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Abstract. A set of vertices S resolves a graph G if every vertex is uniquely determined by its
vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a
resolving set of G. This paper studies the metric dimension of cartesian products G�H. We prove
that the metric dimension of G�G is tied in a strong sense to the minimum order of a so-called
doubly resolving set in G. Using bounds on the order of doubly resolving sets, we establish bounds
on G�H for many examples of G and H. One of our main results is a family of graphs G with
bounded metric dimension for which the metric dimension of G�G is unbounded.
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1. Introduction. A set of vertices S resolves a graph if every vertex is uniquely
determined by its vector of distances to the vertices in S. This paper undertakes a
general study of resolving sets in cartesian products of graphs.

All the graphs considered are finite, undirected, simple, and connected. The
vertex set and edge set of a graph G are denoted by V (G) and E(G). The distance
between vertices v, w ∈ V (G) is denoted by dG(v, w), or d(v, w) if the graph G is
clear from the context. A vertex x ∈ V (G) resolves a pair of vertices v, w ∈ V (G) if
d(v, x) �= d(w, x). A set of vertices S ⊆ V (G) resolves G, and S is a resolving set of
G, if every pair of distinct vertices of G is resolved by some vertex in S. A resolving
set S of G with the minimum cardinality is a metric basis of G, and |S| is the metric
dimension of G, denoted by β(G).

The cartesian product of graphs G and H, denoted by G�H, is the graph with
vertex set V (G)×V (H) := {(a, v) : a ∈ V (G), v ∈ V (H)}, where (a, v) is adjacent to
(b, w) whenever a = b and {v, w} ∈ E(H), or v = w and {a, b} ∈ E(G). Where there
is no confusion the vertex (a, v) of G�H will be written av. Observe that if G and H
are connected, then G�H is connected. In particular, d(av, bw) = dG(a, b)+dH(v, w)
for all vertices av, bw of G�H. Assuming isomorphic graphs are equal, the cartesian
product is associative, and G1 �G2 � · · · �Gd is well-defined.
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Resolving sets in general graphs were first defined by Harary and Melter [24] and
Slater [42], although, as we shall see, resolving sets in hypercubes were studied earlier
under the guise of a coin weighing problem [1, 5, 6, 7, 16, 19, 23, 26, 29, 30, 31, 32,
34, 44]. Resolving sets have since been widely investigated [4, 8, 9, 10, 11, 12, 14, 17,
18, 27, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48] and arise in many diverse areas,
including network discovery and verification [2], robot navigation [27, 41], connected
joins in graphs [40], and strategies for the Mastermind game [3, 13, 20, 21, 22, 26].

Part of our motivation for studying the metric dimension of cartesian products is
that in two of the above-mentioned applications, namely, Mastermind strategies and
coin weighing, the graphs that arise are in fact cartesian products. These connections
are explained in sections 2 and 6, respectively.

The main contributions of this paper are based on the notion of doubly resolving
sets, which are introduced in section 4. We prove that the minimum order of a doubly
resolving set in a graph G is tied in a strong sense to β(G�G). Thus doubly resolving
sets are essential in the study of metric dimension of cartesian products. We then
give a number of examples of bounds on the metric dimension of cartesian products
through doubly resolving sets. In particular, sections 5, 6, 7, 8, and 9, respectively,
study complete graphs, Hamming graphs, paths and grids, cycles, and trees. One of
our main results here is a family of (highly connected) graphs with bounded metric
dimension for which the metric dimension of the cartesian product is unbounded.

2. Coin weighing and hypercubes. The hypercube Qn is the graph whose
vertices are the n-dimensional binary vectors, where two vertices are adjacent if they
differ in exactly one coordinate. It is well known that

Qn = K2 �K2 � · · · �K2︸ ︷︷ ︸
n

.

