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The clustered chromatic number of a class of graphs is the minimum integer k such that for
some integer c every graph in the class is k-colourable with monochromatic components
of size at most c. We prove that for every graph H, the clustered chromatic number of
the class of H-minor-free graphs is tied to the tree-depth of H. In particular, if H is
connected with tree-depth t, then every H-minor-free graph is (2t+1−4)-colourable with
monochromatic components of size at most c(H). This provides the first evidence for a
conjecture of Ossona de Mendez, Oum and Wood (2016) about defective colouring of H-
minor-free graphs. If t = 3, then we prove that 4 colours suffice, which is best possible.
We also determine those minor-closed graph classes with clustered chromatic number 2.
Finally, we develop a conjecture for the clustered chromatic number of an arbitrary minor-
closed class.

1. Introduction

In a vertex-coloured graph, a monochromatic component is a connected com-
ponent of the subgraph induced by all the vertices of one colour. A graph
G is k-colourable with clustering c if each vertex can be assigned one of k
colours such that each monochromatic component has at most c vertices.
We shall consider such colourings, where the first priority is to minimise
the number of colours, with small clustering as a secondary goal. With this
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viewpoint the following definition arises. The clustered chromatic number of
a graph class G, denoted by χ?(G), is the minimum integer k such that, for
some integer c, every graph in G has a k-colouring with clustering c. See [24]
for a survey on clustered graph colouring.

This paper studies clustered colouring in minor-closed classes of graphs.
A graph H is a minor of a graph G if a graph isomorphic to H can be
obtained from some subgraph of G by contracting edges. A class of graphs
M is minor-closed if for every graph G∈M every minor of G is in M, and
some graph is not inM. For a graph H, letMH be the class of H-minor-free
graphs (that is, not containing H as a minor). Note that we only consider
simple finite graphs.

As a starting point, consider Hadwiger’s Conjecture, which states that
every graph containing no Kt-minor is properly (t−1)-colourable. This con-
jecture is easy for t6 4, is equivalent to the 4-colour theorem for t= 5, is
true for t= 6 [19], and is open for t> 7. The best known upper bound on
the chromatic number is O(t

√
log t), independently due to Kostochka [10,11]

and Thomason [21,22]. This conjecture is widely considered to be one of the
most important open problems in graph theory; see [20] for a survey.

Clustered colourings of Kt-minor-free graphs provide an avenue for at-
tacking Hadwiger’s Conjecture. Kawarabayashi and Mohar [9] first proved
an O(t) upper bound on χ?(MKt). In particular, they proved that every
Kt-minor-free graph is

⌈
31
2 t
⌉
-colourable with clustering f(t), for some func-

tion f . The number of colours in this result was improved to
⌈
7t−3
2

⌉
by

Wood [23], to 4t−4 by Edwards, Kang, Kim, Oum and Seymour [5], to 3t−3
by Liu and Oum [13], and to 2t−2 by Norin [15]. Thus χ?(MKt)6 2t−2.
See [8,7] for analogous results for graphs excluding odd minors. For all of
these results, the function f(t) is very large, often depending on constants
from the Graph Minor Structure Theorem. Van den Heuvel and Wood [6]
proved the first such result with f(t) explicit. In particular, they proved that
every Kt-minor-free graph is (2t−2)-colourable with clustering

⌈
t−2
2

⌉
. The

result of Edwards et al. [5] mentioned below implies that χ?(MKt)> t−1.
Dvořák and Norin [4] have announced a proof that χ?(MKt)= t−1.

Now consider the class MH of H-minor-free graphs for an arbitrary
graph H. The maximum chromatic number of a graph in MH is at most
O(|V (H)|

√
log |V (H)|) and is at least |V (H)| − 1 (since K|V (H)|−1 is H-

minor-free), and Hadwiger’s Conjecture would imply that |V (H)|−1 is the
answer. However, for clustered colourings, fewer colours often suffice. For
example, Dvořák and Norin [4] proved that graphs embeddable on any fixed
surface are 4-colourable with bounded clustering, whereas the chromatic
number is Θ(

√
g) for surfaces of Euler genus g. Van den Heuvel and Wood [6]
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proved that K2,t-minor-free graphs are 3-colourable with clustering t− 1,
and that K3,t-minor-free graphs are 6-colourable with clustering 2t. These
results show that χ?(MH) depends on the structure of H, unlike the usual
chromatic number which only depends on |V (H)|.

At the heart of this paper is the following question: what property of H
determines χ?(MH)? The following definitions help to answer this question.
Let T be a rooted tree. The depth of T is the maximum number of vertices
on a root–to–leaf path in T . The closure of T is obtained from T by adding
an edge between every ancestor and descendent in T . The connected tree-
depth of a graph H, denoted by td(H), is the minimum depth of a rooted
tree T such that H is a subgraph of the closure of T . This definition is
a variant of the more commonly used definition of the tree-depth of H,
denoted by td(H), which equals the maximum connected tree-depth of the
connected components of H. See [14] for background on tree-depth. If H is
connected, then td(H) = td(H). In fact, td(H) = td(H) unless H has two
connected components H1 and H2 with td(H1) = td(H2) = td(H), in which
case td(H) = td(H) + 1. We choose to work with connected tree-depth to
avoid this distinction.

The following result is the primary contribution of this paper; it is proved
in Section 2.

Theorem 1. For every graph H, χ?(MH) is tied to the (connected) tree-
depth of H. In particular,

td(H)− 1 6 χ?(MH) 6 2td(H)+1 − 4.

The upper bound in Theorem 1 gives evidence for, and was inspired by,
a conjecture of Ossona de Mendez, Oum and Wood [16], which we now in-
troduce. A graph G is k-colourable with defect d if each vertex of G can
be assigned one of k colours so that each vertex is adjacent to at most d
neighbours of the same colour; that is, each monochromatic component has
maximum degree at most d. The defective chromatic number of a graph
class G, denoted by χ

∆(G), is the minimum integer k such that, for some
integer d, every graph in G is k-colourable with defect d. Every colouring
of a graph with clustering c has defect c−1. Thus, the defective chromatic
number of a graph class is at most its clustered chromatic number. Os-
sona de Mendez et al. [16] conjectured the following behaviour for the de-
fective chromatic number of MH .

Conjecture 2 ([16]). For every graph H,

χ
∆(MH) = td(H)− 1.
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Ossona de Mendez et al. [16] proved the lower bound, χ∆(MH) >
td(H)−1, in Conjecture 2. This follows from the observation that the closure
of the rooted complete c-ary tree of depth k is not (k−1)-colourable with
clustering c. The lower bound in Theorem 1 follows since χ∆6χ? for every
class. The upper bound in Conjecture 2 is known to hold in some special
cases. Edwards et al. [5] proved it if H=Kt; that is, χ∆(MKt)= t−1, which
can be thought of as a defective version of Hadwiger’s Conjecture. Ossona de
Mendez et al. [16] proved the upper bound in Conjecture 2 if td(H)6 3 or
if H is a complete bipartite graph. In particular, χ∆(MKs,t)=min{s, t}.

Theorem 1 provides some evidence for Conjecture 2 by showing that
χ
∆(MH) and χ?(MH) are bounded from above by some function of td(H).

This was previously not known to be true.
While it is conjectured that χ∆(MH) = td(H)− 1, the following lower

bound, proved in Section 2.3, shows that χ?(MH) might be larger, thus
providing some distinction between defective and clustered colourings.

