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planar graphs of odd diameter k. With respect to lower 
bounds, we construct graphs of Euler genus g, odd diameter k, 
and order c(√g + 1)(Δ − 1)�k/2� for some absolute constant 
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1. Introduction

The degree–diameter problem asks for the maximum number of vertices in a graph of 
maximum degree Δ ≥ 3 and diameter k ≥ 2. For general graphs the Moore bound,

M(Δ, k) := 1 + Δ + Δ(Δ − 1) + . . . + Δ(Δ − 1)k−1

= (1 + o(1))(Δ − 1)k (for fixed k),

provides an upper bound for the order of such a graph. The well-known de Bruijn graphs 
provide a lower bound of �Δ/2�k [2]. For background on this problem the reader is 
referred to the survey [13].

If we restrict our attention to particular graph classes, better upper bounds than the 
Moore bound are possible. For instance, a well-known result by Jordan [10] implies that 
every tree of maximum degree Δ and fixed diameter k has at most (2 +o(1))(Δ −1)�k/2�
vertices. For a graph class C, we define N(Δ, k, C) to be the maximum order of a graph 
in C with maximum degree Δ ≥ 3 and diameter k ≥ 2. We say C has small order if 
there exists a constant c and a function f such that N(Δ, k, C) ≤ c(Δ − 1)�k/2�, for all 
Δ ≥ f(k). The class of trees is a prototype class of small order.

For the class P of planar graphs, Hell and Seyffarth [9, Thm. 3.2] proved that 
N(Δ, 2, P) = �3

2Δ� + 1 for Δ ≥ 8. Fellows et al. [6, Cor. 14] subsequently showed that 
N(Δ, k, P) ≤ ckΔ�k/2� for every diameter k (see [7] for corresponding lower bounds). 
Notice that this does not prove that P has small order. Restricting P to even diameter 
assures small order, as shown by Tishchenko’s upper bound of (3

2 + o(1))(Δ − 1)k/2, 
whenever Δ ∈ Ω(k) [20, Thm. 1.1, Thm. 1.2]. Our first contribution is to prove that 
N(Δ, k, P) ≤ c(Δ − 1)�k/2� for k ≥ 2 and Δ ∈ Ω(k). That is, we show that the class of 
planar graphs has small order.

We now turn our attention to the class GΣ of graphs embeddable in a surface1 Σ of 
Euler genus g. For diameter 2 graphs, Knor and Širáň [11, Thm. 1, Thm. 2] showed that 
N(Δ, 2, GΣ) = N(Δ, 2, P) = � 3

2Δ� + 1, provided Δ ∈ Ω(g2). Šiagiová and Simanjuntak 
[17, Thm. 1] proved for all diameters k the upper bound

N(Δ, k,GΣ) ≤ c(g + 1)k(Δ − 1)�k/2�.

The main contribution of this paper, Theorem 1 below, is to show that the class of 
graphs embedded in a fixed surface Σ has small order.

Theorem 1. There exists an absolute constant c such that, for every surface Σ of Euler 
genus g,

1 A surface is a compact (connected) 2-manifold (without boundary). Every surface is homeomorphic to 
the sphere with h handles or the sphere with c cross-caps [14, Thm. 3.1.3]. The sphere with h handles 
has Euler genus g := 2h, while the sphere with c cross-caps has Euler genus g := c. For a surface Σ and 
a graph G embedded in Σ, the (topologically) connected components of Σ − G are called faces. A face 
homeomorphic to the open unit disc is called 2-cell, and an embedding with only 2-cell faces is called a 
2-cell embedding. Every face in an embedding is bounded by a closed walk called a facial walk.
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N(Δ, k,GΣ) ≤
{
c(g + 1)(Δ − 1)�k/2� if k is even and Δ ≥ c(g2/3 + 1)k,
c(g3/2 + 1)(Δ − 1)�k/2� if k is odd and Δ ≥ 2k + 1.