It is easily seen that β(Qn) ≤ n; see equation (7.4). The first case when this bound is
not tight is n = 5. A laborious calculation verifies that Q5 is resolved by the 4-vertex
set {00000, 00011, 00101, 01001}. We have determined β(Qn) for small values of n by
computer search.

n 2 3 4 5 6 7 8 10 15
β(Qn) 2 3 4 4 5 6 6 ≤ 7 ≤ 10

The asymptotic value of β(Qn) turns out to be related to the following coin
weighing problem first posed by Söderberg and Shapiro [44]. (See [23] for a survey
on various coin weighing problems.) Given n coins, each with one of two distinct
weights, determine the weight of each coin with the minimum number of weighings.
We are interested in the static variant of this problem, where the choice of sets of
coins to be weighed is determined in advance. Weighing a set S of coins determines
how many light (and heavy) coins are in S, and no further information. It follows
that the minimum number of weighings differs from β(Qn) by at most 1 [26, 40]. A
lower bound on the number of weighings by Erdős and Rényi [16] and an upper bound
by Lindström [29] imply that

lim
n→∞

β(Qn) · log n

n
= 2,

where, as always in this paper, logarithms are binary. Note that Lindström’s proof is
constructive. He gives an explicit scheme of 2k − 1 weighings that suffice for k · 2k−1

coins.
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3. Projections. Let S be a set of vertices in the cartesian product G�H of
graphs G and H. The projection of S onto G is the set of vertices a ∈ V (G) for
which there exists a vertex av ∈ S. Similarly, the projection of S onto H is the set
of vertices v ∈ V (H) for which there exists a vertex av ∈ S. A column of G�H is
the set of vertices {av : v ∈ V (H)} for some vertex a ∈ V (G), and a row of G�H
is the set of vertices {av : a ∈ V (G)} for some vertex v ∈ V (H). Observe that each
row induces a copy of G, and each column induces a copy of H. This terminology is
consistent with a representation of G�H by the points of the |V (G)| × |V (H)| grid.

Lemma 3.1. Let S ⊆ V (G�H) for graphs G and H. Then every pair of vertices
in a fixed row of G�H is resolved by S if and only if the projection of S onto G
resolves G. Similarly, every pair of vertices in a fixed column of G�H is resolved by
S if and only if the projection of S onto H resolves H.

Proof. Consider two vertices av and aw in a common column. For every other
vertex bx of G�H, we have d(av, bx) − d(aw, bx) = dH(v, x) − dH(w, x). Thus
d(av, bx) �= d(aw, bx) if and only if dH(v, x) �= dH(w, x). That is, av and aw are
resolved by bx if and only if v and w are resolved by x in H. Hence av and aw are
resolved by S if and only if v and w are resolved by the projection of S onto H. We
have the analogous result for the projection onto G by symmetry.

Corollary 3.2. For all graphs G and H, and for every resolving set S of G�H,
the projection of S onto G resolves G, and the projection of S onto H resolves H. In
particular, β(G�H) ≥ max{β(G), β(H)}.

4. Doubly resolving sets. Many of the results that follow are based on the
following definitions. Let G �= K1 be a graph. Two vertices v, w ∈ V (G) are doubly
resolved by x, y ∈ V (G) if

d(v, x) − d(w, x) �= d(v, y) − d(w, y).

Note that this definition generalizes the Djoković–Winkler relation Θ, which can be
defined as follows: two edges xy, vw ∈ E(G) are in Θ if and only if v, w are doubly
resolved by x, y; see [25, 15, 47].

A set of vertices S ⊆ V (G) doubly resolves G, and S is a doubly resolving set, if
every pair of distinct vertices v, w ∈ V (G) is doubly resolved by two vertices in S.
Every graph with at least two vertices has a doubly resolving set. Let ψ(G) denote
the minimum cardinality of a doubly resolving set of a graph G �= K1. Note that
if x, y doubly resolves v, w, then d(v, x) − d(w, x) �= 0 or d(v, y) − d(w, y) �= 0, and
at least one of x and y (singly) resolves v, w. Thus a doubly resolving set is also a
resolving set, and

β(G) ≤ ψ(G).

Our interest in doubly resolving sets is based on the following upper bound.
Theorem 4.1. For all graphs G and H �= K1,

β(G�H) ≤ β(G) + ψ(H) − 1.

