i}\right]$ is $(2 f(h-1)+1)$-colourable with clustering $\max \left\{g\left(h-1,6^{k} k\right), k-1\right\}$. Use a different set of $2 f(h-1)+1$ colours for even i and for odd i, and colour r by one of the colours used for even i. No edge joins V_{i} with V_{j} for $j \geqslant i+2$. Since $f(h)=4 f(h-1)+2, G$ is $f(h)$-colourable with clustering $g(h, k):=\max \left\{g\left(h-1,6^{k} k\right), k-1\right\}$.

Note that the clustering function $g(h, k)$ in Theorem 11 satisfies

$$
g(h, k) \leqslant k 6^{k 6^{k 6} \cdot} .
$$

where the number of $k \mathrm{~s}$ is h.
Theorem 12. For every graph H,

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant \frac{1}{6}\left(4^{\overline{\operatorname{td}}(H)}-4\right)
$$

Proof. Let G be a graph not containing H as a minor. By definition, H is a subgraph of $C\langle\overline{\operatorname{td}}(H)| V,(H)\rangle$. Thus G does not contain $C\langle\overline{\operatorname{td}}(H)| V,(H)|\rangle$ as a minor. By Lemma $9, G$ does not contain $W\langle\overline{\operatorname{td}}(H)| V,(H)|+1\rangle$ as a minor. By Theorem 11, there is a constant $c=c(H)$, such that G is $\frac{1}{6}\left(4^{\overline{\mathrm{t}}(H)}-4\right)$ colourable with clustering at most c.

2.3. Lower Bound

We now prove Theorem 3, where $H_{k}:=C\langle k, 3\rangle$, the closure of the complete ternary tree of depth k (which has tree-depth and connected tree-depth k).

Lemma 13. $\chi_{\star}\left(\mathcal{M}_{C\langle k, 3\rangle}\right) \geqslant 2 k-2$ for $k \geqslant 2$.
Proof. Fix an integer c. We now recursively define graphs G_{k} (depending on c), and show by induction on k that G_{k} has no ($2 k-3$)-colouring with clustering c, and $C\langle k, 3\rangle$ is not a minor of G_{k}.

For the base case $k=2$, let G_{2} be the path on $c+1$ vertices. Then G_{2} has no $C\langle 2,3\rangle=K_{1,3}$ minor, and G_{2} has no 1-colouring with clustering c.

Assume G_{k-1} is defined for some $k \geqslant 3$, that G_{k-1} has no ($2 k-5$)-colouring with clustering c, and $C\langle k-1,3\rangle$ is not a minor of G_{k-1}. As illustrated in Figure 1, let G_{k} be obtained from a path $\left(v_{1}, \ldots, v_{c+1}\right)$ as follows: for $i \in\{1, \ldots, c\}$ add $2 c-1$ pairwise disjoint copies of G_{k-1} complete to $\left\{v_{i}, v_{i+1}\right\}$.

Figure 1. Construction of G_{k}

Suppose that G_{k} has a $(2 k-3)$-colouring with clustering c. Then v_{i} and v_{i+1} receive distinct colours for some $i \in\{1, \ldots, c\}$. Consider the $2 c-1$ copies of G_{k-1} complete to $\left\{v_{i}, v_{i+1}\right\}$. At most $c-1$ such copies contain a vertex
assigned the same colour as v_{i}, and at most $c-1$ such copies contain a vertex assigned the same colour as v_{i+1}. Thus some copy avoids both colours. Hence G_{k-1} is ($2 k-5$)-coloured with clustering c, which is a contradiction. Therefore G_{k} has no $(2 k-3)$-colouring with clustering c.

It remains to show that $C\langle k, 3\rangle$ is not a minor of G_{k}. Suppose that G_{k} contains a model $\left\{J_{x}: x \in V(C\langle k, 3\rangle)\right\}$ of $C\langle k, 3\rangle$. Let r be the root vertex in $C\langle k, 3\rangle$. Choose the $C\langle k, 3\rangle$-model to minimise $\sum_{x \in V(C\langle k, 3\rangle)}\left|V\left(J_{x}\right)\right|$. Since $\left\{v_{1}, \ldots, v_{c+1}\right\}$ induces a connected dominating subgraph in G_{k}, by the minimality of the model, J_{r} is a connected subgraph of $\left(v_{1}, \ldots, v_{c+1}\right)$. Say $J_{r}=\left(v_{i}, \ldots, v_{j}\right)$. Note that $C\langle k, 3\rangle-r$ consists of three pairwise disjoint copies of $C\langle k-1,3\rangle$. The model X of one such copy avoids v_{i-1} and v_{j+1} (if these vertices are defined). Since $C\langle k-1,3\rangle$ is connected, X is contained in a component of $G_{k}-\left\{v_{i-1}, \ldots, v_{j+1}\right\}$ and is adjacent to $\left(v_{i}, \ldots, v_{j}\right)$. Each such component is a copy of G_{k-1}. Thus $C\langle k-1,3\rangle$ is a minor of G_{k-1}, which is a contradiction. Thus $C\langle k, 3\rangle$ is not a minor of G_{k}.

3. 2-Colouring with Bounded Clustering

This section considers the following question: which minor-closed graph classes have clustered chromatic number 2 ? To answer this question we introduce three classes of graphs that are not 2 -colourable with bounded clustering, as illustrated in Figure 2.

The first example is the n-fan, which is the graph obtained from the n-vertex path by adding one dominant vertex. If the n-fan is 2 -colourable with clustering c, then the underlying path contains at most $c-1$ vertices of the same colour as the dominant vertex, implying that the other colour has at most c monochromatic components each with at most c vertices, and $n \leqslant c^{2}+c-1$. That is, if $n \geqslant c^{2}+c$, then the n-fan is not 2 -colourable with clustering c.

The second example is the n-fat star, which is the graph obtained from the n-star (the star with n leaves) as follows: for each edge $v w$ in the n-star, add n degree- 2 vertices adjacent to v and w. Note that the n-fat star is $C\langle 3, n\rangle$. Suppose that the n-fat star has a 2 -colouring with clustering $c \leqslant n$. Deleting the dominant vertex in the n-fat star gives n disjoint n-stars. Since $n \geqslant c$, in at least one of these n-stars, no vertex receives the same colour as the dominant vertex, implying there is a monochromatic component on $n+1 \geqslant c+1$ vertices. Thus, for $n \geqslant c$ there is no 2 -colouring of the n-fat star with clustering c.