We now prove a lower bound on N(Δ, k, GΣ) for odd k ≥ 3 (see [8] for a more 
complicated construction that gives the same asymptotic lower bound). Let g be the 
Euler genus of Σ. It follows from the Map Colour Theorem [14, Thm. 4.4.5, Thm. 8.3.1]
that Kp embeds in Σ where p ≥ √

6g + 9. Let T be the rooted tree such that the root 
vertex has degree Δ −p +1, every non-root non-leaf vertex has degree Δ, and the distance 
between the root and each leaf equals (k − 1)/2. Observe that T has (Δ − p + 1)(Δ −
1)(k−3)/2 leaf vertices. For each vertex v of Kp take a copy of T and identify the root of 
T with v. The obtained graph embeds in Σ, has maximum degree Δ, and has diameter k. 
The number of vertices is at least p(Δ − p + 1)(Δ − 1)(k−3)/2. It follows that for odd k, 
for all ε > 0 and sufficiently large Δ ≥ Δ(g, ε),

N(Δ, k,GΣ) ≥ (1 − ε)
√

6g + 9 (Δ − 1)(k−1)/2. (1)

This lower bound is within a O(g) factor of the upper bound in Theorem 1. Moreover, 
combined with the above upper bound for planar graphs, this result solves an open 
problem by Miller and Širáň [13, Prob. 13]. They asked whether Knor and Širáň’s re-
sult could be generalised as follows: is it true that, for each surface Σ and for each 
diameter k ≥ 2, there exists Δ0 := Δ0(Σ, k) such that N(Δ, k, GΣ) = N(Δ, k, P) for 
Δ ≥ Δ0? We now give a negative answer to this question for odd k. Equation (1)
says that N(Δ, k, GΣ)/(Δ − 1)�k/2� ≥ c

√
g + 1, while Theorem 1 with g = 0 says that 

N(Δ, k, P)/(Δ − 1)�k/2� ≤ c′, for absolute constants c and c′. Thus N(Δ, k, GΣ) >
N(Δ, k, P) for odd k ≥ 3 and g greater than some absolute constant.

In the literature all upper bounds for N(Δ, k, P) or N(Δ, k, GΣ) rely on graph sepa-
rator theorems. Fellows et al. [6, Cor. 14] used the graph separator theorem for planar 
graphs by Lipton and Tarjan [12, Lem. 2], while Tishchenko used an extension of Lipton 
and Tarjan’s theorem proved by himself in [19, Cor. 3.3]. In the same vein, Šiagiová and 
Simanjuntak [17] made use of Djidjev’s separator theorem [4, Lem. 3] for graphs on sur-
faces. Our proofs rely on a new graph separator theorem, also proved in this paper, which 
extends Tishchenko’s separator theorem to all surfaces, and is of independent interest.

In this paper we follow the notation and terminology of [3]. The remainder of the 
paper is organised as follows. Section 2 proves a separator theorem for graphs on surfaces. 
Section 3 is devoted to the proof of Theorem 1. Finally, Section 4 discusses some open 
problems arising as a result of our work.

2. �-Separators in multigraphs on surfaces

A triangulation of a surface Σ is a multigraph (without loops) embedded in Σ such 
that each face is bounded by exactly 3 edges. Let � ∈ Z

+ and let Σ be a surface of Euler 
genus g and let G be an n-vertex triangulation of Σ. The aim of this section is to find a 
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“small” subgraph S of G with � faces such that each face of S contains “many” vertices 
of G.

A well-known result by Lipton and Tarjan [12, Lem. 2] states that if � = 2 then 
there exists a subgraph S of order at most (� − 1)(2r + 1) in every plane triangulation 
G such that each face of S contains at least n

2�−1 − |S| vertices of G. Here r denotes 
the radius of G. Tishchenko [20, Thm. 1.1, Thm. 1.2] found such a subgraph S in a 
plane triangulation for every � ≥ 2. Tishchenko [20] called such subgraphs �-separators
by virtue of its number of faces. Our result extends Tishchenko’s result to all sur-
faces.

A tree decomposition of a multigraph G is a pair (T, {Bz : z ∈ V (T )}) consisting of a 
tree T and a collection of sets of vertices in G (called bags) indexed by the nodes of T , 
such that:

(1)
⋃
{Bz : z ∈ V (T )} = V (G), and

(2) for every edge vw of G, some bag Bz contains both v and w, and
(3) for every vertex v of G, the set {z ∈ V (T ) : v ∈ Bz} induces a non-empty (connected) 

subtree of T .