Proof. Let S be a metric basis of G. Let T be a doubly resolving set of H with
|T | = ψ(H). Fix vertices s ∈ S and t ∈ T . Let

X := {sv : v ∈ T} ∪ {at : a ∈ S}.

Observe that |X| = |S| + |T | − 1. To prove that X resolves G�H, consider two
vertices av and bw of G�H. By Lemma 3.1, if a = b then av and bw are resolved
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since the projection of X onto H is T . Similarly, if v = w then av and bw are resolved
since the projection of X onto G is S. Now assume that a �= b and v �= w. Since T is
doubly resolving for H, there are two vertices x, y ∈ T such that

dH(v, x) − dH(w, x) �= dH(v, y) − dH(w, y).

Thus for at least one of x and y, say x,

dH(v, x) − dH(w, x) �= dG(b, s) − dG(a, s).

Hence

d(av, sx) = dG(a, s) + dH(v, x) �= dG(b, s) + dH(w, x) = d(bw, sx).

That is, sx ∈ X resolves av and bw.
The relationship between resolving sets of cartesian products and doubly resolving

sets is strengthened by the following lower bound.
Lemma 4.2. Suppose that S resolves G�G for some graph G. Let A and B be

the two projections of S onto G. Then A ∪B doubly resolves G. In particular,

β(G�G) ≥ 1
2ψ(G).

Proof. For any two vertices v, w ∈ V (G), there is a vertex pq ∈ S that resolves
vw,wv. That is, d(vw, pq) �= d(wv, pq). Thus d(v, p) + d(w, q) �= d(w, p) + d(v, q),
which implies d(v, p) − d(w, p) �= d(v, q) − d(w, q). Thus p, q doubly resolves v, w in
G. Now p ∈ A and q ∈ B. Hence A ∪ B doubly resolves G. If, in addition, S is a
metric basis of G�G, then ψ(G) ≤ |A ∪B| ≤ |A| + |B| ≤ 2|S| = 2 · β(G�G).

Observe that Theorem 4.1 and Lemma 4.2 prove that β(G�G) is always within
a constant factor of ψ(G). In particular,

(4.1) 1
2ψ(G) ≤ β(G�G) ≤ ψ(G) + β(G) − 1 ≤ 2ψ(G) − 1.

Thus doubly resolving sets are essential in the study of the metric dimension of carte-
sian products.

A natural candidate for a resolving set of G�G is S×S for a well-chosen set S ⊆
V (G). It follows from Lemma 4.2 and the proof technique employed in Theorem 4.1
that S × S resolves G�G if and only if S doubly resolves G.

Now consider the following elementary bound on ψ(G).
Lemma 4.3. Every graph G with n ≥ 3 vertices satisfies ψ(G) ≤ n− 1.
Proof. Clearly G has a vertex x of degree at least two. Let S := V (G) \ {x}. To

prove that S doubly resolves G, consider two vertices u, v ∈ V (G). If both u, v ∈ S,
then the pair u, v doubly resolves itself. Otherwise, without loss of generality, u ∈ S
and v = x. Since deg(x) ≥ 2, there is a neighbor y �= u of x. Now d(u, u) − d(v, u) ≤
0−1 = −1 and d(u, y)−d(v, y) ≥ 1−1 = 0. Thus u, y ∈ S doubly resolve u, v. Hence
S doubly resolves G.

Note that if G is a graph with n ≥ 3 vertices, then Theorem 4.1 and Lemma 4.3
imply that β(G�H) ≤ β(H) + n− 2 for every graph H.

5. Complete graphs. Let Kn denote the complete graph on n ≥ 1 vertices. It
is well known [9, 27] that for every n-vertex graph G,

(5.1) β(G) = n− 1 ⇐⇒ G = Kn.
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Lemma 5.1. ψ(Kn) = max{n− 1, 2} for all n ≥ 2.
Proof. Since ψ(G) ≥ 2 for every graph G �= K1, we have ψ(K2) = 2. Now suppose

that n ≥ 3. By Lemma 4.3, ψ(Kn) ≤ n− 1. Conversely, ψ(Kn) ≥ β(Kn) = n− 1 by
equation (5.1).