Theorem 3. For each k>2, there is a graph Hk with td(Hk)=td(Hk)=k
such that

χ?(MHk
) > 2k − 2.

We conjecture an analogous upper bound:

Conjecture 4. For every graph H,

χ?(MH) 6 2 td(H)− 2.

A further contribution of the paper is to precisely determine the minor-
closed graph classes with clustered chromatic number 2. This result is intro-
duced and proved in Conjecture 3. Section 4 studies clustered colourings of
graph classes excluding so-called fat stars as a minor. This leads to a proof
of Conjecture 4 in the td(H)=3 case. We conclude in Section 5 with a con-
jecture about the clustered chromatic number of an arbitrary minor-closed
class that generalises Conjecture 4.

2. Tree-depth Bounds

The main goal of this section is to prove that χ?(MH) is bounded from
above by some function of td(H). We actually provide two proofs. The first
proof depends on deep results from graph structure theory and gives no
explicit bound on the clustering. The second proof is self-contained, but
gives a worse upper bound on the number of colours. Both proofs have their
own merits, so we include both.
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Let C〈h,k〉 be the closure of the rooted complete k-ary tree of depth h.
(Here each non-leaf node has exactly k children.)

If r is a vertex in a connected graph G and Vi :={v∈V (G) : distG(v,r)=
i} for i>0, then V0,V1, . . . is called the BFS layering of G starting at r.

2.1. First Proof

The first proof depends on the following Erdős-Pósa Theorem by Robertson
and Seymour [18]. For a graph H and integer p> 1, let pH be the disjoint
union of p copies of H.

Theorem 5 ([18]; see [17, Lemma 3.10]). For every non-empty graph
H with c connected components and for all integers p,w>1, for every graph
G with treewidth at most w and containing no pH minor, there is a set
X⊆V (G) of size at most pwc such that G−X has no H minor.

The next lemma is the heart of our proof.

Lemma 6. For all integers h,k,w>1, every C〈h,k〉-minor-free graph G of
treewidth at most w is (2h−2)-colourable with clustering kw.

Proof. We proceed by induction on h > 1, with w and k fixed. The case
h= 1 is trivial since C〈1,k〉 is the 1-vertex graph, so only the empty graph
has no C〈1,k〉 minor, and the empty graph is 0-colourable with clustering 0.
Now assume that h>2, the claim holds for h−1, and G is a C〈h,k〉-minor-
free graph with treewidth at most w. Let V0,V1, . . . be the BFS layering of
G starting at some vertex r.

Fix i> 1. Then G[Vi] contains no kC〈h−1,k〉 as a minor, as otherwise
contracting V0∪·· ·∪Vi−1 to a single vertex gives a C〈h,k〉 minor (since every
vertex in Vi has a neighbour in Vi−1). Since G has treewidth at most w,
so does G[Vi]. By Theorem 5 with H =C〈h−1,k〉 and c= 1, there is a set
Xi ⊆ Vi of size at most kw, such that G[Vi \Xi] has no C〈h−1,k〉 minor.
By induction, G[Vi\Xi] is (2h−1−2)-colourable with clustering kw. Use one
new colour for Xi. Thus G[Vi] is (2h−1−1)-colourable with clustering kw.

Use disjoint sets of colours for even and odd i, and colour r by one of
the colours used for even i. No edge joins Vi with Vj for j> i+2. Thus G is
(2h−2)-coloured with clustering kw.

To drop the assumption of bounded treewidth, we use the following result
of DeVos, Ding, Oporowski, Sanders, Reed, Seymour and Vertigan [3], the
proof of which depends on the graph minor structure theorem.
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Theorem 7 ([3]). For every graph H there is an integer w such that for
every graph G containing no H-minor, there is a partition V1,V2 of V (G)
such that G[Vi] has treewidth at most w, for i∈{1,2}.

Lemma 6 and Theorem 7 imply:

Lemma 8. For all integers h,k > 1, there is an integer g(h,k), such that
every C〈h,k〉-minor-free graph G is (2h+1−4)-colourable with clustering at
most g(h,k).

Fix a graph H. By definition, H is a subgraph of C〈td(H), |V (H)|〉.
Thus every H-minor-free graph contains no C(td(H), |V (H)|)-minor. Hence,
Lemma 8 implies

χ?(MH) 6 2td(H)+1 − 4,

which is the upper bound in Theorem 1.
Note Theorem 26 below improves the h=3 case in Lemma 6, which leads

to a small constant-factor improvement in Theorem 1 for h>3.

2.2. Second Proof

We now present our second proof that χ?(MH) is bounded from above by
some function of td(H). This proof is self-contained (not using Theorems 5
and 7).

Let T be a rooted tree. Recall that the closure of T is the graph G with
vertex set V (T ), where two vertices are adjacent in G if one is an ancestor of
the other in T . The weak closure of T is the graph G with vertex set V (T ),
where two vertices are adjacent in G if one is a leaf and the other is one of
its ancestors. For h,k> 1, let T 〈h,k〉 be the rooted complete k-ary tree of
depth h. Let W 〈h,k〉 be the weak closure of T 〈h,k〉.
Lemma 9. For h,k>2, the graph W 〈h,k〉 contains C〈h,k−1〉 as a minor.

Proof. Let r be the root vertex. Colour r blue. For each non-leaf vertex v,
colour k−1 children of v blue and colour the other child of v red. Let X be
the set of blue vertices v in T 〈h,k〉, such that every ancestor of v is blue.
Note that X induces a copy of T 〈h,k−1〉 in T 〈h,k〉. Let v be a non-leaf
vertex in X. Let w be the red child of v, and let Tv be the subtree of T 〈h,k〉
rooted at w. Then every leaf of Tv is adjacent in W 〈h,k〉 to v and to every
ancestor of v. Contract Tv and the edge vw into v. Now v is adjacent to
every ancestor of v in X. Do this for each non-leaf vertex in X. Note that
Tu and Tv are disjoint for distinct non-leaf vertices u,v∈X. Thus, we obtain
C〈h,k−1〉 as a minor of W 〈h,k〉.
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A model of a graph H in a graph G is a collection {Jx : x ∈ V (H)} of
pairwise disjoint subtrees of G such that for every xy ∈ E(H) there is an
edge of G with one end in V (Jx) and the other end in V (Jy). Observe that
a graph contains H as a minor if and only if it contains a model of H.

Lemma 10. For h>2 and k>1, if a graph G containsW 〈h,6k〉 as a minor,
then G contains subgraphs G′ and G′′, both containing W 〈h,k〉 as a minor,
such that |V (G′)∩V (G′′)|61.

Proof. Let {Jx : x ∈ V (W 〈h,6k〉)} be a model of W 〈h,6k〉 in G. Let r be
the root vertex of W 〈h,6k〉. We may assume that for each leaf vertex x of
T 〈h,6k〉, there is exactly one edge between Jx and Jr.

Let Q be a tree obtained from Jr by splitting vertices, where:

• Q has maximum degree at most 3,
• Jr is a minor of Q; let {Qv : v∈V (Jr)} be the model of Jr in Q, so each

edge vw of Jr corresponds to an edge of Q between Qv and Qw,
• there is a set L of leaf vertices in Q, and a bijection φ from L to the

set of leaves of T 〈h,6k〉, such that for each leaf x of T 〈h,6k〉, if the edge
between Jx and Jr in G is incident with vertex v in Jr, then φ−1(x) is a
vertex z in L∩Qv, in which case we say x and z are associated.