The third example is the n-fat path, which is the graph obtained from the n-vertex path as follows: for each edge $v w$ of the n-vertex path, add n
degree- 2 vertices adjacent to v and w. If $n \geqslant 2 c-1$, then in every 2 -colouring of the n-fat path with clustering c, adjacent vertices in the underlying path receive the same colour, implying that the underlying path is contained in a monochromatic component with more than c vertices. Thus, for $n \geqslant 2 c-1$ there is no 2 -colouring of the n-fat path with clustering c.

Figure 2. Graph classes that are not 2-colourable with bounded clustering

These three examples all need three colours in a colouring with bounded clustering. The main result of this section is the following converse result.

Theorem 14. Let \mathcal{G} be a minor-closed graph class. Then $\chi_{\star}(\mathcal{G}) \leqslant 2$ if and only if for some integer $k \geqslant 2$, the k-fan, the k-fat path, and the k-fat star are not in \mathcal{G}.

Lemma 24 below shows that every graph containing no k-fan minor, no k-fat path minor, and no k-fat star minor is 2-colourable with clustering $f(k)$ for some explicit function f. Along with the above discussion, this implies Theorem 14. We assume $k \geqslant 2$ for the remainder of this section.

The following definition is a key to the proof. For an h-vertex graph H with vertex set $\left\{v_{1}, \ldots, v_{h}\right\}$, a k-strong H-model in a graph G consists of h pairwise disjoint connected subgraphs X_{1}, \ldots, X_{h} in G, such that for each edge $v_{i} v_{j}$ of H there are at least k vertices in $V(G) \backslash \bigcup_{i=1}^{h} V\left(X_{i}\right)$ adjacent to both X_{i} and X_{j}. Note that a vertex in $V(G) \backslash \bigcup_{i=1}^{h} V\left(X_{i}\right)$ might count towards this set of k vertices for distinct edges of H. This definition leads to the following sufficient condition for a graph to contain a k-fat star or k-fat path

Lemma 15. If a graph G contains a $k(k+1)$-strong H-model for some connected graph H with k^{k} edges, then G contains a k-fat star or a k-fat path as a minor.

Proof. Use the notation introduced in the definition of k-strong H-model. Since H is connected with k^{k} edges, H contains a k-vertex path or a k-leaf star as a subgraph. Suppose that $\left(v_{1}, \ldots, v_{k}\right)$ is a k-vertex path in H. For
$i=1,2, \ldots, k-1$, let N_{i} be a set of $k+1$ vertices in

$$
\left(V(G) \backslash \bigcup_{j=1}^{h} V\left(X_{j}\right)\right) \backslash \bigcup_{j=1}^{i-1} N_{j}
$$

each of which is adjacent to both X_{i} and X_{i+1}. Such a set exists since X_{i} and X_{i+1} have at least $k(k+1)$ common neighbours in $V(G) \backslash \bigcup_{j=1}^{h} V\left(X_{j}\right)$. For $i \in[1, k-1]$, contract one vertex of N_{i} into X_{i}. Then contract each of X_{1}, \ldots, X_{h} into a single vertex. We obtain the k-fat path as a minor in G. The case of a k-leaf star is analogous.

Lemma 16. If a connected graph G contains a $(k+2 c-2)$-strong H-model, for some graph H with c connected components, then G contains a k-strong H^{\prime}-model for some connected graph H^{\prime} with $\left|E\left(H^{\prime}\right)\right|=|E(H)|$.

Proof. We proceed by induction on $c \geqslant 1$. The case $c=1$ is vacuous. Assume $c \geqslant 2$, and the result holds for $c-1$. Let H_{1}, \ldots, H_{c} be the components of H. We may assume that H has no isolated vertices. Say X_{1}, \ldots, X_{h} is a $(k+2 c-2)$ strong H-model in G. For each edge $v_{i} v_{j}$ in H, let $N_{i j}$ be a set of $k+2 c-2$ common neighbours of X_{i} and X_{j}. For each component H_{a} of H, note that $\left(\bigcup_{v_{i} \in V\left(H_{a}\right)} V\left(X_{i}\right)\right) \cup\left(\bigcup_{v_{i} v_{j} \in E\left(H_{a}\right)} N_{i j}\right)$ induces a connected subgraph in G, which we denote by G_{a}. Since G is connected, there is a path P between G_{a} and G_{b}, for some distinct $a, b \in[1, c]$, such that no internal vertex of P is in $G_{1} \cup \cdots \cup G_{c}$. Note that P might be a single vertex. For some edge $v_{i} v_{i^{\prime}}$ in H_{a} and some edge $v_{j} v_{j^{\prime}}$ in H_{b}, without loss of generality, P joins some vertex x in $V\left(X_{i}\right) \cup N_{i i^{\prime}}$ and some vertex y in $V\left(X_{j}\right) \cup N_{j j^{\prime}}$. Let H^{\prime} be the graph obtained from H by identifying v_{i} and v_{j} into a new vertex v_{0}. Now H^{\prime} has $c-1$ components and $\left|E\left(H^{\prime}\right)\right|=|E(H)|$. Define $X_{0}:=X_{i} \cup X_{j} \cup P$. If $x \notin V\left(X_{i}\right)$, then add the edge between x and X_{i} to X_{0}. Similarly, if $y \notin V\left(X_{j}\right)$, then add the edge between y and X_{j} to X_{0}. Remove x and/or y from $N_{\alpha \beta}$ for each edge $v_{\alpha} v_{\beta}$ of H^{\prime}. Now $\left|N_{\alpha \beta}\right| \geqslant k+2(c-1)-2$. We obtain a $(k+2(c-1)-2)$ strong H^{\prime}-model in G. By induction, G contains a k-strong $H^{\prime \prime}$-model for some connected graph $H^{\prime \prime}$ with $\left|E\left(H^{\prime \prime}\right)\right|=|E(H)|$.

Lemma 17. If a connected graph G contains a $3 k^{k}$-strong H-model for some graph H with at least k^{k} edges, then G contains a k-fat star or a k-fat path as a minor.

Proof. We may assume that H has exactly k^{k} edges and has no isolated vertices. Say H has c connected components. Then $c \leqslant k^{k}$ and $3 k^{k} \geqslant k^{2}+k+2 c-2$. Hence G contains a $\left(k^{2}+k+2 c-2\right)$-strong H-model. The result then follows from Lemmas 15 and 16.