Theorem 4.1 and Lemma 5.1 imply that every graph G satisfies

(5.2) β(Kn �G) ≤ β(G) + max{n− 2, 1}.

In certain cases, this result can be improved as follows.
Lemma 5.2. For every graph G and for all n ≥ 1,

β(Kn �G) ≤ max{n− 1, 2 · β(G)}.

Proof. Let S be a metric basis of G. Fix a vertex r of Kn. As illustrated in
Figure 5.1, there is a set T of max{n− 1, 2|S|} vertices of Kn �G such that

(a) for all vertices a ∈ V (Kn) \ {r}, there is at least one vertex x ∈ S for which
ax ∈ T ; and

(b) for all x ∈ S, there are at least two vertices a, b ∈ V (Kn) for which ax ∈ T
and bx ∈ T .

S

G

K9 r
(a)

S

G

K7 r
(b)

Fig. 5.1. The resolving set T of Kn �G in Lemma 5.2: (a) n − 1 ≥ 2β(G) and (b) n − 1 ≤
2β(G).

To prove that T resolves Kn �G, consider two vertices av and bw of Kn �G. If
v = w then since the projection of T onto G is the resolving set S, by Lemma 3.1, av
and bw are resolved by T . Now suppose that v �= w. Then there is a vertex x ∈ S
that resolves v and w in G. Hence dG(v, x) < dG(w, x) without loss of generality.
By (b) there are distinct vertices c, d ∈ V (Kn) for which cx ∈ T and dx ∈ T . If c �= a
and c �= b, then

d(av, cx) = dG(v, x) + 1 < dG(w, x) + 1 = d(bw, cx));

that is, cx resolves av and bw in Kn �G. Similarly, if d �= a and d �= b, then dx
resolves av and bw. Otherwise c = a or c = b, and d = a or d = b. Since c �= d,
without loss of generality c = a and d = b. Then

d(av, cx) = dG(v, x) < dG(w, x) < dG(w, x) + 1 = d(bw, cx),



428 CÁCERES ET AL.

and again cx resolves av and bw in Kn �G.
When n is large in comparison with β(G) we know β(Kn �G) exactly.
Theorem 5.3. For every graph G and for all n ≥ 2 · β(G) + 1,

β(Kn �G) = n− 1.

Proof. The lower bound β(Kn �G) ≥ n− 1 follows from Corollary 3.2 and (5.1).
The upper bound β(Kn �G) ≤ n− 1 is a special case of Lemma 5.2.

6. Mastermind and Hamming graphs. Mastermind is a game for two play-
ers, the code setter and the code breaker.1 The code setter chooses a secret vector
s = [s1, s2, . . . , sn] ∈ {1, 2, . . . , k}n. The task of the code breaker is to infer the se-
cret vector by a series of questions, each a vector t = [t1, t2, . . . , tn] ∈ {1, 2, . . . , k}n.
The code setter answers with two integers, the first being the number of positions
in which the secret vector and the question agree, denoted by a(s, t) = |{i : si = ti,
1 ≤ i ≤ n}|. The second integer b(s, t) is the maximum of a(s̃, t), where s̃ ranges over
all permutations of s.

In the commercial version of the game, n = 4 and k = 6. The secret vector and
each question is represented by four pegs each colored with one of six colors. Each
answer is represented by a(s, t) black pegs and b(s, t)− a(s, t) white pegs. Knuth [28]
showed that four questions suffice to determine s in this case. Here the code breaker
may determine each question in response to the previous answers. Static mastermind
is the variation in which all the questions must be supplied at once. Let g(n, k) denote
the maximum, taken over all vectors s, of the minimum number of questions required
to determine s in this static setting.

The Hamming graph Hn,k is the cartesian product of cliques

Hn,k = Kk �Kk � · · · �Kk︸ ︷︷ ︸
n

.

Note that the hypercube Qn = Hn,2. The vertices of Hn,k can be thought of as
vectors in {1, 2, . . . , k}n, with two vertices being adjacent if they differ in precisely
one coordinate. Thus the distance dH(v, w) between two vertices v and w is the
number of coordinates in which their vectors differ. That is,

dH(v, w) = n− a(v, w).