Let L′⊆L. Apply the following ‘propagation’ process in T 〈h,6k〉. Initially,
say that the vertices in φ(L′) are alive with respect to L′. For each parent
vertex y of leaves in T 〈h,6k〉, if at least 2k of its 6k children are alive with
respect to L′, then y is also alive with respect to L′. Now propagate up
T 〈h,6k〉, so that a non-leaf vertex y of T 〈h,6k〉 is alive if and only if at least
2k of its children are alive with respect to L′. Say L′ is good if r is alive with
respect to L′.

For an edge vw of Q let Lvw be the set of vertices in L in the subtree of
Q−vw containing v, and let Lwv be the set of vertices in L in the subtree
of Q−vw containing w. Since L is the disjoint union of Lvw and Lwv, every
leaf vertex of T 〈h,6k〉 is in exactly one of φ(Lvw) or φ(Lwv). By induction,
every vertex in T 〈h,6k〉 is alive with respect to Lvw or Lwv (possibly both).
In particular, Lvw or Lwv is good (possibly both).

Suppose that both Lvw and Lwv are good. Then at least 2k children of
r are alive with respect to Lvw, and at least 2k children of r are alive with
respect to Lwv. Thus there are disjoint sets A and B, each consisting of k
children of r, where every vertex in A is alive with respect to Lvw, and every
vertex in B is alive with respect to Lwv. We now define a set of vertices,
said to be chosen by v, all of which are alive with respect to Lvw. First,
each vertex in A is chosen by v. Then for each non-leaf vertex z chosen by
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v, choose k children of z that are also alive with respect to Lvw, and say
they are chosen by v. Continue this process down to the leaves of T 〈h,6k〉.
We now define the graph G′, which is initially empty. For each vertex z
chosen by v, add the subgraph Jz to G′. Furthermore, for each leaf vertex
z of T 〈h,6k〉 chosen by v and for each ancestor y of z chosen by v, add the
edge in G between Jz and Jy to G′. Define G′′ analogously with respect to
B and Lwv. At this point, G′ and G′′ are disjoint.

The edge vw in Q either corresponds to an edge or a vertex of Jr. First
suppose that vw corresponds to an edge ab of Jr, where v is in Qa and w
is in Qb. Let J1

r be the subtree of Jr−ab containing a. Add J1
r to G′, plus

the edge in G between J1
r and Jz for each leaf z of T 〈h,6k〉 chosen by v.

Similarly, let J2
r be the subtree of Jr−ab containing b, and add J2

r to G′′,
plus the edge in G between J2

r and Jz for each leaf z of T 〈h,6k〉 chosen by
w. Observe that G′ and G′′ are disjoint, and they both contain W 〈h,k〉 as
a minor, as desired.

Now consider the case in which vw corresponds to a vertex z in Jr; that
is, v and w are both in Qz. Let J1

r be the subtree of Jr corresponding to
the subtree of Q−vw containing v (which includes z). Add J1

r to G′, plus
the edge in G between J1

r and Jz for each leaf z of T 〈h,6k〉 chosen by v.
Similarly, let J2

r be the subtree of Jr corresponding to the subtree of Q−vw
containing w (which includes z). Add J2

r to G′′, plus the edge in G between
J2
r and Jz for each leaf z of T 〈h,6k〉 chosen by w. Observe that both G′ and
G′′ contain W 〈h,k〉 as a minor, and V (G1)∩V (G2)={z}, as desired.

We may therefore assume that for each edge vw of Q, exactly one of Lvw
and Lwv is good. Orient vw towards v if Lvw is good, and towards w if Lwv
is good. Since at most one leaf of T 〈h,6k〉 is associated with each leaf of Q,
each edge incident with a leaf of Q is oriented away from the leaf. Since Q is
a tree, Q contains a sink vertex v, which is therefore not a leaf. Let w1, w2

and possibly w3 be the neighbours of v in Q. Let Li be the set of vertices
in L in the subtree of Q−vwi containing wi. Since vwi is oriented towards
v, with respect to vwi, the set Li is not good. Since no leaf of T 〈h,6k〉 is
associated with v, the sets φ(L1), φ(L2) and φ(L3) partition the leaves of
T 〈h,6k〉. Since each non-leaf vertex y in T 〈h,6k〉 has 6k children, y is alive
with respect to at least one of L1, L2 or L3. In particular, at least one of
L1, L2 or L3 is good. This is a contradiction.

Theorem 11. Let f(h) := 1
6(4h−4) for every h>1. Then there is a function

g : N×N→N such that for every k>1, every graph either contains W 〈h,k〉
as a minor or is f(h)-colourable with clustering g(h,k).
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Proof. We proceed by induction on h > 1. In the base case, h = 1, since
W 〈1,k〉 is the 1-vertex graph, the result holds with f(1) = g(1,k) = 0. Now
assume that h>2 and the result holds for h−1 and all k.

Let G be a graph, which we may assume is connected. Let V0,V1, . . . be
a BFS layering of G.

Fix i>1. Let s be the maximum integer such thatG[Vi] contains s disjoint
subgraphs G1, . . . ,Gs each containing a W 〈h−1,max{1,6k−s}k〉minor. First
suppose that s>k. Then G[Vi] contains k disjoint subgraphs each containing
a W 〈h−1,k〉 minor. Contracting V0 ∪ ·· · ∪ Vi−1 to a single vertex gives a
W 〈h,k〉 minor (since every vertex in Vi has a neighbour in Vi−1), and we
are done. Now assume that s6k−1.

If s = 0, then G[Vi] contains no W 〈h−1,6k−1k〉 minor. By induction,
G[Vi] is f(h−1)-colourable with clustering g(h−1,6k−1k).

Now consider the case that s ∈ [1,k− 1]. Apply Lemma 10 to Gj for
each j ∈ [1, r]. Thus Gj contains subgraphs G′j and G′′j , both containing

W 〈h−1,6k−s−1k〉 as a minor, such that |V (G′j) ∩ V (G′′j )| 6 1. Let X :=⋃s
j=1(V (G′j)∩V (G′′j )). Thus |X|6s6k−1. Let A :=G[Vi]−

⋃s
j=1V (G′j) and

B :=G[Vi]−
⋃s
j=1V (G′′j ). By the maximality of s, the subgraph A contains no

W 〈h−1,6k−s−1k〉 minor (as otherwise A,G′1, . . . ,G
′
s would give s+1 pairwise

disjoint subgraphs satisfying the requirements). By induction, A is f(h−1)-
colourable with clustering g(h−1,6kk) since 6k−s−1k6 6kk. Similarly, B is
f(h−1)-colourable with clustering g(h−1,6kk). By construction, each vertex
in G[Vi] is in at least one of X, A or B. Use one new colour for X, which
has size at most s6k−1.

In both cases, G[Vi] is (2f(h − 1) + 1)-colourable with clustering
max{g(h−1,6kk),k−1}. Use a different set of 2f(h−1)+1 colours for even
i and for odd i, and colour r by one of the colours used for even i. No edge
joins Vi with Vj for j> i+2. Since f(h)=4f(h−1)+2, G is f(h)-colourable
with clustering g(h,k) :=max{g(h−1,6kk),k−1}.