Lemma 18. Let G be a connected graph such that $\operatorname{deg}_{G}(v) \geqslant 2 \ell k$ for some non-cut-vertex v and integers $k, \ell \geqslant 1$. Then G contains a k-fan as a minor, or G contains a connected subgraph X and v has ℓ neighbours not in X and all adjacent to X (thus contracting X gives a $K_{2, \ell}$ minor).

Proof. Let r be a vertex of $G-v$. For each $w \in N_{G}(v)$, let P_{w} be a $w r$ path in $G-v$. If $\left|P_{w} \cap N_{G}(v)\right| \geqslant k$ for some $w \in N_{G}(v)$, then G contains a k-fan minor. Now assume that $\left|P_{w} \cap N_{G}(v)\right| \leqslant k-1$ for each $w \in N_{G}(v)$. Let H be the digraph with vertex set $N_{G}(v)$, where $N_{H}^{+}(w):=V\left(P_{w}\right) \cap N_{G}(v)$ for each vertex w. Thus H has maximum outdegree at most $k-1$, and the underlying undirected graph of H has average degree at most $2 k-2$. Since $|V(H)| \geqslant 2 \ell k$, by Turán's Theorem, H contains a stable set S of size ℓ. Let $X:=\bigcup\left\{P_{w}: w \in S\right\}-S$, which is connected since S is stable. Each vertex in S is adjacent to v and to X, as desired.

Lemma 19. Let G be a graph with distinct vertices v_{1}, \ldots, v_{k}, such that $C:=G-\left\{v_{1}, \ldots, v_{k}\right\}$ is connected and $\operatorname{deg}_{C}\left(v_{i}\right) \geqslant k^{3}$ for each $i \in[1, k]$. Then G contains a k-fan or k-fat star as a minor.

Proof. The idea of the proof is to attempt to build a k-fan model by constructing a subtree X such that each v_{i} is adjacent to a subset S_{i} of k leaves of X (where the S_{i} are disjoint). We construct X and the S_{i} by adding, one at a time, paths to some neighbour w of some v_{i} to increase the size of S_{i}. We always choose a neighbour at maximal distance from some root vertex, among all neighbours of all v_{i} for which S_{i} is not yet large enough: this ensures that later paths will not pass through the sets S_{i} that have been previously constructed.

We now formalise this idea. Let r be a vertex in C. Let $V_{0}, V_{1}, \ldots, V_{n}$ be a BFS layering of C starting at r. Initialise $t:=n$ and $X:=\{r\}$ and $S_{i}:=\emptyset$ for $i \in[1, k]$ and $S:=\emptyset$. The following properties trivially hold:
(0) $S=\bigcup_{i \in[1, k]} S_{i}$ and $S \subseteq V_{t} \cup V_{t+1} \cup \cdots \cup V_{n}$.
(1) X is a (connected) subtree of C rooted at r with (non-root) leaf set S.
(2) $S_{i} \cap S_{j}=\emptyset$ for distinct $i, j \in[1, k]$.
(3) S_{i} is a set of at most $k+1$ neighbours of v_{i} for $i \in[1, k]$ (and so $|S| \leqslant$ $k(k+1)$).
(4) $\left|N_{C-V(X)}\left(v_{i}\right)\right| \geqslant k^{3}-1-(k-1)|S|>0$ for $i \in[1, k]$.

Now execute the following algorithm, which maintains properties (0)-(4). Think of V_{t} as the 'current' layer.

While $\left|S_{i}\right| \leqslant k$ for some $i \in[1, k]$ repeat the following: If $V_{t} \cap N_{C-V(X)}\left(v_{i}\right)=$ \emptyset for all $i \in[1, k]$ with $\left|S_{i}\right| \leqslant k$, then let $t:=t-1$. Properties (0)-(4) are trivially maintained. Otherwise, let w be a vertex in $V_{t} \cap N_{C-V(X)}\left(v_{i}\right)$ for
some $i \in[1, k]$ with $\left|S_{i}\right| \leqslant k$. Since $V_{0}, V_{1}, \ldots, V_{n}$ is a BFS layering of C rooted at r and r is in X, there is a path P from w to X consisting of at most one vertex from each of V_{0}, \ldots, V_{t}, and with no internal vertices in X. By (0) and since $w \notin S, P$ avoids S. By (1), the endpoint of P in X is not a leaf of X. If P contains at least k vertices in $N_{C}\left(v_{j}\right)$ for some $j \in[1, k]$, then G contains a k-fan minor and we are done. Now assume that P contains at most $k-1$ vertices in $N_{C}\left(v_{j}\right)$ for each $j \in[1, k]$. Let $S_{i}:=S_{i} \cup\{w\}$ and $S:=S \cup\{w\}$ and $X:=X \cup P$. Now w is a leaf of X, and property (1) is maintained. Properties (0), (2) and (3) are maintained by construction. Property (4) is maintained since $|S|$ increases by 1 and P contains at most $k-1$ vertices in $N_{C}\left(v_{j}\right)$ for each $j \in[1, k]$.

The algorithm terminates when $\left|S_{i}\right|=k+1$ for each $i \in[1, k]$. Delete $C-V(X)$. Contract $X-S$ (which is connected by (1)) to a single vertex z. Since S is the set of leaves of X, each vertex in S_{i} is adjacent to both v_{i} and z. Contract one edge between v_{i} and S_{i} for each $i \in[1, k]$. We obtain the k-fat star as a minor.

Lemma 20. Let G be a bipartite graph with bipartition A, B, such that at least p vertices in A have degree at least $k|A|$, and every vertex in B has degree at least 2. Then G contains a k-strong H-model for some graph H with at least $p / 2$ edges.

Proof. Let H be the graph with $V(H):=A$ where $v w \in E(H)$ whenever $\left|N_{G}(v) \cap N_{G}(w)\right| \geqslant k$. Since every vertex in B has degree at least 2 , every vertex in A with degree at least $k|A|$ is incident with some edge in H. Thus H has at least $p / 2$ edges. By construction, G contains a k-strong H-model.

For the remainder of this section, let $d:=(k+2) k^{k}\left(18 k^{2 k+1}+1\right)$. A vertex v is high-degree if $\operatorname{deg}(v) \geqslant d$, otherwise v is low-degree.

Lemma 21. If a 2-connected graph G has at least $(k+2) k^{k}$ high-degree vertices, then G contains a k-fat path, a k-fat star, or a k-fan as a minor.