Suppose for the time being that we remove the second integer b(s, t) from the
answers given by the code setter in the static mastermind game. Let f(n, k) denote
the maximum, taken over all vectors s, of the minimum number of questions required
to determine s without b(s, t) in the answers. For the code breaker to correctly infer
the secret vector s from a set of questions T , s must be uniquely determined by the
values {a(s, t) : t ∈ T}. Equivalently, for any two vertices v and w of Hn,k, there is
a t ∈ T for which a(v, t) �= a(w, t); that is, the distances dH(v, t) �= dH(w, t). Hence
the secret vector can be inferred if and only if T resolves Hn,k. Thus

g(n, k) ≤ f(n, k) = β(Hn,k).

Chvátal [13] proved the upper bound

β(Hn,k) = f(n, k) ≤ (2 + ε)n
1 + 2 log k

log n− log k

1Chvátal [13] referred to the code setter and code breaker as S.F. and P.G.O.M. (in honor of
P.E.).
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K7

K7

Fig. 6.1. Resolving set of K7 �K7 with one empty row, one empty column, and no lonely vertex.

for large n > n(ε) and small k < n1−ε. For k ∈ {3, 4}, improvements to the constant
in the above upper bound are stated without proof by Kabatianski, Lebedev, and
Thorpe [26]. They also state that a “straightforward generalization” of the lower
bound on β(Qn) by Erdős and Rényi [16] gives, for large n,

β(Hn,k) ≥ g(n, k) ≥ (2 + o(1))
n log k

log n
.

Here we study β(Hn,k) for large values of k rather than for large values of n. A
similar approach is taken for static mastermind by Goddard [20, 21], who proved that
g(2, k) = 
 2

3k� and g(3, k) = k − 1. Our contribution is to determine the exact value
of β(H2,k). We show that for all k ≥ 1,

(6.1) β(H2,k) =
⌊

2
3 (2k − 1)

⌋
.

Equation (6.1) is a special case (with m = n = k) of the following more general result.
Theorem 6.1. For all n ≥ m ≥ 1,

β(Kn �Km) =

{⌊
2
3 (n + m− 1)

⌋
if m ≤ n ≤ 2m− 1,

n− 1 if n ≥ 2m− 1.

We prove Theorem 6.1 by a series of lemmas. First note that two vertices of
Kn �Km are adjacent if and only if they are in a common row or column. Otherwise
they are at distance two. Fix a set S of vertices of Kn �Km. With respect to S, a
row or column is empty if it contains no vertex in S, and a vertex v ∈ S is lonely if v
is the only vertex of S in its row and in its column. As illustrated in Figure 6.1, we
have the following characterization of resolving sets in Kn �Km.

Lemma 6.2. For m,n ≥ 2, a set S of vertices resolves Kn �Km if and only if
(a) there is at most one empty row and at most one empty column;
(b) there is at most one lonely vertex; and
(c) if there is an empty row and an empty column, then there is no lonely vertex.
Proof. (=⇒) First suppose that S resolves Kn �Km. By Corollary 3.2, the

projections of S, respectively, resolve Km and Kn. By (5.1), there is at most one
empty row and at most one empty column. Thus (a) holds.
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Suppose on the contrary that v and w are two lonely vertices in S. Thus v and
w are in distinct rows and columns, and no other vertex of S is in a row or column
that contains v or w. Let x be the vertex in the row of v and the column of w. Let
y be the vertex in the column of v and the row of w. Then d(x, v) = d(y, v) = 1,
d(x,w) = d(y, w) = 1, and d(x, u) = d(y, u) = 2 for every vertex u ∈ S \ {v, w}. Thus
S does not resolve x and y. This contradiction proves that S satisfies (b).

Finally, suppose that there is an empty row, an empty column, and a lonely vertex
v ∈ S. Let x be the vertex in the row of v and in the empty column. Let y be the
vertex in the column of v and in the empty row. We have d(x, v) = d(y, v) = 1, and
d(x, u) = d(y, u) = 2 for every vertex u ∈ S \ {v}. Thus S does not resolve x and y.
This contradiction proves that S satisfies (c).