Note that the clustering function g(h,k) in Theorem 11 satisfies

g(h, k) 6 k6k6
k6

...
k6k

,

where the number of ks is h.

Theorem 12. For every graph H,

χ?(MH) 6 1
6(4td(H) − 4).
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Proof. Let G be a graph not containing H as a minor. By definition, H is a
subgraph of C〈td(H), |V (H)|〉. ThusG does not contain C〈td(H), |V (H)|〉 as
a minor. By Lemma 9, G does not contain W 〈td(H), |V (H)|+1〉 as a minor.

By Theorem 11, there is a constant c= c(H), such that G is 1
6(4td(H)−4)-

colourable with clustering at most c.

2.3. Lower Bound

We now prove Theorem 3, where Hk :=C〈k,3〉, the closure of the complete
ternary tree of depth k (which has tree-depth and connected tree-depth k).

Lemma 13. χ?(MC〈k,3〉)>2k−2 for k>2.

Proof. Fix an integer c. We now recursively define graphs Gk (depending
on c), and show by induction on k that Gk has no (2k−3)-colouring with
clustering c, and C〈k,3〉 is not a minor of Gk.

For the base case k=2, let G2 be the path on c+1 vertices. Then G2 has
no C〈2,3〉=K1,3 minor, and G2 has no 1-colouring with clustering c.

Assume Gk−1 is defined for some k>3, that Gk−1 has no (2k−5)-colouring
with clustering c, and C〈k−1,3〉 is not a minor of Gk−1. As illustrated
in Figure 1, let Gk be obtained from a path (v1, . . . ,vc+1) as follows: for
i∈{1, . . . , c} add 2c−1 pairwise disjoint copies of Gk−1 complete to {vi,vi+1}.

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

v1 v2 v3 v4 v5 v6 b b b vc+1

Figure 1. Construction of Gk

Suppose that Gk has a (2k−3)-colouring with clustering c. Then vi and
vi+1 receive distinct colours for some i∈{1, . . . , c}. Consider the 2c−1 copies
of Gk−1 complete to {vi,vi+1}. At most c−1 such copies contain a vertex
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assigned the same colour as vi, and at most c−1 such copies contain a vertex
assigned the same colour as vi+1. Thus some copy avoids both colours. Hence
Gk−1 is (2k−5)-coloured with clustering c, which is a contradiction. Therefore
Gk has no (2k−3)-colouring with clustering c.

It remains to show that C〈k,3〉 is not a minor of Gk. Suppose that Gk
contains a model {Jx : x ∈ V (C〈k,3〉)} of C〈k,3〉. Let r be the root ver-
tex in C〈k,3〉. Choose the C〈k,3〉-model to minimise

∑
x∈V (C〈k,3〉) |V (Jx)|.

Since {v1, . . . ,vc+1} induces a connected dominating subgraph in Gk, by the
minimality of the model, Jr is a connected subgraph of (v1, . . . ,vc+1). Say
Jr=(vi, . . . ,vj). Note that C〈k,3〉−r consists of three pairwise disjoint copies
of C〈k−1,3〉. The model X of one such copy avoids vi−1 and vj+1 (if these
vertices are defined). Since C〈k−1,3〉 is connected, X is contained in a
component of Gk−{vi−1, . . . ,vj+1} and is adjacent to (vi, . . . ,vj). Each such
component is a copy of Gk−1. Thus C〈k−1,3〉 is a minor of Gk−1, which is
a contradiction. Thus C〈k,3〉 is not a minor of Gk.

3. 2-Colouring with Bounded Clustering

This section considers the following question: which minor-closed graph
classes have clustered chromatic number 2? To answer this question we
introduce three classes of graphs that are not 2-colourable with bounded
clustering, as illustrated in Figure 2.

The first example is the n-fan, which is the graph obtained from the
n-vertex path by adding one dominant vertex. If the n-fan is 2-colourable
with clustering c, then the underlying path contains at most c−1 vertices
of the same colour as the dominant vertex, implying that the other colour
has at most c monochromatic components each with at most c vertices, and
n6 c2 + c−1. That is, if n> c2 + c, then the n-fan is not 2-colourable with
clustering c.

The second example is the n-fat star, which is the graph obtained from
the n-star (the star with n leaves) as follows: for each edge vw in the n-star,
add n degree-2 vertices adjacent to v and w. Note that the n-fat star is
C〈3,n〉. Suppose that the n-fat star has a 2-colouring with clustering c6n.
Deleting the dominant vertex in the n-fat star gives n disjoint n-stars. Since
n > c, in at least one of these n-stars, no vertex receives the same colour
as the dominant vertex, implying there is a monochromatic component on
n+1>c+1 vertices. Thus, for n>c there is no 2-colouring of the n-fat star
with clustering c.

The third example is the n-fat path, which is the graph obtained from
the n-vertex path as follows: for each edge vw of the n-vertex path, add n
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degree-2 vertices adjacent to v and w. If n>2c−1, then in every 2-colouring
of the n-fat path with clustering c, adjacent vertices in the underlying path
receive the same colour, implying that the underlying path is contained in
a monochromatic component with more than c vertices. Thus, for n>2c−1
there is no 2-colouring of the n-fat path with clustering c.
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Figure 2. Graph classes that are not 2-colourable with bounded clustering

These three examples all need three colours in a colouring with bounded
clustering. The main result of this section is the following converse result.

Theorem 14. Let G be a minor-closed graph class. Then χ?(G)62 if and
only if for some integer k> 2, the k-fan, the k-fat path, and the k-fat star
are not in G.

Lemma 24 below shows that every graph containing no k-fan minor, no
k-fat path minor, and no k-fat star minor is 2-colourable with clustering f(k)
for some explicit function f . Along with the above discussion, this implies
Theorem 14. We assume k>2 for the remainder of this section.

The following definition is a key to the proof. For an h-vertex graph H
with vertex set {v1, . . . ,vh}, a k-strong H-model in a graph G consists of h
pairwise disjoint connected subgraphs X1, . . . ,Xh in G, such that for each
edge vivj of H there are at least k vertices in V (G)\⋃h

i=1V (Xi) adjacent

to both Xi and Xj . Note that a vertex in V (G)\⋃h
i=1V (Xi) might count

towards this set of k vertices for distinct edges of H. This definition leads to
the following sufficient condition for a graph to contain a k-fat star or k-fat
path

Lemma 15. If a graph G contains a k(k + 1)-strong H-model for some
connected graph H with kk edges, then G contains a k-fat star or a k-fat
path as a minor.

Proof. Use the notation introduced in the definition of k-strong H-model.
Since H is connected with kk edges, H contains a k-vertex path or a k-leaf
star as a subgraph. Suppose that (v1, . . . ,vk) is a k-vertex path in H. For
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i=1,2, . . . ,k−1, let Ni be a set of k+1 vertices in(
V (G) \

h⋃
j=1

V (Xj)
)
\
i−1⋃
j=1

Nj ,

each of which is adjacent to both Xi and Xi+1. Such a set exists since Xi

and Xi+1 have at least k(k+1) common neighbours in V (G)\⋃h
j=1V (Xj).

For i ∈ [1,k− 1], contract one vertex of Ni into Xi. Then contract each of
X1, . . . ,Xh into a single vertex. We obtain the k-fat path as a minor in G.
The case of a k-leaf star is analogous.