For a subtree Q of T , let G[Q] be the subgraph of G induced by

⋃{
Bz : z ∈ V (Q)

}
\
⋃{

Bz : z ∈ V (T ) \ V (Q)
}
.

Thus a vertex v of G is in G[Q] whenever v is in some bag in Q and is in no bag outside 
of Q.

Our approach to finding an �-separator in an embedded multigraph is based on the 
following lemma for finding a separator in a multigraph with a given tree decomposi-
tion.

Lemma 2. Let � ≥ 0 and b ≥ 2 be integers. Let G be a multigraph with n ≥ (3� + 1)b
vertices. Let (T, {Bz : z ∈ V (T )}) be a tree decomposition of G, such that T has maximum 
degree at most 3, and |Bz| ≤ b for each z ∈ V (T ). Then there is a set R of exactly �
edges of T such that for each of the � + 1 components Q of T −R,

|G[Q]| ≥ n− �b

2� + 1 .

Proof. We proceed by induction on � ≥ 0. The base case with � = 0 and R = ∅ is trivially 
true. Now assume that � ≥ 1. Observe that |E(T )| ≥ � since n ≥ (3� + 1)b and each bag 
has size at most b.

Consider an edge xy of T . Let T (x, y) and T (y, x) be the subtrees of T obtained by 
deleting the edge xy, where T (x, y) contains x and T (y, x) contains y. Let G(x, y) :=
G[T (x, y)] and G(y, x) := G[T (y, x)]. By part (3) of the definition of tree decomposition, 
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each vertex of G is in either G(x, y) or G(y, x) or Bx ∩By. Orient each edge xy of T by 
−−→xy if

|G(x, y)| < n− �b

2� + 1 .

Case 1. Some edge xy ∈ E(T ) is oriented in both directions: Then |G(x, y)| < n−�b
2�+1 and 

|G(y, x)| < n−�b
2�+1 . Thus

n = |G(x, y)| + |G(y, x)| + |Bx ∩By| < 2
(
n− �b

2� + 1

)
+ b.

Hence n(2� +1) < 2(n −�b) +b(2� +1) = 2n +b and n(2� −1) < b, which is a contradiction.
Now assume that each edge is oriented in at most one direction. A vertex x of T is a 

sink if no edge incident with x is oriented away from x. (Note that some edges incident 
with a sink might be unoriented.) Let J be the subforest of T obtained as follows: every 
sink is in J , and if xy is an unoriented edge incident with a sink x, then y and xy are 
in J . Note that the vertex y is also a sink and so every vertex in J is a sink. Since T is 
acyclic, V (J) 
= ∅.

Case 2. E(J) = ∅: Thus J contains an isolated vertex y. Let x1, . . . , xd be the neighbours 
of y, where d ≤ 3. Since y is a sink and is isolated in J , each edge xiy is oriented −−→xiy. 
Thus |G(xi, y)| < n−�b

2�+1 . Every vertex not in 
⋃

i G(xi, y) is in By. Thus

n ≤ b +
∑
i

|G(xi, y)| < b + 3
(
n− �b

2� + 1

)
.

Thus n(2� + 1) < b(2� + 1) + 3(n − �b) = 3n − �b + b and 0 ≤ n(2� − 2) < b(1 − �) ≤ 0, 
which is a contradiction.

Case 3. E(J) 
= ∅: Let x be a leaf vertex in J . Thus x is a sink and is incident with 
exactly one unoriented edge xy. Let x1, . . . , xd be the other neighbours of x in T , where 
d ≤ 2. Thus xix is oriented −−−→xix. Let T ′ := T (y, x) and G′ := G(y, x) and n′ := |G′|. Then 
(T ′, {Bz \ (Bx ∩ By) : z ∈ V (T ′)}) is a tree-decomposition of G′. Since xix is oriented 
−−−→xix,

n ≤ |Bx| + n′ +
∑
i

|G(xi, x)| ≤ b + n′ + 2
(
n− �b

2� + 1

)
.