(⇐=) Now suppose that S is a set of vertices satisfying (a), (b), and (c). We will
prove that S resolves any two vertices x and y. If x ∈ S then x resolves x, y. If y ∈ S
then y resolves x, y. Now suppose that x �∈ S and y �∈ S.

If x and y are in the same row, then at least one of the columns of x and y contains
a vertex v ∈ S. Suppose v is in the column of x. Thus d(x, v) = 1 and d(y, v) = 2,
and v resolves x, y. Similarly, if x and y are in the same column, then some v ∈ S
resolves x, y.

Suppose now that x and y are in distinct rows and columns. Then there is a
vertex of S in the column of x or in the column of y. Suppose v ∈ S is in the column
of x. If v is not in the row of y, d(x, v) = 1 �= 2 = d(y, v), and v resolves x, y. If v is
in the row of y, by (b) and (c), at least one of the vertices in the rows and columns
of x and y, but not in the intersection of two of them, is in S. This vertex resolves x
and y.

Lemma 6.3. For all n,m ≥ 3, if S resolves Kn �Km, then there exists a resolving
set S∗ of Kn �Km such that |S∗| ≤ |S|, and S contains two vertices v and w in the
same row or column, such that v and w are the only vertices in S∗ in the row(s) and
column(s) that contain v and w.

Proof. By Lemma 6.2, there are two vertices v, w ∈ S in the same row or column.
By symmetry, we can suppose that v and w are in the same row. If v and w are
the only vertices in S∗ in the row and columns that contain v and w, then we are
done. Otherwise there is a vertex x ∈ S in the row or columns that contain v and
w. It suffices to prove that x can be deleted from S, or replaced in S by some other
vertex not in the row or columns that contain v and w, such that S still satisfies the
conditions of Lemma 6.2, and thus resolves Kn �Km. We can then repeat this step
to obtain the desired set S∗.

First suppose that x is in the same row as v and w. If all the vertices of the
column of x are in S, then delete x from S; clearly S still satisfies the conditions
of Lemma 6.2. Otherwise, let y be a vertex not in S such that y is in the column
containing x, and if x is the only vertex in its column that is in S, then y is in a
row that contains at least one vertex of S. This is always possible, since S satisfies
condition (a). Then (S \ {x}) ∪ {y} satisfies the conditions of Lemma 6.2.

Now suppose that x is in the column of v or w. If every vertex in the row
containing x is in S, then delete x from S; clearly S still satisfies the conditions of
Lemma 6.2. Otherwise, proceeding as in the preceding case, let y be a vertex in the
same row as x, but not in the columns of v and w, such that there is at least one
other vertex of S in the row or column that contains y. Then (S \ {x})∪{y} satisfies
the conditions of Lemma 6.2. This completes the proof.
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Lemma 6.4. For all n,m ≥ 3,

β(Kn �Km) = 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Proof. We first prove that

(6.2) β(Kn �Km) ≤ 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Without loss of generality β(Kn−2 �Km−1) ≤ β(Kn−1 �Km−2). Let S be a metric
basis of Kn−2 �Km−1. Construct S′ ⊆ V (Kn �Km) from S by adding two new
vertices that are positioned in one new row and in two new columns. The number
of empty rows, empty columns, and lonely vertices is the same in S and S′. Since
S resolves Kn−2 �Km−1, S

′ resolves Kn �Km by Lemma 6.2. Thus β(Kn �Km) ≤
|S′| = |S| + 2 = 2 + β(Kn−2 �Km−1), which implies (6.2). It remains to prove that

(6.3) min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)} ≤ β(Kn �Km) − 2.

Let S be a metric basis of Kn �Km. By Lemma 6.3, we can assume that S contains
two vertices v and w in the same row or column, such that v and w are the only
vertices in S in the row(s) and column(s) that contain v and w. Without loss of
generality, v and w are in the same row. Construct S′ ⊆ V (Kn−2 �Km−1) from S by
deleting the row containing v and w, and by deleting the two columns containing v
and w. The number of empty rows, empty columns, and lonely vertices is the same in
S and S′. Since S resolves Kn �Km, S′ resolves Kn−2 �Km−1 by Lemma 6.2. Thus
β(Kn−2 �Km−1) ≤ |S′| ≤ |S| − 2 = β(Kn �Km) − 2, which implies (6.3).