Proof. Let A be a set of exactly $(k+2) k^{k}$ high-degree vertices in G. Let C_{1}, \ldots, C_{p} be the components of $G-A$. Say $\left(v, C_{j}\right)$ is a heavy pair if $v \in A$ and v has at least $6 k^{k+1}$ neighbours in C_{j}. Since $6 k^{k+1} \geqslant k^{3}$, by Lemma 19, if some C_{j} is in at least k heavy pairs, then G contains a k-fan or k-fat star as a minor, and we are done. Now assume that each C_{j} is in fewer than k heavy pairs. Let h be the total number of heavy pairs. Then there is a set P of at least h / k heavy pairs containing at most one heavy pair for each component C_{j}. For each such heavy pair $\left(v, C_{j}\right)$, by Lemma 18 with $\ell=3 k^{k}$, $G\left[V\left(C_{j}\right) \cup\{v\}\right]$ contains a k-fan as a minor (and we are done) or a $K_{2,3 k^{k}}$
minor, where $G[\{v\}]$ is the subgraph corresponding to one of the vertices in the colour class of size 2 in $K_{2,3 k^{k}}$. We obtain a $3 k^{k}$-strong H-model for some graph H, where $|E(H)|=|P| \geqslant h / k$. If $h / k \geqslant k^{k}$, then we are done by Lemma 17. Now assume that $h<k^{k+1}$. In particular, the number of vertices in A that are in a heavy pair is less than k^{k+1}. Let A^{\prime} be the set of vertices in A in no heavy pair; thus $\left|A^{\prime}\right| \geqslant 2 k^{k}$. Let H be the bipartite graph with bipartition A, B, where there is one vertex w_{j} in B for each component C_{j}, and $v \in A$ is adjacent to $w_{j} \in B$ if and only if v is adjacent to some vertex in C_{j}. In H, every vertex in A^{\prime} has degree at least $(d-|A|) / 6 k^{k+1}$, which is at least $3 k^{k}|A|$. (Note that d is defined so that this property holds.) Since G is 2-connected, each C_{j} is adjacent to at least two vertices in A. Thus, every vertex in B has degree at least 2 in H. By Lemma 20, H contains a $3 k^{k}$-strong model of a graph with at least $\left|A^{\prime}\right| / 2 \geqslant k^{k}$ edges. By Lemma 17 we are done.

Lemma 22. Let V_{0}, V_{1}, \ldots be a BFS layering in a connected graph G. If $G\left[V_{i} \cup V_{i+1} \cup \cdots \cup V_{i+c}\right]$ contains a path on at least k^{c+1} vertices for some $i, c \geqslant 0$, then G contains a k-fan minor.

Proof. We proceed by induction on c. Let P be a path in

$$
G\left[V_{i} \cup V_{i+1} \cup \ldots \cup V_{i+c}\right]
$$

on k^{c+1} vertices. First suppose that P contains k vertices v_{1}, \ldots, v_{k} in V_{i} (which must happen in the base case $c=0$). Each vertex v_{i} has a neighbour in V_{i-1}. Thus, contracting $G\left[V_{0} \cup \cdots \cup V_{i-1}\right]$ into a single vertex and contracting P between v_{i} and v_{i+1} to an edge (for $i \in[1, k-1]$) gives a k-fan minor. Now assume that P contains at most $k-1$ vertices in V_{i} and $c \geqslant 1$. Thus $P-V_{i}$ has at least $k^{c+1}-(k-1)$ vertices and at most k components. Thus, some component of $P-V_{i}$ has at least $\left[\left(k^{c+1}-k+1\right) / k\right\rceil=k^{c}$ vertices and is contained in $G\left[V_{i+1} \cup V_{i+2} \cup \cdots \cup V_{i+c}\right]$. By induction, G contains a k-fan minor.

Say a vertex v in a coloured graph is properly coloured if no neighbour of v gets the same colour as v.

Lemma 23. Let G be a 2-connected graph containing no k-fan, k-fat star or k-fat path as a minor. Let h be the number of high-degree vertices in G. Let r be a vertex in G. Then G is 2-colourable with clustering at most $d^{3^{3(k+2) k^{k}}}$. Moreover, if $h=0$, then we can additionally demand that r is properly coloured.

Proof. Let V_{0}, V_{1}, \ldots be the BFS layering of G starting at r.
First suppose that $h=0$. Colour each vertex $v \in V_{i}$ by $i \bmod 2$. Then r is properly coloured. Every monochromatic component is contained in some V_{i}. Suppose that some component X of $G\left[V_{i}\right]$ has at least d^{k} vertices. Thus $i \geqslant 1$. Since G and thus X has maximum degree at most d, X contains a path of k vertices. Contracting $G\left[V_{0} \cup \cdots \cup V_{i-1}\right]$ into a single vertex gives a k-fan minor. This contradiction shows that the 2 -colouring has clustering at most d^{k}.

Now assume that $h \geqslant 1$. By Lemma 21, $h \leqslant(k+2) k^{k}$. Colour all the highdegree vertices black. Let I be the set of integers $i \geqslant 0$ such that V_{i} contains a high-degree vertex. Colour all the low-degree vertices in $\bigcup\left\{V_{i}: i \in I\right\}$ white.

Let $V_{i}, V_{i+1}, \ldots, V_{i+c}$ be a maximal sequence of layers with no high-degree vertices, where $c \geqslant 0$. Thus V_{i-1} is empty or contains a high-degree vertex. Similarly, V_{i+c+1} is empty or contains a high-degree vertex. If c is even, then colour $V_{i} \cup V_{i+2} \cup \cdots \cup V_{i+c}$ white and colour $V_{i+1} \cup V_{i+3} \cup \cdots \cup V_{i+c-1}$ black. If c is odd, then colour $V_{i} \cup V_{i+2} \cup \cdots \cup V_{i+c-1}$ and V_{i+c} white, and colour $V_{i+1} \cup V_{i+3} \cup \cdots \cup V_{i+c-2}$ black. Note that if $c \geqslant 2$, then at least one of $V_{i+1}, \ldots, V_{i+c-1}$ is black.

We now show that each black component X has bounded size. If X contains some high-degree vertex, then every vertex in X is high-degree and $|X| \leqslant h \leqslant(k+2) k^{k}$. Now assume that X contains no high-degree vertices. Say X intersects V_{j}. Since each black layer is preceded by and followed by a white layer, X is contained in V_{j}. Every vertex in X has degree at most d in G. Thus if X has at least d^{k} vertices, then X contains a path of length k, and contracting $V_{0} \cup \cdots \cup V_{j-1}$ to a single vertex gives a k-fan. Hence X has at most d^{k} vertices.