It follows that

n′ ≥ (2�− 1)n− b ≥ (2�− 1)(3� + 1)b− b = (3(�− 1) + 1)b.
2� + 1 2� + 1
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By induction, there is a set R′ of � − 1 edges of T ′ such that for each component Q′ of 
T ′ −R′,

|G′[Q′]| ≥ n′ − (�− 1)b
2�− 1 .

We now prove that R := R′ ∪ {xy} satisfies the lemma. By definition, |R| = �. Each 
component of T−R is either T (x, y) or is a component of T ′−R′. Since xy is unoriented, 
|G(x, y)| ≥ n−�b

2�+1 , as required. For each component Q′ of T ′ −R′,

|G[Q′]| = |G′[Q′]| ≥ n′ − (�− 1)b
2�− 1 ≥ n

2� + 1 − b

(2� + 1)(2�− 1) − (�− 1)b
2�− 1 = n− �b

2� + 1 ,

as required. Hence R satisfies the lemma. �
Theorem 3. Let � ∈ Z

+. Let Σ be a surface with Euler genus g. Let G be a triangulation 
of Σ with radius r and order n ≥ (3� + 1)((3 + 2g)r + 1). Then G has a subgraph S with 
at most (2r + 1)(g + �) edges, such that the induced embedding of S in Σ is 2-cell with 
� + 1 faces, and each face of S contains at least

n− �(3 + 2g)r − �

2� + 1

vertices of G in its interior.

Proof. Let u be a centre of G. Let T be a breadth-first spanning tree of G rooted at u. 
Thus distT (u, v) = distG(u, v) ≤ r for each vertex v of G. Let Tv be the uv-path in T .

Various authors [1,16,18] proved that there is a set X of exactly g edges in G −E(T )
such that the induced embedding of T ∪X in Σ is 2-cell and has exactly one face. Let 
F (G) be the set of faces of G. If T ∗ is the graph with vertex set F (G), where faces f1
and f2 of G are adjacent in T ∗ whenever f1 and f2 share an edge in E(G) \ (E(T ) ∪X), 
then T ∗ is a tree with maximum degree at most 3. For each face f = xyz of G, let

Bf := V (Tx ∪ Ty ∪ Tz) ∪
⋃

pq∈X

V (Tp ∪ Tq).

Dujmović et al. [5, Thm. 7] proved that (T ∗, {Bf : f ∈ V (T ∗)}) is a tree decomposition 
of G. Clearly, T ∗ has maximum degree at most 3, and |Bf | ≤ (3 + 2g)r + 1 for each 
f ∈ V (T ∗) (since each Tv has at most r + 1 vertices, one of which is u).

By Lemma 2 with b = (3 + 2g)r + 1, there is a set R of � edges of T ∗ such that 
|G[Q]| ≥ n−�(3+2g)r−�

2�+1 for each of the � + 1 components Q of T ∗ −R. Let L be the set of 
edges vw of G, such that for some edge f1f2 of T ∗ in R, we have that vw is the common 
edge on the faces f1 and f2 in E(G) \ (E(T ) ∪X). Thus |L| = |R| = �.

For each edge vw of G −E(T ), let Yvw := Tv ∪Tw

⋃
{vw}. Note that Yvw has at most 

2r + 1 edges. Let S :=
⋃
{Yvw : vw ∈ X ∪L}. Thus S has at most (2r + 1)(g + �) edges. 
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Starting from the 2-cell embedding of T ∪X with one face, the addition of each edge in 
L splits one face into two, giving � + 1 faces in total. Thus S, which is obtained from 
T ∪X ∪ L by deleting pendant subtrees, also has � + 1 faces, and is 2-cell embedded.

The faces of S are in 1–1 correspondence with the components of T ∗ − R. Let Φ be 
the face of S corresponding to some component Q of T ∗−R. Let v be one of the at least 
n−�(3+2g)r−�

2�+1 vertices in G[Q]. If v is not strictly in the interior of Φ, then v ∈ Bf , where 
f is a face of G that is outside of Φ and incident with v, contradicting that v is in G[Q]. 
Hence each face of S contains at least n−�(3+2g)r−�

2�+1 vertices in its interior. �
The case of planar graphs is worth particular mention, and is similar to a result by 

Tishchenko [19, Cor. 33].