Proof of Theorem 6.1. We proceed by induction on n + m in increments of 3.
(Formally speaking, we are doing induction on � 1

3 (n + m)
.)
First observe that for m = 1, we know that β(Kn �Km) = n − 1. For m = 2,

we have β(K2 �K2) = 2 = � 2
3 (2 + 2 − 1)
, β(K3 �K2) = 2 = � 2

3 (3 + 2 − 1)
, and
β(Kn �K2) = n− 1 for all n ≥ 3. Thus the assertion is true for m ≤ 2. Now suppose
that m ≥ 3. By Lemma 6.4,

(6.4) β(Kn �Km) = 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Case 1. n ≥ 2m− 1: Then n ≥ 2 · β(Km) + 1 by (5.1), and β(Kn �Km) = n− 1
by Theorem 5.3 with G = Km.

Case 2. n = 2m− 2: First consider Kn′ �Km′ , where n′ = n− 1 = 2m− 3 and
m′ = m− 2. Then m′ ≤ n′ and n′ ≥ 2m′ − 1. By induction,

β(Kn′ �Km′) = n′ − 1 = n− 2 = � 2
3 (n + m− 1)
 − 2.

Now consider Kn′ �Km′ , where m′ = m − 1 and n′ = n − 2 = 2m − 4. Then
m′ ≤ n′ ≤ 2m′ − 1. By induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1)
 = � 2

3 (n + m− 1)
 − 2.

By (6.4), β(Kn �Km) = � 2
3 (n + m− 1)
.

Case 3. n = 2m − 3: First consider Kn′ �Km′ , where m′ = m − 2 and n′ =
n− 1 = 2m− 4. Then m′ ≤ n′ and n′ ≥ 2m′ − 1. By induction,

β(Kn′ �Km′) = n′ − 1 = n− 2 = � 2
3 (n + m− 1)
 − 2.
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Now consider Kn′ �Km′ , where m′ = m − 1, n′ = n − 2 = 2m − 5. For m ≥ 4, we
have m′ ≤ n′ ≤ 2m′ − 1. By induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1)
 = � 2

3 (n + m− 1)
 − 2.

For m = 3, we have n = 2m − 3 = 3. It is easily verified that β(K3 �K3) = 3 =
� 2

3 (3 + 3 − 1)
. In all cases we obtain β(Kn �Km) = � 2
3 (n + m− 1)
 by (6.4).

Case 4. n ≤ 2m − 4: First consider Kn′ �Km′ , where m′ = m − 2 and n′ =
n− 1 ≤ 2m− 5. Then m′ ≤ n′ ≤ 2m′ − 1. By induction,

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1)
 = � 2

3 (n + m− 1)
 − 2.

Now consider Kn′ �Km′ , where m′ = m− 1 and n′ = n− 2 ≤ 2m− 6. If m ≤ n− 1,
then m′ ≤ n′ < 2m′ − 1, and by induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1)
 = � 2

3 (n + m− 1)
 − 2.

If m = n ≥ 4, then n′ ≤ m′ ≤ 2n′ − 1, and by induction

β(Km′ �Kn′) = � 2
3 (m′ + n′ − 1)
 = � 2

3 (n + m− 1)
 − 2.

Finally, if m = n = 3, then β(Kn′ �Km′) = β(K2 �K1) = 1 = � 2
3 (3 + 3− 1)
 − 2. In

all cases, we obtain β(Kn �Km) = � 2
3 (m + n− 1)
 by (6.4).

7. Paths and grids. Let Pn denote the path on n ≥ 1 vertices. Khuller,
Raghavachari, and Rosenfeld [27] and Chartrand et al. [9] proved that an n-vertex
graph G has

(7.1) β(G) = 1 ⇐⇒ G = Pn.

Thus, by Theorem 5.3, for all n ≥ 3,

(7.2) β(Kn �Pm) = n− 1.