Finally, let X be a white component. Then X is contained within at most $3 h \leqslant 3(k+2) k^{k}$ consecutive layers (since in the notation above, if all of $V_{i}, V_{i+1}, \ldots, V_{i+c}$ are white, then $\left.c \leqslant 1\right)$. Suppose that $|X| \geqslant d^{k^{3(k+2) k^{k}}}$. Since X has maximum degree at most d, X contains a path of length $k^{3(k+2) k^{k}}$. Thus, Lemma 22 with $c+1=3(k+2) k^{k}$ implies that G contains a k-fan minor. Hence $|X| \leqslant d^{k^{3(k+2) k^{k}}}$.

We now complete the proof of Theorem 14.
Lemma 24. Let G be a graph containing no k-fan, no k-fat path, and no k-fat star as a minor. Then G is 2-colourable with clustering $k d^{k^{3(k+2) k} k}$.

Proof. We may assume that G is connected. Let r be a vertex of G. If B is a block of G containing r, then consider B to be rooted at r. If B is a block of G not containing r, then consider B to be rooted at the unique vertex in
B that separates B from r. Say (B, v) is a high-degree pair if B is a block of G and v has high-degree in B. Note that one vertex might be in several high-degree pairs.

Suppose that some vertex v is in at least k high-degree pairs with blocks B_{1}, \ldots, B_{k}. Since $d \geqslant 2 k(k+1)$, by Lemma 18 with $\ell=k+1$, for $i \in[k]$, there is a connected subgraph X_{i} in $B_{i}-v$ and there is a set $N_{i} \subseteq N_{B_{i}}(v) \backslash V\left(X_{i}\right)$ of size $k+1$, such that each vertex in N_{i} is adjacent to X_{i}. For $i \in[1, k]$, contract X_{i} into a single vertex, and contract one edge between v and N_{i}. We obtain a k-fat star as a minor. Now assume that each vertex is in fewer than k high-degree pairs.

Colour each block B in non-decreasing order of the distance in G from r to the root of B. Let B be a block of G rooted at v (possibly equal to r). Then v is already coloured in the parent block of B. Let h_{B} be the number of highdegree pairs involving B. By Lemma $23, B$ is 2 -colourable with clustering at most $d^{k^{3(k+2) k} k}$, such that if $h_{B}=0$, then v is properly coloured. Permute the colours in B so that the colour assigned to v matches the colour assigned to v by the parent block. Then the monochromatic component containing v is contained within the parent block of B along with those blocks rooted at v that form a high-degree pair with v. As shown above, there are at most k such blocks. Thus, each monochromatic component has at most $k d^{k^{3(k+2) k^{k}}}$ vertices.

4. Excluding a Fat Star

This section considers colourings of graphs excluding a fat star. We need the following more general lemma.

Lemma 25. For every planar graph H,

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 2 \chi_{\Delta}\left(\mathcal{M}_{H}\right)
$$

Proof. The grid minor theorem of Robertson and Seymour [18] says that every graph in \mathcal{M}_{H} has tree-width at most some function $w(H)$. (Chekuri and Chuzhoy [2] recently showed that w can be taken to be polynomial in $|V(H)|$.) Alon, Ding, Oporowski, and Vertigan [1] observed that every graph with tree-width w and maximum degree Δ is 2-colourable with clustering $24 w \Delta$. Let $k:=\chi_{\Delta}\left(\mathcal{M}_{H}\right)$. That is, every H-minor-free graph G is k-colourable with monochromatic components of maximum degree at most some function $d(H)$. Apply the above result of Alon et al. [1] to each monochromatic component. Thus G is $2 k$-colourable with clustering $24 w(H) d(H)$. Hence $\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 2 k$.

A variant of Lemma 25 holds for arbitrary graphs H with " 2 " replaced by " 3 ". The proof uses a result of Liu and Oum [13] in place of the result of Alon et al. [1]; see [5,6].

Theorem 26. For $k \geqslant 3$, the clustered chromatic number of the class of graphs containing no k-fat star minor equals 4.

Proof. As illustrated in Figure 2, the k-fat star is planar. Ossona de Mendez et al. [16] proved that graphs containing no k-fat star minor are 2-colourable with defect $O\left(k^{13}\right)$. Thus, Lemma 25 implies that the clustered chromatic number of the class of graphs containing no k-fat star is at most 4 . To obtain a bound on the clustering, note that a result of Leaf and Seymour [12] implies that every graph containing no k-fat star minor has tree-width $O\left(k^{2}\right)$. It follows from the proof of Lemma 25 that every graph containing no k-fat star minor is 4 -colourable with clustering $O\left(k^{15}\right)$. Since the 3 -fat star is $C\langle 3,3\rangle$, Lemma 13 implies that for $k \geqslant 3$, the clustered chromatic number of the class of graphs containing no k-fat star minor is at least 4.

Every graph H with $\overline{\operatorname{td}}(H) \leqslant 3$ is a subgraph of the k-fat star for some $k \leqslant|V(H)|$. Thus Theorem 26 implies Conjecture 4 in the case of connected tree-depth 3.

Corollary 27. For every graph H with $\overline{\operatorname{td}}(H) \leqslant 3$,

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 4 .
$$

We can push this result further.
Theorem 28. For every graph H with $\operatorname{td}(H) \leqslant 3$,

$$
\chi_{\star}\left(\mathcal{M}_{H}\right) \leqslant 5 .
$$

Proof. Say H has p components. Each component of H is a subgraph of the k-fat star for some $k \leqslant|V(H)|$. Let H^{\prime} consist of p pairwise disjoint copies of the k-fat star. Let G be an H-minor-free graph. Thus G is also H^{\prime}-minorfree. By the Grid Minor Theorem of Robertson and Seymour [18] and since H^{\prime} is planar, G has treewidth at most $w=w\left(H^{\prime}\right)$. By Theorem 5 , there is a set X of at most $(p-1)(w-1)$ vertices in G, such that $G-X$ contains no k-fat star as a minor. By Theorem 26, $G-X$ is 4 -colourable with clustering at most some function of H. Assign vertices in X a fifth colour. Thus G is 5 -colourable with clustering at most some function of H.