Corollary 4. Let � ∈ Z
+. Let G be a triangulation of the sphere with radius r and order 

n ≥ (3� + 1)(3r + 1). Then G has a subgraph S with at most �(2r + 1) edges, such that 
the induced embedding of S is 2-cell with � +1 faces, and each face of S contains at least

n− (3r + 1)�
2� + 1

vertices of G in its interior.

3. Proof of Theorem 1

We start the section with a well-known lemma.

Lemma 5 (Euler’s formula). (See [14, p. 95].) Let G be a multigraph which is embedded 
in a surface Σ of Euler genus g. Then

|V (G)| − |E(G)| + |F (G)| ≥ 2 − g,

where V (G), E(G), and F (G) denote the set of vertices, edges, and faces of G, respec-
tively. Equality is achieved when the multigraph embeds 2-cellularly in Σ.

Let S be a connected multigraph with minimum degree at least 2 and maximum 
degree at least 3 which is embedded in a surface Σ. We define a multigraph H from S as 
follows: if there is an edge e with a degree-2 endvertex then contract e, and repeat until 
the minimum degree is at least 3. The multigraph so constructed is called the simplified 
configuration of S [20]. During the edge contraction we do not allow a facial walk to 
vanish; that is, a facial walk can become a loop but not a point. Note that any two 
sequences of edge contractions result in isomorphic multigraphs and that H could also 
be defined as the minimal multigraph such that S is a subdivision of H. We call a vertex 
of S or H a branch vertex if it has degree at least three in S or H, respectively; every 
vertex in H is a branch vertex. Also, H may have faces of length 1 (the loops) and faces 
of length 2, and it is connected. See Fig. 1 for an example.
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Fig. 1. (a) A 5-separator in the plane. (b) The associated simplified configuration H. Branch vertices are 
represented by a square.

Our Theorem 1 follows from the following technical result.

Theorem 6. Let G be a graph embeddable in a surface with Euler genus at most g, 
maximum degree Δ ≥ 3, and diameter k ≥ 2. Then

|V (G)| < (2� + 1)c(Δ − 1)�k/2� + (2� + 1)(2k + 1)(g + �)M + �(3 + 2g)k + �,

where M = M(Δ, �k/2� − 1) denotes the corresponding Moore bound and

(�, c) :=
{

(�g2/3 + g1/2 + 6, 2g1/3 + 6) if k is even
(�√42g  + 33, 2� + 2g − 1) if k is odd.

Note that the assumed lower bounds on Δ in Theorem 1 ensure that the secondary 
term (2� + 1)(2k + 1)(g + �)M + �(3 + 2g)k + � in the upper bound on N(Δ, k, GΣ) in 
Theorem 6 is not dominant.

Proof of Theorem 6. By [14, Prop. 3.4.1, Prop. 3.4.2], we may assume that G is 2-cell 
embedded in a surface Σ of Euler genus g. Suppose for the sake of contradiction that

|V (G)| ≥ (2� + 1)c(Δ − 1)�k/2� + (2� + 1)(2k + 1)(g + �)M + �(3 + 2g)k + �. (2)

It follows that |V (G)| ≥ (3� + 1)((3 + 2g)k + 1). Thus, we may apply Theorem 3 to 
a triangulation G′ of G. Note that G′ may be a multigraph. Let S be a subgraph of G′

satisfying Theorem 3. Thus |E(S)| ≤ (2k + 1)(g + �), and the induced embedding of S
in Σ has exactly � + 1 faces R1, . . . , R�+1 such that

|V (G) ∩Ri| ≥
|V (G)|
2� + 1 − �(3 + 2g)k + �

2� + 1 , for i ∈ [1, � + 1]. (3)

For each face Ri of S, let ∂(Ri) be the subgraph of S consisting of the vertices and 
edges embedded in the boundary of Ri. A vertex in V (G) ∩Ri is deep if it is at distance 
at least �k/2� in G from ∂(Ri).
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The rest of the proof proceeds as follows. We first give a lower bound of c(Δ − 1)�k/2�
for the number of deep vertices Di in each face Ri of S. This implies that for every pair 
of distinct faces Ri and Rj of S either ∂(Ri) and ∂(Rj) intersect or there exists an edge 
of G with an endvertex in ∂(Ri) and another endvertex on ∂(Rj). Then we show that 
the embedding of G restricts the number of pairs of faces of S whose boundaries share 
an edge; these are our good pairs of faces. We bound the number of good pairs by a 
function linear in �. It follows that the number of pairs of faces of S whose boundaries 
do not share an edge is quadratic in �; these are our bad pairs of faces.