Lemma 16. If a connected graph G contains a (k+2c−2)-strong H-model,
for some graph H with c connected components, then G contains a k-strong
H ′-model for some connected graph H ′ with |E(H ′)|= |E(H)|.

Proof. We proceed by induction on c>1. The case c=1 is vacuous. Assume
c>2, and the result holds for c−1. Let H1, . . . ,Hc be the components of H.
We may assume thatH has no isolated vertices. SayX1, . . . ,Xh is a (k+2c−2)-
strong H-model in G. For each edge vivj in H, let Nij be a set of k+2c−2
common neighbours of Xi and Xj . For each component Ha of H, note that
(
⋃
vi∈V (Ha)

V (Xi))∪ (
⋃
vivj∈E(Ha)

Nij) induces a connected subgraph in G,

which we denote by Ga. Since G is connected, there is a path P between Ga
and Gb, for some distinct a,b∈ [1, c], such that no internal vertex of P is in
G1∪·· ·∪Gc. Note that P might be a single vertex. For some edge vivi′ in Ha

and some edge vjvj′ in Hb, without loss of generality, P joins some vertex
x in V (Xi)∪Nii′ and some vertex y in V (Xj)∪Njj′ . Let H ′ be the graph
obtained from H by identifying vi and vj into a new vertex v0. Now H ′ has
c−1 components and |E(H ′)|= |E(H)|. Define X0 :=Xi∪Xj∪P . If x 6∈V (Xi),
then add the edge between x and Xi to X0. Similarly, if y 6∈V (Xj), then add
the edge between y and Xj to X0. Remove x and/or y from Nαβ for each
edge vαvβ of H ′. Now |Nαβ|>k+2(c−1)−2. We obtain a (k+2(c−1)−2)-
strong H ′-model in G. By induction, G contains a k-strong H ′′-model for
some connected graph H ′′ with |E(H ′′)|= |E(H)|.

Lemma 17. If a connected graph G contains a 3kk-strong H-model for
some graph H with at least kk edges, then G contains a k-fat star or a k-fat
path as a minor.

Proof. We may assume that H has exactly kk edges and has no isolated ver-
tices. Say H has c connected components. Then c6kk and 3kk>k2+k+2c−2.
Hence G contains a (k2+k+2c−2)-strong H-model. The result then follows
from Lemmas 15 and 16.
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Lemma 18. Let G be a connected graph such that degG(v)>2`k for some
non-cut-vertex v and integers k,`>1. Then G contains a k-fan as a minor,
or G contains a connected subgraph X and v has ` neighbours not in X and
all adjacent to X (thus contracting X gives a K2,` minor).

Proof. Let r be a vertex of G− v. For each w ∈ NG(v), let Pw be a wr-
path in G− v. If |Pw ∩NG(v)|> k for some w ∈NG(v), then G contains a
k-fan minor. Now assume that |Pw∩NG(v)|6k−1 for each w∈NG(v). Let
H be the digraph with vertex set NG(v), where N+

H (w) := V (Pw)∩NG(v)
for each vertex w. Thus H has maximum outdegree at most k−1, and the
underlying undirected graph of H has average degree at most 2k−2. Since
|V (H)|>2`k, by Turán’s Theorem, H contains a stable set S of size `. Let
X :=

⋃{Pw : w∈S}−S, which is connected since S is stable. Each vertex in
S is adjacent to v and to X, as desired.

Lemma 19. Let G be a graph with distinct vertices v1, . . . ,vk, such that
C :=G−{v1, . . . ,vk} is connected and degC(vi)>k3 for each i∈ [1,k]. Then
G contains a k-fan or k-fat star as a minor.

Proof. The idea of the proof is to attempt to build a k-fan model by con-
structing a subtree X such that each vi is adjacent to a subset Si of k leaves
of X (where the Si are disjoint). We construct X and the Si by adding, one
at a time, paths to some neighbour w of some vi to increase the size of Si.
We always choose a neighbour at maximal distance from some root vertex,
among all neighbours of all vi for which Si is not yet large enough: this
ensures that later paths will not pass through the sets Si that have been
previously constructed.

We now formalise this idea. Let r be a vertex in C. Let V0,V1, . . . ,Vn be
a BFS layering of C starting at r. Initialise t :=n and X :={r} and Si :=∅
for i∈ [1,k] and S :=∅. The following properties trivially hold:

(0) S=
⋃
i∈[1,k]Si and S⊆Vt∪Vt+1∪·· ·∪Vn.

(1) X is a (connected) subtree of C rooted at r with (non-root) leaf set S.
(2) Si∩Sj =∅ for distinct i, j∈ [1,k].
(3) Si is a set of at most k+ 1 neighbours of vi for i∈ [1,k] (and so |S|6

k(k+1)).
(4) |NC−V (X)(vi)|>k3−1−(k−1)|S|>0 for i∈ [1,k].

Now execute the following algorithm, which maintains properties (0)–(4).
Think of Vt as the ‘current’ layer.

While |Si|6k for some i∈ [1,k] repeat the following: If Vt∩NC−V (X)(vi)=
∅ for all i ∈ [1,k] with |Si| 6 k, then let t := t− 1. Properties (0)–(4) are
trivially maintained. Otherwise, let w be a vertex in Vt ∩NC−V (X)(vi) for



CLUSTERED COLOURING IN MINOR-CLOSED CLASSES 1401

some i∈ [1,k] with |Si|6k. Since V0,V1, . . . ,Vn is a BFS layering of C rooted
at r and r is in X, there is a path P from w to X consisting of at most one
vertex from each of V0, . . . ,Vt, and with no internal vertices in X. By (0) and
since w 6∈S, P avoids S. By (1), the endpoint of P in X is not a leaf of X. If
P contains at least k vertices in NC(vj) for some j∈ [1,k], then G contains
a k-fan minor and we are done. Now assume that P contains at most k−1
vertices in NC(vj) for each j∈ [1,k]. Let Si :=Si∪{w} and S :=S∪{w} and
X :=X∪P . Now w is a leaf of X, and property (1) is maintained. Properties
(0), (2) and (3) are maintained by construction. Property (4) is maintained
since |S| increases by 1 and P contains at most k−1 vertices in NC(vj) for
each j∈ [1,k].

The algorithm terminates when |Si| = k+ 1 for each i ∈ [1,k]. Delete
C−V (X). Contract X−S (which is connected by (1)) to a single vertex z.
Since S is the set of leaves of X, each vertex in Si is adjacent to both vi
and z. Contract one edge between vi and Si for each i∈ [1,k]. We obtain the
k-fat star as a minor.

Lemma 20. Let G be a bipartite graph with bipartition A,B, such that at
least p vertices in A have degree at least k|A|, and every vertex in B has
degree at least 2. Then G contains a k-strong H-model for some graph H
with at least p/2 edges.

Proof. Let H be the graph with V (H) := A where vw ∈ E(H) whenever
|NG(v)∩NG(w)|> k. Since every vertex in B has degree at least 2, every
vertex in A with degree at least k|A| is incident with some edge in H. Thus
H has at least p/2 edges. By construction, G contains a k-strong H-model.

For the remainder of this section, let d :=(k+2)kk(18k2k+1+1). A vertex
v is high-degree if deg(v)>d, otherwise v is low-degree.

Lemma 21. If a 2-connected graph G has at least (k+ 2)kk high-degree
vertices, then G contains a k-fat path, a k-fat star, or a k-fan as a minor.