5. A Conjecture about Clustered Colouring

We now formulate a conjecture about the clustered chromatic number of an arbitrary minor-closed class of graphs. Consider the following recursively defined class of graphs. Let $\mathcal{X}_{1, c}:=\left\{P_{c+1}, K_{1, c}\right\}$. Here P_{c+1} is the path with $c+1$ vertices, and $K_{1, c}$ is the star with c leaves. As illustrated in Figure 3, for $k \geqslant 2$, let $\mathcal{X}_{k, c}$ be the set of graphs obtained by the following three operations. For the first two operations, consider an arbitrary graph $G \in \mathcal{X}_{k-1, c}$.

- Let G^{\prime} be the graph obtained from c disjoint copies of G by adding one dominant vertex. Then G^{\prime} is in $\mathcal{X}_{k, c}$.
- Let G^{+}be the graph obtained from G as follows: for each k-clique D in G, add a stable set of $k(c-1)+1$ vertices complete to D. Then G^{+}is in $\mathcal{X}_{k, c}$.
- If $k \geqslant 3$ and $G \in \mathcal{X}_{k-2, c}$, then let G^{++}be the graph obtained from G as follows: for each $(k-1)$-clique D in G, add a path of $\left(c^{2}-1\right)(k-1)+(c+1)$ vertices complete to D. Then G^{++}is in $\mathcal{X}_{k, c}$.

Figure 3. Construction of $\mathcal{X}_{k, c}$

A vertex-coloured graph is rainbow if every vertex receives a distinct colour.

Lemma 29. For every $c \geqslant 1$ and $k \geqslant 2$, for every graph $G \in \mathcal{X}_{k, c}$, every colouring of G with clustering c contains a rainbow K_{k+1}. In particular, no graph in $\mathcal{X}_{k, c}$ is k-colourable with clustering c.

Proof. We proceed by induction on $k \geqslant 1$. In the case $k=1$, every colouring of P_{c+1} or $K_{1, c}$ with clustering c contains an edge whose endpoints receive distinct colours, and we are done. Now assume the claim for $k-1$ and for $k-2$ (if $k \geqslant 3$).

Let $G \in \mathcal{X}_{k-1, c}$. Consider a colouring of G^{\prime} with clustering c. Say the dominant vertex v is blue. At most $c-1$ copies of G contain a blue vertex. Thus, some copy of G has no blue vertex. By induction, this copy of G contains a rainbow K_{k}. With v we obtain a rainbow K_{k+1}.

Now consider a colouring of G^{+}with clustering c. By induction, the copy of G in G^{+}contains a clique w_{1}, \ldots, w_{k} receiving distinct colours. Let S be the set of $k(c-1)+1$ vertices adjacent to w_{1}, \ldots, w_{k} in G^{+}. At most $c-1$ vertices in S receive the same colour as w_{i}. Thus some vertex in S receives a colour distinct from the colours assigned to w_{1}, \ldots, w_{k}. Hence G^{+}contains a rainbow K_{k+1}.

Now suppose $k \geqslant 3$ and $G \in \mathcal{X}_{k-2, c}$. Consider a colouring of G^{++}with clustering c. By induction, the copy of G in G^{++}contains a clique w_{1}, \ldots, w_{k-1} receiving distinct colours. Let P be the path of $\left(c^{2}-1\right)(k-1)+(c+1)$ vertices in G^{++}complete to w_{1}, \ldots, w_{k-1}. Let X_{i} be the set of vertices in P assigned the same colour as w_{i}, and let $X:=\bigcup_{i} X_{i}$. Thus $\left|X_{i}\right| \leqslant c-1$ and $|X| \leqslant(c-1)(k-1)$. Hence $P-X$ has at most $(c-1)(k-1)+1$ components, and $|V(P-X)| \geqslant\left(c^{2}-1\right)(k-1)+(c+1)-(c-1)(k-1)=c((c-1)(k-1)+1)+1$. Some component of $P-X$ has at least $c+1$ vertices, and therefore contains a bichromatic edge $x y$. Then $\left\{w_{1}, \ldots, w_{k-1}\right\} \cup\{x, y\}$ induces a rainbow K_{k+1} in G^{++}.

We conjecture that a minor-closed class that excludes every graph in $\mathcal{X}_{k, c}$ for some c is k-colourable with bounded clustering. More precisely:

Conjecture 30. For every minor-closed class \mathcal{M} of graphs,

$$
\chi_{\star}(\mathcal{M})=\min \left\{k: \exists c \mathcal{M} \cap \mathcal{X}_{k, c}=\emptyset\right\}
$$

Several comments about Conjecture 30 are in order:

- To prove the lower bound in Conjecture 30, let k be the minimum integer such that $\mathcal{M} \cap \mathcal{X}_{k, c}=\emptyset$ for some integer c. Thus, for every integer c some graph $G \in \mathcal{X}_{k-1, c}$ is in \mathcal{M}. By Lemma $29, G$ has no $(k-1)$-colouring with clustering c. Thus $\chi_{\star}(\mathcal{M}) \geqslant k$.
- Note that the $k=1$ case of Conjecture 30 is trivial: a graph is 1-colourable with bounded clustering if and only if each component has bounded size, which holds if and only if every path has bounded length and every vertex has bounded degree.
- We note that Theorem 14 implies Conjecture 30 with $k=2$. If $G=P_{c+1}$, then G^{\prime} is contained in the $c(c+1)$-fan and G^{+}is contained in the ($2 c-1$)fat path. If $G=K_{1, c}$, then G^{\prime} is the c-fat star and G^{+}is contained in the $(2 c-1)$-fat star. It follows that if a minor-closed class \mathcal{M} excludes every
graph in $\mathcal{X}_{2, c}$ for some c, then \mathcal{M} excludes the $c(c+1)$-fan, the $(2 c-1)$-fat path, and the $(2 c-1)$-fat star. Then $\chi_{\star}(\mathcal{M}) \leqslant 2$ by Theorem 14.
- We now relate Conjectures 4 and 30. Fix a graph H. Conjecture 30 says that the clustered chromatic number of \mathcal{M}_{H} equals the minimum integer k such that for some integer c, every graph in $\mathcal{X}_{k, c}$ contains H as a minor. Let $k:=\overline{\operatorname{td}}(H) \geqslant 2$. An easy inductive argument shows that every graph in $\mathcal{X}_{2 k-2, c}$ contains a $C\langle k, c\rangle$ minor. Thus, for a suitable value of c, every graph in $\mathcal{X}_{2 k-2, c}$ contains H as a minor. Hence, Conjecture 30 implies Conjecture 4.
- Consider the case of excluding the complete bipartite graph $K_{s, t}$ as a minor for $s \leqslant t$. Van den Heuvel and Wood [6] proved the lower bound, $\chi_{\star}\left(\mathcal{M}_{K_{s, t}}\right) \geqslant s+1$ for $t \geqslant \max \{s, 3\}$. Their construction is a special case of the construction above. We claim that Conjecture 30 asserts that $\chi_{\star}\left(\mathcal{M}_{K_{s, t}}\right)=s+1$ for $t \geqslant \max \{s, 3\}$. To see this, first note that an easy inductive argument shows that every graph in $\mathcal{X}_{s+1, t}$ contains a $K_{s, t}$ subgraph; thus $\mathcal{M}_{K_{s, t}} \cap \mathcal{X}_{s+1, t}=\emptyset$. Furthermore, another easy inductive argument shows that for all $s, c \geqslant 1$, there is a graph in $\mathcal{X}_{s, c}$ containing no $K_{s, \max \{s, 3\}}$ minor. This implies that $\mathcal{M}_{K_{s, t}} \cap \mathcal{X}_{s, c} \neq \emptyset$ for all $t \geqslant \max \{s, 3\}$. Together these observations show that $\min \left\{k: \exists c \mathcal{M}_{s, t} \cap \mathcal{X}_{k, c}=\emptyset\right\}=s+1$ for $t \geqslant \max \{s, 3\}$. That is, Conjecture 30 asserts that $\chi_{\star}\left(\mathcal{M}_{K_{s, t}}\right)=s+1$ for $t \geqslant \max \{s, 3\}$. Van den Heuvel and Wood [6] proved the upper bound, $\chi_{\star}\left(\mathcal{M}_{K_{s, t}}\right) \leqslant 3 s$ for $t \geqslant s$, which was improved to $2 s+2$ by Dvořák and Norin [4].