If the diameter is even the set Iij of vertices in ∂(Ri) ∩∂(Rj) is nonempty for each bad 
pair of regions Ri and Rj . Furthermore, for any pair of deep vertices x ∈ Di and y ∈ Dj

every xy-path of length at most k includes some vertex in Iij . This allows us to provide 
an upper bound for the number of deep vertices in certain regions Ri and Rj∗. For our 
selection of � and c this upper bound turns out to be smaller than the aforementioned 
lower bound of 2c(Δ − 1)�k/2� for |Di| + |Dj∗|, giving the desired contradiction. In the 
case of odd diameter some xy-paths between deep vertices x ∈ Di and y ∈ Dj may avoid 
Iij , forcing the existence of edges between the boundaries of the bad pair of faces; these 
are our jump edges. The proof ends when we show that the necessary quadratic (in �) 
number of jump edges is inconsistent with a surface embedding.

In the following we detail these ideas formally.
Let Vi := V (G) ∩ Ri and let Di be the set of deep vertices in Ri. Since ∂(Ri) has 

at most (2k + 1)(g + �) vertices and since the number of vertices at distance at most 
�k/2� − 1 from a given vertex is at most M(Δ, �k/2� − 1),

|Vi| ≤ (2k + 1)(g + �)M + |Di|.

By (2) and (3),

|Vi| ≥ c(Δ − 1)�k/2� + (2k + 1)(g + �)M + �(3 + 2g)k + �

2� + 1 − �(3 + 2g)k + �

2� + 1 .

Thus, c(Δ − 1)�k/2� + (2k + 1)(g + �)M ≤ (2k + 1)(g + �)M + |Di|, implying

|Di| ≥ c(Δ − 1)�k/2�. (4)

Let H be the simplified configuration of S. Since S is a connected multigraph with 
at least 3 faces, S has minimum degree at least 2 and maximum degree at least 3. The 
multigraph H has minimum degree at least 3 and � + 1 faces, and it may include faces 
of length 1 or 2. It is connected and embeds 2-cellularly in Σ. We use the multigraph H
to count the branch vertices of S. Since 3|V (H)| ≤ 2|E(H)|, Lemma 5 gives

|V (H)| ≤ 2� + 2g − 2 and |E(H)| ≤ 3� + 3g − 3. (5)

Distinct faces Ri and Rj of S are a good pair if their boundaries share an edge in S; 
otherwise they are a bad pair.
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Fig. 2. A possible configuration for the multigraph Λ.

Since the number of good pairs of faces of S is at most |E(H)|, the number of bad 
pairs of faces of S is at least

(
� + 1

2

)
− (3� + 3g − 3). (6)

Let Ri and Rj (i 
= j) be a bad pair of faces of S. Let Iij be the set of vertices in 
∂(Ri) ∩ ∂(Rj).

We first prove the theorem for even k. Note that Iij 
= ∅ for each bad pair of regions, 
since Di and Dj are nonempty. For each i, let �i be the number of bad pairs in which Ri is 
involved. Choose i so that �i is maximum, then �i ≥ 2

(�+1
2

)
−(3�+3g−3)
�+1 = �2−5�−6g+6

�+1 ≥ 1, 
since � = �g2/3 + g1/2 + 6. For simplicity of notation, assume the faces R1, . . . , R�i are 
involved in those pairs, and i /∈ {1, . . . , �i}.

Let Λ be the multigraph formed from ∪�i
j=1∂(Rj) ∪∂(Ri) by contracting each edge not 

incident to two vertices of ∪�i
j=1Iij ; see Fig. 2. Thus Λ has vertex set ∪�i

j=1Iij and edge 
set formed by the edges left after the contractions.