Proof. Let A be a set of exactly (k+ 2)kk high-degree vertices in G. Let
C1, . . . ,Cp be the components of G−A. Say (v,Cj) is a heavy pair if v ∈A
and v has at least 6kk+1 neighbours in Cj . Since 6kk+1>k3, by Lemma 19,
if some Cj is in at least k heavy pairs, then G contains a k-fan or k-fat star
as a minor, and we are done. Now assume that each Cj is in fewer than k
heavy pairs. Let h be the total number of heavy pairs. Then there is a set
P of at least h/k heavy pairs containing at most one heavy pair for each
component Cj . For each such heavy pair (v,Cj), by Lemma 18 with `=3kk,
G[V (Cj)∪{v}] contains a k-fan as a minor (and we are done) or a K2,3kk
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minor, where G[{v}] is the subgraph corresponding to one of the vertices
in the colour class of size 2 in K2,3kk . We obtain a 3kk-strong H-model for

some graph H, where |E(H)|= |P |>h/k. If h/k>kk, then we are done by
Lemma 17. Now assume that h<kk+1. In particular, the number of vertices
in A that are in a heavy pair is less than kk+1. Let A′ be the set of vertices
in A in no heavy pair; thus |A′|> 2kk. Let H be the bipartite graph with
bipartition A,B, where there is one vertex wj in B for each component Cj ,
and v ∈A is adjacent to wj ∈B if and only if v is adjacent to some vertex
in Cj . In H, every vertex in A′ has degree at least (d−|A|)/6kk+1, which is
at least 3kk|A|. (Note that d is defined so that this property holds.) Since
G is 2-connected, each Cj is adjacent to at least two vertices in A. Thus,
every vertex in B has degree at least 2 in H. By Lemma 20, H contains a
3kk-strong model of a graph with at least |A′|/2>kk edges. By Lemma 17
we are done.

Lemma 22. Let V0,V1, . . . be a BFS layering in a connected graph G. If
G[Vi ∪Vi+1 ∪ ·· · ∪Vi+c] contains a path on at least kc+1 vertices for some
i,c>0, then G contains a k-fan minor.

Proof. We proceed by induction on c. Let P be a path in

G[Vi ∪ Vi+1 ∪ . . . ∪ Vi+c]

on kc+1 vertices. First suppose that P contains k vertices v1, . . . ,vk in Vi
(which must happen in the base case c=0). Each vertex vi has a neighbour in
Vi−1. Thus, contracting G[V0∪·· ·∪Vi−1] into a single vertex and contracting
P between vi and vi+1 to an edge (for i ∈ [1,k− 1]) gives a k-fan minor.
Now assume that P contains at most k− 1 vertices in Vi and c> 1. Thus
P −Vi has at least kc+1−(k−1) vertices and at most k components. Thus,
some component of P −Vi has at least

⌈
(kc+1−k+1)/k

⌉
= kc vertices and

is contained in G[Vi+1∪Vi+2∪·· ·∪Vi+c]. By induction, G contains a k-fan
minor.

Say a vertex v in a coloured graph is properly coloured if no neighbour
of v gets the same colour as v.

Lemma 23. Let G be a 2-connected graph containing no k-fan, k-fat star
or k-fat path as a minor. Let h be the number of high-degree vertices in
G. Let r be a vertex in G. Then G is 2-colourable with clustering at most

dk
3(k+2)kk

. Moreover, if h = 0, then we can additionally demand that r is
properly coloured.
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Proof. Let V0,V1, . . . be the BFS layering of G starting at r.
First suppose that h= 0. Colour each vertex v ∈ Vi by i mod 2. Then r

is properly coloured. Every monochromatic component is contained in some
Vi. Suppose that some component X of G[Vi] has at least dk vertices. Thus
i > 1. Since G and thus X has maximum degree at most d, X contains a
path of k vertices. Contracting G[V0∪·· ·∪Vi−1] into a single vertex gives a
k-fan minor. This contradiction shows that the 2-colouring has clustering at
most dk.

Now assume that h>1. By Lemma 21, h6(k+2)kk. Colour all the high-
degree vertices black. Let I be the set of integers i>0 such that Vi contains a
high-degree vertex. Colour all the low-degree vertices in

⋃{Vi : i∈I} white.
Let Vi,Vi+1, . . . ,Vi+c be a maximal sequence of layers with no high-degree

vertices, where c> 0. Thus Vi−1 is empty or contains a high-degree vertex.
Similarly, Vi+c+1 is empty or contains a high-degree vertex. If c is even,
then colour Vi ∪Vi+2 ∪ ·· · ∪Vi+c white and colour Vi+1 ∪Vi+3 ∪ ·· · ∪Vi+c−1
black. If c is odd, then colour Vi ∪Vi+2 ∪ ·· · ∪Vi+c−1 and Vi+c white, and
colour Vi+1∪Vi+3∪·· ·∪Vi+c−2 black. Note that if c>2, then at least one of
Vi+1, . . . ,Vi+c−1 is black.

We now show that each black component X has bounded size. If X
contains some high-degree vertex, then every vertex in X is high-degree and
|X|6 h6 (k+ 2)kk. Now assume that X contains no high-degree vertices.
Say X intersects Vj . Since each black layer is preceded by and followed by
a white layer, X is contained in Vj . Every vertex in X has degree at most
d in G. Thus if X has at least dk vertices, then X contains a path of length
k, and contracting V0∪·· ·∪Vj−1 to a single vertex gives a k-fan. Hence X
has at most dk vertices.

Finally, let X be a white component. Then X is contained within at
most 3h63(k+2)kk consecutive layers (since in the notation above, if all of

Vi,Vi+1, . . . ,Vi+c are white, then c6 1). Suppose that |X|>dk3(k+2)kk

. Since

X has maximum degree at most d, X contains a path of length k3(k+2)kk .
Thus, Lemma 22 with c+ 1 = 3(k+ 2)kk implies that G contains a k-fan

minor. Hence |X|6dk3(k+2)kk

.

We now complete the proof of Theorem 14.

Lemma 24. Let G be a graph containing no k-fan, no k-fat path, and no

k-fat star as a minor. Then G is 2-colourable with clustering kdk
3(k+2)kk

.

Proof. We may assume that G is connected. Let r be a vertex of G. If B is
a block of G containing r, then consider B to be rooted at r. If B is a block
of G not containing r, then consider B to be rooted at the unique vertex in
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B that separates B from r. Say (B,v) is a high-degree pair if B is a block
of G and v has high-degree in B. Note that one vertex might be in several
high-degree pairs.

Suppose that some vertex v is in at least k high-degree pairs with blocks
B1, . . . ,Bk. Since d>2k(k+1), by Lemma 18 with `=k+1, for i∈ [k], there
is a connected subgraph Xi in Bi−v and there is a set Ni⊆NBi(v)\V (Xi)
of size k+ 1, such that each vertex in Ni is adjacent to Xi. For i ∈ [1,k],
contract Xi into a single vertex, and contract one edge between v and Ni.
We obtain a k-fat star as a minor. Now assume that each vertex is in fewer
than k high-degree pairs.