6. An Alternative View

We conclude the paper with alternative versions of Conjectures 2 and 30 that shift the focus to characterising minimal minor-closed classes of given defective and clustered chromatic number.

We start with some definitions. Let H and G be two vertex-disjoint graphs, and let $S \subseteq V(G)$. Let G^{\prime} be obtained from $G \cup H$ by joining every vertex of S to every vertex of H by an edge. Then we say that G^{\prime} is obtained from G by taking a join with H along S. Let \mathcal{H} be a class of graphs. We say that a graph G^{\prime} is an \mathcal{H}-decoration of a graph G, if G^{\prime} is obtained from G by repeatedly taking joins with graphs in \mathcal{H} along cliques of G. For a class of graphs \mathcal{G}, let $\mathcal{G} \wedge \mathcal{H}$ denote the class of all minors of \mathcal{H}-decorations of graphs in \mathcal{G}. One can routinely verify that the \wedge operation is associative. The examples below show that it is not always commutative.

First, we introduce notation for some minor-closed classes that will serve as the basis for our constructions. Let \mathcal{I} denote the class of graphs on at
most one vertex, let \mathcal{O} denote the class of edgeless graphs, and let \mathcal{P} denote the class of linear forests (that is, subgraphs of paths). Let \mathcal{T}_{d} denote the class of all graphs of tree-depth at most d. Then \mathcal{T}_{1} is a class of all edgeless graphs. It follows from the alternative definition of tree-depth given in [14, Section 6.1] that $\mathcal{T}_{d+1}=\mathcal{O} \wedge \mathcal{T}_{d}$.

The operations used in Conjecture 30 can be described as follows.

- Adding a vertex adjacent to several copies of graphs in the class \mathcal{G} (and taking all possible minors) produces the class $\mathcal{I} \wedge \mathcal{G}$.
- Adding stable sets complete to cliques in graphs in \mathcal{G} produces the class $\mathcal{G} \wedge \mathcal{I}$.
- Adding paths complete to cliques in graphs in \mathcal{G} produces the class $\mathcal{G} \wedge \mathcal{P}$.

Note that by definition $\mathcal{G} \wedge \mathcal{H}$ is a minor-closed class for any pair of minorclosed classes \mathcal{G} and \mathcal{H}.

We next present an analogue of Lemma 29 using the notions introduced above. A class of graphs \mathcal{G} is k-cluster rainbow (respectively, k-defect rainbow) if for every c there exists $G \in \mathcal{G}$ such that every colouring of G with clustering (respectively, defect) at most c contains a rainbow clique of size k. For example, \mathcal{I} is 1 -cluster rainbow and 1 -defect rainbow, \mathcal{P} is 2 -cluster rainbow, but not 2 -defect rainbow. Note that if a class of graphs \mathcal{G} is k cluster rainbow, then clearly $\chi_{\star}(\mathcal{G}) \geqslant k$. Similarly, if \mathcal{G} is k-defect rainbow, then $\chi_{\Delta}(\mathcal{G}) \geqslant k$.

The proof of the following lemma parallels the proof of Lemma 29; we present it for completeness.

Lemma 31. Let \mathcal{G}, \mathcal{H} be graph classes, such that \mathcal{G} is k-cluster rainbow and \mathcal{H} is ℓ-cluster rainbow. Then $\mathcal{G} \wedge \mathcal{H}$ is $(k+\ell)$-cluster rainbow.

Proof. Fix c, and let $G \in \mathcal{G}$ and $H \in \mathcal{H}$ be such that every colouring of G with clustering at most c contains a rainbow clique of size k, and every colouring of H with clustering at most c contains a rainbow clique of size ℓ. Let J be obtained from G by taking a join of G with $H,(c-1) k+1$ times along every clique S of G. Then $J \in \mathcal{G} \wedge \mathcal{H}$ by definition. It remains to show that every colouring $\phi: V(J) \rightarrow C$ of J for some set of colours C with clustering at most c contains a rainbow clique of size $k+\ell$. By the choice of J there exists a clique S in G of size k, which is rainbow in ϕ. Let $H_{1}, H_{2}, \ldots, H_{r}$ be copies of H glued along S to G. By the choice of H, for every i there exists a clique S_{i} of size ℓ in H_{i} that is rainbow in ϕ. Suppose for a contradiction that $S \cup S_{i}$ is not rainbow for any i. Then there exists $s \in S$ with a neighbour of the same colour in S_{i} for at least c choices of i. Thus s belongs to a monochromatic component of size at least $c+1$ in ϕ, a contradiction.

Note that an analogue of Lemma 31 also holds for defective colourings. The proof is identical.