Since |F (Λ)| ≤ |F (S)| = � + 1 and since every vertex of Λ has degree at least 4, 
Lemma 5 gives

|V (Λ)| = |∪�i
j=1Iij | ≤ � + g − 1 and |E(Λ)| ≤ 2(� + g − 1). (7)

Each face Rj (j ∈ {1, . . . , �i}) of Λ has |Iij | vertices, and thus has |Iij | edges. Each 
such edge is in at most two such faces. Furthermore, the face Ri of Λ has |V (Λ)| edges 
and shares no edge with a face Rj (j ∈ {1, . . . , �i}). Thus

2|E(Λ)| ≥ 2|V (Λ)| +
�i∑

j=1
|Iij | ≥ 2|V (Λ)| + �i|Iij∗|, (8)

where Iij∗ is a set Iij of minimum size.
Combining (7) and (8),

|Iij∗| ≤
4(� + g − 1) − 2|V (Λ)| ≤ 4(� + g − 1) − 2|Iij∗| (since |V (Λ)| ≥ |Iij∗|),
�i �i �i
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|Iij∗|
(

1 + 2
�i

)
≤ 4(� + g − 1)

�i
,

|Iij∗| ≤
4(� + g − 1)

�i + 2 ≤ 4(� + g − 1)(� + 1)
�2 − 3�− 6g + 8 (since �i ≥ �2−5�−6g+6

�+1 ).

For x ∈ Di and y ∈ Dj∗ every xy-path of length k includes some vertex in Iij∗. Thus 
every vertex in Di ∪ Dj∗ is at distance k/2 from Iij∗. Since the number of vertices at 
distance t from a fixed vertex is at most (Δ − 1)t, by (4),

2c(Δ − 1)k/2 ≤ |Di| + |Dj∗| ≤ |Iij∗|(Δ − 1)k/2 ≤ 4(� + g − 1)(� + 1)
�2 − 3�− 6g + 8 (Δ − 1)k/2,

which is a contradiction for � = �g2/3 + g1/2 + 6 and c = 2g1/3 + 6.
Now assume that k is odd. Consider any two faces Ri and Rj of S, then an edge xy

in G with x ∈ ∂(Ri) − ∂(Rj) and y ∈ ∂(Rj) − ∂(Ri) is called a jump edge between Ri

and Rj . We say that two jump edges are equivalent if they connect the same set of pairs 
of faces.

Case 1: There is no jump edge between some bad pair of faces Ri and Rj .
We follow the reasoning of the even case. Let Λ be the multigraph formed from 

∂Ri∪∂Rj by contracting each edge not incident to two vertices of Iij. Thus Λ has vertex 
set Iij and edge set formed by the edges left after the contractions. Since Di 
= ∅ and 
Dj 
= ∅ and since there is no jump edge between Ri and Rj , we must have Iij 
= ∅. It 
follows that |F (Λ)| ≤ |F (S)| = � + 1 and that the minimum degree of Λ is at least 4. 
Thus, by Lemma 5, |V (Λ)| ≤ � + g − 1.

For x ∈ Di and y ∈ Dj , since dist(x, ∂(Ri)) ≥ �k/2� and dist(y, ∂(Rj)) ≥ �k/2� and 
because there is no jump edge between Ri and Rj , every xy-path of length at most k
includes some vertex in Iij . If dist(x, Iij) ≥ �k/2� + 1 and dist(y, Iij) ≥ �k/2� + 1 for 
some x ∈ Di and y ∈ Dj , then dist(x, y) ≥ k + 1. Thus, without loss of generality, every 
vertex in Di is at distance exactly �k/2� from Iij . By (4),

c(Δ − 1)�k/2� ≤ |Di| ≤ |Iij |(Δ − 1)�k/2� ≤ (� + g − 1)(Δ − 1)�k/2�,

which is a contradiction since c = 2� + 2g − 1.

Case 2: Now assume that between every bad pair of faces there is a jump edge.
A jump edge xy is normal if neither x nor y is a branch vertex in S, otherwise it is 

special. Observe that a normal jump edge connects exactly one pair of regions. (This is 
not true for special jump edges.)