Colour each block B in non-decreasing order of the distance in G from r
to the root of B. Let B be a block of G rooted at v (possibly equal to r). Then
v is already coloured in the parent block of B. Let hB be the number of high-
degree pairs involving B. By Lemma 23, B is 2-colourable with clustering at

most dk
3(k+2)kk

, such that if hB=0, then v is properly coloured. Permute the
colours in B so that the colour assigned to v matches the colour assigned to
v by the parent block. Then the monochromatic component containing v is
contained within the parent block of B along with those blocks rooted at v
that form a high-degree pair with v. As shown above, there are at most k

such blocks. Thus, each monochromatic component has at most kdk
3(k+2)kk

vertices.

4. Excluding a Fat Star

This section considers colourings of graphs excluding a fat star. We need the
following more general lemma.

Lemma 25. For every planar graph H,

χ?(MH) 6 2χ∆(MH).

Proof. The grid minor theorem of Robertson and Seymour [18] says that
every graph in MH has tree-width at most some function w(H). (Chekuri
and Chuzhoy [2] recently showed that w can be taken to be polynomial
in |V (H)|.) Alon, Ding, Oporowski, and Vertigan [1] observed that ev-
ery graph with tree-width w and maximum degree ∆ is 2-colourable with
clustering 24w∆. Let k := χ

∆(MH). That is, every H-minor-free graph
G is k-colourable with monochromatic components of maximum degree at
most some function d(H). Apply the above result of Alon et al. [1] to
each monochromatic component. Thus G is 2k-colourable with clustering
24w(H)d(H). Hence χ?(MH)62k.
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A variant of Lemma 25 holds for arbitrary graphs H with “2” replaced
by “3”. The proof uses a result of Liu and Oum [13] in place of the result of
Alon et al. [1]; see [5,6].

Theorem 26. For k > 3, the clustered chromatic number of the class of
graphs containing no k-fat star minor equals 4.

Proof. As illustrated in Figure 2, the k-fat star is planar. Ossona de Mendez
et al. [16] proved that graphs containing no k-fat star minor are 2-colourable
with defect O(k13). Thus, Lemma 25 implies that the clustered chromatic
number of the class of graphs containing no k-fat star is at most 4. To obtain
a bound on the clustering, note that a result of Leaf and Seymour [12] implies
that every graph containing no k-fat star minor has tree-width O(k2). It
follows from the proof of Lemma 25 that every graph containing no k-fat
star minor is 4-colourable with clustering O(k15). Since the 3-fat star is
C〈3,3〉, Lemma 13 implies that for k>3, the clustered chromatic number of
the class of graphs containing no k-fat star minor is at least 4.

Every graph H with td(H)6 3 is a subgraph of the k-fat star for some
k6 |V (H)|. Thus Theorem 26 implies Conjecture 4 in the case of connected
tree-depth 3.

Corollary 27. For every graph H with td(H)63,

χ?(MH) 6 4.

We can push this result further.

Theorem 28. For every graph H with td(H)63,

χ?(MH) 6 5.

Proof. Say H has p components. Each component of H is a subgraph of the
k-fat star for some k6 |V (H)|. Let H ′ consist of p pairwise disjoint copies
of the k-fat star. Let G be an H-minor-free graph. Thus G is also H ′-minor-
free. By the Grid Minor Theorem of Robertson and Seymour [18] and since
H ′ is planar, G has treewidth at most w=w(H ′). By Theorem 5, there is a
set X of at most (p−1)(w−1) vertices in G, such that G−X contains no
k-fat star as a minor. By Theorem 26, G−X is 4-colourable with clustering
at most some function of H. Assign vertices in X a fifth colour. Thus G is
5-colourable with clustering at most some function of H.
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5. A Conjecture about Clustered Colouring

We now formulate a conjecture about the clustered chromatic number of
an arbitrary minor-closed class of graphs. Consider the following recursively
defined class of graphs. Let X1,c :={Pc+1,K1,c}. Here Pc+1 is the path with
c+1 vertices, and K1,c is the star with c leaves. As illustrated in Figure 3, for
k>2, let Xk,c be the set of graphs obtained by the following three operations.
For the first two operations, consider an arbitrary graph G∈Xk−1,c.
• Let G′ be the graph obtained from c disjoint copies of G by adding one

dominant vertex. Then G′ is in Xk,c.
• Let G+ be the graph obtained from G as follows: for each k-clique D in
G, add a stable set of k(c−1)+1 vertices complete to D. Then G+ is in
Xk,c.

• If k> 3 and G∈Xk−2,c, then let G++ be the graph obtained from G as
follows: for each (k−1)-clique D in G, add a path of (c2−1)(k−1)+(c+1)
vertices complete to D. Then G++ is in Xk,c.

G Gb b b

c
G′

G

G+

k(c− 1) + 1

∀k-clique
G

G++

(c− 1)2(k − 1) + c+ 1

∀(k − 1)-clique

Figure 3. Construction of Xk,c

A vertex-coloured graph is rainbow if every vertex receives a distinct
colour.

Lemma 29. For every c > 1 and k > 2, for every graph G ∈ Xk,c, every
colouring of G with clustering c contains a rainbow Kk+1. In particular, no
graph in Xk,c is k-colourable with clustering c.

Proof. We proceed by induction on k>1. In the case k=1, every colouring
of Pc+1 or K1,c with clustering c contains an edge whose endpoints receive
distinct colours, and we are done. Now assume the claim for k−1 and for
k−2 (if k>3).
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Let G ∈ Xk−1,c. Consider a colouring of G′ with clustering c. Say the
dominant vertex v is blue. At most c−1 copies of G contain a blue vertex.
Thus, some copy of G has no blue vertex. By induction, this copy of G
contains a rainbow Kk. With v we obtain a rainbow Kk+1.

Now consider a colouring of G+ with clustering c. By induction, the copy
of G in G+ contains a clique w1, . . . ,wk receiving distinct colours. Let S be
the set of k(c−1) + 1 vertices adjacent to w1, . . . ,wk in G+. At most c−1
vertices in S receive the same colour as wi. Thus some vertex in S receives
a colour distinct from the colours assigned to w1, . . . ,wk. Hence G+ contains
a rainbow Kk+1.

Now suppose k>3 and G∈Xk−2,c. Consider a colouring of G++ with clus-
tering c. By induction, the copy of G in G++ contains a clique w1, . . . ,wk−1
receiving distinct colours. Let P be the path of (c2−1)(k−1)+(c+1) ver-
tices in G++ complete to w1, . . . ,wk−1. Let Xi be the set of vertices in P
assigned the same colour as wi, and let X :=

⋃
iXi. Thus |Xi|6 c− 1 and

|X|6(c−1)(k−1). Hence P −X has at most (c−1)(k−1)+1 components,
and |V (P−X)|>(c2−1)(k−1)+(c+1)−(c−1)(k−1)=c

(
(c−1)(k−1)+1

)
+1.

Some component of P−X has at least c+1 vertices, and therefore contains
a bichromatic edge xy. Then {w1, . . . ,wk−1}∪{x,y} induces a rainbow Kk+1

in G++.

We conjecture that a minor-closed class that excludes every graph in Xk,c
for some c is k-colourable with bounded clustering. More precisely:

Conjecture 30. For every minor-closed classM of graphs,

χ?(M) = min{k : ∃cM∩Xk,c = ∅}.