Let \mathcal{G} be a graph class obtained by taking a wedge-product of v copies of \mathcal{I} and p copies of \mathcal{P} in some order such that $v+2 p=k+1$. Then we say that \mathcal{G} is k-cluster critical. By Lemma 31 the clustered chromatic number of a k-cluster critical class is at least $k+1$. (In fact, it is not difficult to see that equality holds.) For example, the class $\mathcal{I} \wedge \mathcal{P}$ of minors of fans, the class $\mathcal{I} \wedge \mathcal{I} \wedge \mathcal{I}$ of minors of fat stars, and the class $\mathcal{P} \wedge \mathcal{I}$ of minors of fat paths are all possible 2 -cluster critical classes. Thus, Theorem 14 is equivalent to the statement that $\chi_{\star}(\mathcal{G}) \leqslant 2$ if and only if \mathcal{G} contains no 2 -cluster critical class.

The discussion above implies that for all k and c every graph in $\mathcal{X}_{k, c}$ is a member of some k-cluster critical class. Conversely, for all n, k there exists c such that for every graph $G \in \mathcal{X}_{k, c}$ there exists a k-cluster critical class \mathcal{G} such that $\mathcal{X}_{k, c}$ contains as minors all graphs in \mathcal{G} on at most n vertices. Thus Conjecture 30 can be reformulated as follows.

Conjecture 32. Let \mathcal{M} be a minor-closed class of graphs and $k \geqslant 0$ an integer. Then $\chi_{\star}(\mathcal{G}) \geqslant k+1$ if and only if $\mathcal{G} \nsubseteq \mathcal{M}$ for some k-cluster critical class \mathcal{G}.

Similarly, note that the k-term \wedge-product $\wedge^{k} \mathcal{I}=\mathcal{I} \wedge \mathcal{I} \wedge \ldots \wedge \mathcal{I}$ is the class of minors of connected graphs of tree-depth k and therefore the following conjecture is equivalent to Conjecture 2.

Conjecture 33. Let \mathcal{M} be a minor-closed class of graphs and $k \geqslant 0$ an integer. Then $\chi_{\Delta}(\mathcal{G}) \geqslant k+1$ if and only if $\wedge^{k+1} \mathcal{I} \nsubseteq \mathcal{M}$.

Acknowledgement. This research was initiated at the 2017 Barbados Graph Theory Workshop held at the Bellairs Research Institute. Thanks to the workshop participants for creating a stimulating working environment. Thanks to the referees for several instructive comments.

References

[1] N. Alon, G. Ding, B. Oporowski and D. Vertigan: Partitioning into graphs with only small components, J. Combin. Theory Ser. B 87 (2003), 231-243.
[2] C. Chekuri and J. Chuzhoy: Polynomial bounds for the grid-minor theorem, J. ACM 63 (2016), 40.
[3] M. DeVos, G. Ding, B. Oporowski, D. P. Sanders, B. Reed, P. Seymour and D. Vertigan: Excluding any graph as a minor allows a low tree-width 2-coloring, J. Combin. Theory Ser. B 91 (2004), 25-41.
[4] Z. Dvořák and S. Norin: Islands in minor-closed classes. I. Bounded treewidth and separators, 2017, arXiv:1710.02727.
[5] K. Edwards, D. Y. Kang, J. Kim, S. Oum and P. Seymour: A relative of Hadwiger's conjecture, SIAM J. Discrete Math. 29 (2015), 2385-2388.
[6] J. van den Heuvel and D. R. Wood: Improper colourings inspired by Hadwiger's conjecture, J. London Math. Soc. 98 (2018), 129-148.
[7] D. Y. Kang and S. Oum: Improper coloring of graphs with no odd clique minor, Combin. Probab. Comput., 2019, arXiv:1612.05372.
[8] K. Kawarabayashi: A weakening of the odd Hadwiger's conjecture, Combin. Probab. Comput. 17 (2008), 815-821.
[9] K. Kawarabayashi and B. Mohar: A relaxed Hadwiger's conjecture for list colorings, J. Combin. Theory Ser. B 97 (2007), 647-651.
[10] A. V. Kostochka: The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37-58.
[11] A. V. Kоstochкa: Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[12] A. Leaf and P. Seymour: Tree-width and planar minors, J. Comb. Theory, Ser. B 111 (2015), 38-53.
[13] C.-H. Liu and S. Oum: Partitioning H-minor free graphs into three subgraphs with no large components, J. Combin. Theory Ser. B 128 (2018) 114-133.
[14] J. Nešetřil and P. Ossona de Mendez: Sparsity, vol. 28 of Algorithms and Combinatorics, Springer, 2012.
[15] S. Norin: Conquering graphs of bounded treewidth, 2015, Unpublished manuscript.
[16] P. Ossona de Mendez, S. Oum and D. R. Wood: Defective colouring of graphs excluding a subgraph or minor, Combinatorica 39 (2019), 377-410.
[17] J.-F. Raymond and D. M. Thilikos: Recent techniques and results on the ErdősPósa property, Discrete Appl. Math. 231 (2017), 25-43.
[18] N. Robertson and P. Seymour: Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.
[19] N. Robertson, P. Seymour and R. Thomas: Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993), 279-361.
[20] P. Seymour: Hadwiger's conjecture, in: John Forbes Nash Jr. and Michael Th. Rassias, eds., Open Problems in Mathematics, 417-437, Springer, 2015.
[21] A. Thomason: An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[22] A. Thomason: The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318-338.
[23] D. R. Wood: Contractibility and the Hadwiger conjecture, European J. Combin. 31 (2010), 2102-2109.
[24] D. R. Wood: Defective and clustered graph colouring, Electron. J. Combin., \#DS23, 2018.

Sergey Norin
Department of Mathematics
and Statistics
McGill University
Montréal, Canada
snorin@math.mcgill.ca

Alex Scott
Mathematical Institute, University of Oxford
Oxford, U.K.
scott@maths.ox.ac.uk

Paul D. Seymour
Department of Mathematics
Princeton University
New Jersey, U.S.A.
pds@math.princeton.edu

David R. Wood
School of Mathematics
Monash University
Melbourne, Australia
david.wood@monash.edu

[^0]: Mathematics Subject Classification (2010): 05C83; 05C15

 * Supported by NSERC grant 418520.
 ${ }^{\dagger}$ Supported by a Leverhulme Trust Research Fellowship.
 \ddagger Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.
 ${ }^{\S}$ Supported by the Australian Research Council.