Let X be the multigraph consisting of S plus the jump edges. The multigraph X is 
connected and may have more than � + 1 faces. Now define a multigraph Y obtained 
from X by contracting an edge whenever it is not a jump edge and no endvertex is a 
branch vertex of S. During the edge contraction we do not allow the facial walk of a face 
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Fig. 3. Contraction of edges which are ends of jump edges. (a) Various jump edge ends (in dashed lines). 
(b) The resulting edges in Y.

to vanish; that is, a facial walk may become a loop but not a point. See Fig. 3. Also, 
a set of jump edges running (in “parallel”) between the same set of pairs of regions are 
replaced by a single edge.

Observe that Y can be obtained from a subdivision of H by adding the jump edges, 
where each edge of H is subdivided at most once. Thus

|V (Y )| ≤ |E(H)| + |V (H)| ≤ 5� + 5g − 5.

The multigraph Y may have faces of length 1 or 2, and it is connected and of minimum 
degree at least 3.

Denote by F1(Y ) and F2(Y ) the set of faces of Y of length 1 or 2, respectively. Then 
|F1(Y )| + |F2(Y )| ≤ � + 1; this is the case because Y has no multiple jump edges, 
and therefore, faces of length 1 and 2 can only arise from the initial faces of H. The 
handshaking lemma for faces gives 3(|F (Y )| −|F1(Y )| −|F2(Y )|) + |F1(Y )| +2|F2(Y )| ≤
2|E(Y )|. Thus,

|F (Y )| ≤ 2
3 |E(Y )| + 1

3 (2|F1(Y )| + |F2(Y )|) ≤ 2
3E(Y )| + 2

3 (� + 1).

Consequently, Lemma 5 gives that

|E(Y )| ≤ 3|V (Y )| + 2�− 4 + 3g ≤ 17� + 18g − 19.

The number of bad pairs of faces of S that are connected by normal jump edges equals 
the number of normal jump edges, and hence, is at most |E(Y )|. Since the number of 
bad pairs of faces of S is at least 

(
�+1
2
)
− (3� + 3g − 3) and since � = �√42g  + 33, the 

number of bad pairs of faces of S that are not joined by a normal jump edge is at least
(
� + 1

2

)
− (3� + 3g − 3) − (17� + 18g − 19) ≥ 1. (9)

Hence, there is at least one bad pair of faces Ri and Rj of S that is not joined by a 
normal jump edge.

Recall the number of branch vertices in S equals the number of vertices of H, which is 
at most 2� + 2g− 2. Thus, the number of deep vertices in each of Di and Dj at distance 
�k/2� from a branch vertex in ∂(Ri) ∪ ∂(Rj) is at most

(2� + 2g − 2)(Δ − 1)�k/2�.



JID:YJCTB AID:2964 /FLA [m1L; v1.169; Prn:29/12/2015; 9:54] P.13 (1-14)
E. Nevo et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 13
By equation (4), |Di| ≥ c(Δ − 1)�k/2� and |Dj | ≥ c(Δ − 1)�k/2�. Since c > 2� + 2g− 2
there are vertices βi and βj in Di and Dj respectively at distance at least �k/2� +1 from 
each branch vertex of H. Thus a shortest path of length k between βi and βj must use a 
normal jump edge between Ri and Rj . This is a contradiction and completes the proof 
of the theorem. �
4. Concluding remarks

We believe the asymptotic value of N(Δ, k, GΣ) is closer to the lower bound in equa-
tion 1 than to the upper bound in Theorem 1.

Conjecture 7. There exist a constant c and a function Δ0 := Δ0(g, k) such that, for 
Δ ≥ Δ0,

N(Δ, k,GΣ) ≤
{
c(Δ − 1)�k/2� if k is even
c(√g + 1)(Δ − 1)�k/2� if k is odd.

A generalisation to the class GH of H-minor-free graphs, with H a fixed graph, was 
studied in [15]. The current best upper bound of

N(Δ, k,GH) ≤ 4k(c|H|
√

log |H|)kΔ�k/2�

was given in [15, Sec. 4]. Note that if H is planar, then GH has bounded treewidth, and 
thus has small order [15, Thm. 12].
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