Several comments about Conjecture 30 are in order:

• To prove the lower bound in Conjecture 30, let k be the minimum integer
such that M∩Xk,c=∅ for some integer c. Thus, for every integer c some
graph G∈Xk−1,c is inM. By Lemma 29, G has no (k−1)-colouring with
clustering c. Thus χ?(M)>k.
• Note that the k=1 case of Conjecture 30 is trivial: a graph is 1-colourable

with bounded clustering if and only if each component has bounded size,
which holds if and only if every path has bounded length and every vertex
has bounded degree.
• We note that Theorem 14 implies Conjecture 30 with k=2. If G=Pc+1,

then G′ is contained in the c(c+1)-fan and G+ is contained in the (2c−1)-
fat path. If G=K1,c, then G′ is the c-fat star and G+ is contained in the
(2c−1)-fat star. It follows that if a minor-closed class M excludes every
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graph in X2,c for some c , thenM excludes the c(c+1)-fan, the (2c−1)-fat
path, and the (2c−1)-fat star. Then χ?(M)62 by Theorem 14.

• We now relate Conjectures 4 and 30. Fix a graph H. Conjecture 30 says
that the clustered chromatic number ofMH equals the minimum integer
k such that for some integer c, every graph in Xk,c contains H as a minor.

Let k := td(H)>2. An easy inductive argument shows that every graph
in X2k−2,c contains a C〈k,c〉 minor. Thus, for a suitable value of c, every
graph in X2k−2,c contains H as a minor. Hence, Conjecture 30 implies
Conjecture 4.
• Consider the case of excluding the complete bipartite graph Ks,t as a mi-

nor for s 6 t. Van den Heuvel and Wood [6] proved the lower bound,
χ?(MKs,t) > s+ 1 for t > max{s,3}. Their construction is a special
case of the construction above. We claim that Conjecture 30 asserts that
χ?(MKs,t) = s+1 for t>max{s,3}. To see this, first note that an easy
inductive argument shows that every graph in Xs+1,t contains a Ks,t

subgraph; thus MKs,t ∩ Xs+1,t = ∅. Furthermore, another easy inductive
argument shows that for all s,c>1, there is a graph in Xs,c containing no
Ks,max{s,3} minor. This implies thatMKs,t∩Xs,c 6=∅ for all t>max{s,3}.
Together these observations show that min{k : ∃cMs,t∩Xk,c=∅}=s+1
for t>max{s,3}. That is, Conjecture 30 asserts that χ?(MKs,t) = s+1
for t>max{s,3}. Van den Heuvel and Wood [6] proved the upper bound,
χ?(MKs,t)6 3s for t> s, which was improved to 2s+ 2 by Dvořák and
Norin [4].

6. An Alternative View

We conclude the paper with alternative versions of Conjectures 2 and 30
that shift the focus to characterising minimal minor-closed classes of given
defective and clustered chromatic number.

We start with some definitions. Let H and G be two vertex-disjoint
graphs, and let S ⊆ V (G). Let G′ be obtained from G∪H by joining ev-
ery vertex of S to every vertex of H by an edge. Then we say that G′ is
obtained from G by taking a join with H along S. Let H be a class of graphs.
We say that a graph G′ is an H-decoration of a graph G, if G′ is obtained
from G by repeatedly taking joins with graphs in H along cliques of G. For
a class of graphs G, let G∧H denote the class of all minors of H-decorations
of graphs in G. One can routinely verify that the ∧ operation is associative.
The examples below show that it is not always commutative.

First, we introduce notation for some minor-closed classes that will serve
as the basis for our constructions. Let I denote the class of graphs on at



CLUSTERED COLOURING IN MINOR-CLOSED CLASSES 1409

most one vertex, let O denote the class of edgeless graphs, and let P denote
the class of linear forests (that is, subgraphs of paths). Let Td denote the
class of all graphs of tree-depth at most d. Then T1 is a class of all edgeless
graphs. It follows from the alternative definition of tree-depth given in [14,
Section 6.1] that Td+1=O∧Td.

The operations used in Conjecture 30 can be described as follows.

• Adding a vertex adjacent to several copies of graphs in the class G (and
taking all possible minors) produces the class I ∧G.

• Adding stable sets complete to cliques in graphs in G produces the class
G∧I.
• Adding paths complete to cliques in graphs in G produces the class G∧P.

Note that by definition G∧H is a minor-closed class for any pair of minor-
closed classes G and H.

We next present an analogue of Lemma 29 using the notions introduced
above. A class of graphs G is k-cluster rainbow (respectively, k-defect rain-
bow) if for every c there exists G ∈ G such that every colouring of G with
clustering (respectively, defect) at most c contains a rainbow clique of size
k. For example, I is 1-cluster rainbow and 1-defect rainbow, P is 2-cluster
rainbow, but not 2-defect rainbow. Note that if a class of graphs G is k-
cluster rainbow, then clearly χ?(G)>k. Similarly, if G is k-defect rainbow,
then χ∆(G)>k.

The proof of the following lemma parallels the proof of Lemma 29; we
present it for completeness.

Lemma 31. Let G,H be graph classes, such that G is k-cluster rainbow and
H is `-cluster rainbow. Then G∧H is (k+`)-cluster rainbow.

Proof. Fix c, and let G∈G and H∈H be such that every colouring of G with
clustering at most c contains a rainbow clique of size k, and every colouring
of H with clustering at most c contains a rainbow clique of size `. Let J be
obtained from G by taking a join of G with H, (c−1)k+1 times along every
clique S of G. Then J ∈G∧H by definition. It remains to show that every
colouring φ : V (J)→C of J for some set of colours C with clustering at most
c contains a rainbow clique of size k+ `. By the choice of J there exists a
clique S in G of size k, which is rainbow in φ. Let H1,H2, . . . ,Hr be copies of
H glued along S to G. By the choice of H, for every i there exists a clique Si
of size ` in Hi that is rainbow in φ. Suppose for a contradiction that S∪Si is
not rainbow for any i. Then there exists s∈S with a neighbour of the same
colour in Si for at least c choices of i. Thus s belongs to a monochromatic
component of size at least c+1 in φ, a contradiction.
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Note that an analogue of Lemma 31 also holds for defective colourings.
The proof is identical.

Let G be a graph class obtained by taking a wedge-product of v copies
of I and p copies of P in some order such that v+2p=k+1. Then we say
that G is k-cluster critical. By Lemma 31 the clustered chromatic number
of a k-cluster critical class is at least k+1. (In fact, it is not difficult to see
that equality holds.) For example, the class I∧P of minors of fans, the class
I∧I∧I of minors of fat stars, and the class P∧I of minors of fat paths are
all possible 2-cluster critical classes. Thus, Theorem 14 is equivalent to the
statement that χ?(G)62 if and only if G contains no 2-cluster critical class.

The discussion above implies that for all k and c every graph in Xk,c is a
member of some k-cluster critical class. Conversely, for all n,k there exists
c such that for every graph G ∈ Xk,c there exists a k-cluster critical class
G such that Xk,c contains as minors all graphs in G on at most n vertices.
Thus Conjecture 30 can be reformulated as follows.

Conjecture 32. Let M be a minor-closed class of graphs and k > 0 an
integer. Then χ?(G)>k+1 if and only if G 6⊆M for some k-cluster critical
class G.

Similarly, note that the k-term ∧-product ∧kI=I∧I∧. . .∧I is the class
of minors of connected graphs of tree-depth k and therefore the following
conjecture is equivalent to Conjecture 2.

Conjecture 33. Let M be a minor-closed class of graphs and k > 0 an
integer. Then χ∆(G)>k+1 if and only if ∧k+1I 6⊆M.
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