Minimum doubly resolving sets in paths are easily characterized.
Lemma 7.1. For all n ≥ 2 we have ψ(Pn) = 2. Moreover, the two endpoints of

Pn are in every doubly resolving set of Pn.
Proof. By definition ψ(G) ≥ 2 for every graph G �= K1. Let Pn = (v1, v2, . . . , vn).

For all 1 ≤ i < j ≤ n, we have d(vi, v1) − d(vj , v1) = (i − 1) − (j − 1) = i − j, and
d(vi, vn) − d(vj , vn) = (n − i) − (n − j) = j − i. Thus {v1, vn} doubly resolve Pn,
and ψ(Pn) = 2. Finally, observe that v1 is in every doubly resolving set, as otherwise
v1 and v2 would not be doubly resolved. Similarly vn is in every doubly resolving
set.

Lemma 7.2. If β(G�H) = 2, then G or H is a path.
Proof. Say S = {av, bw} resolves G�H. Suppose that a = b. Then the projection

of S onto G is a single vertex. By Lemma 3.1, the projection of S onto G resolves
G, and by (7.1), only paths have singleton resolving sets. Thus G is a path, and we
are done. Similarly, if v = w then H is a path, and we are done. Now suppose that
a �= b and v �= w. Let c be the neighbor of b on a shortest path from a to b. Note
that c may equal a. Then dG(a, c) + 1 = dG(a, b) and dG(b, c) = 1. Similarly, let x be
the neighbor of w on a shortest path from v to w. Then dH(v, x) + 1 = dH(v, w) and
dH(x,w) = 1. This implies that S does not resolve bx and cw, since

d(bx, av) = dG(a, b) + dH(x, v) = dG(a, c) + dH(v, w) = d(cw, av)
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and

d(bx, bw) = dH(x,w) = 1 = dG(b, c) = d(cw, bw).

This contradiction proves the result.
Theorem 4.1 and Lemma 7.1 imply that every graph G satisfies

(7.3) β(G) ≤ β(G�Pn) ≤ β(G) + 1,

as proved by Chartrand et al. [9] in the case that n = 2.
An n-dimensional grid is a cartesian product of paths Pm1

�Pm2
� · · · �Pmn

.
Equations (7.1) and (7.3) imply that

(7.4) β(Pm1 �Pm2 � · · · �Pmn) ≤ n,

as proved by Khuller, Raghavachari, and Rosenfeld [27], who in addition claimed that

β(Pm1
�Pm2

� · · · �Pmn
) = n.

They wrote “we leave it for the reader to see why n is a lower bound.” This claim
is false if every mi = 2 and n is large, since β(P2 �P2 � · · · �P2) → 2n/log n, as
discussed in section 2. Sebő and Tannier [40] claimed without proof that “using a
result of Lindström [30]” one can prove that

(7.5) lim sup
n→∞

β(Pk �Pk � · · · �Pk︸ ︷︷ ︸
n

) · log n

n log k
≤ 2.

8. Cycles. Let Cn denote the cycle on n ≥ 3 vertices. Two vertices v and w of
Cn are antipodal if d(v, w) = n

2 . Note that no two vertices are antipodal in an odd
cycle.

Lemma 8.1 (see [27, 39]). β(Cn) = 2 for all n ≥ 3. Moreover, two vertices
resolve Cn if and only if they are not antipodal.

Lemma 8.2. For all n ≥ 3,

ψ(Cn) =

{
2 if n is odd,

3 if n is even.

Proof. We have ψ(Cn) ≥ 2 by definition. Now we prove the upper bound. Denote
Cn = (v1, v2, . . . , vn). Let k := �n

2 
. Consider two vertices vi and vj of Cn. Without
loss of generality i < j.

Case 1. 1 ≤ i < j ≤ k + 1: Then d(vi, v1) − d(vj , v1) = (i− 1) − (j − 1) = i− j
and d(vi, vk+1)− d(vj , vk+1) = (k + 1− i)− (k + 1− j) = j − i �= i− j. Thus v1, vk+1

doubly resolve vi, vj .
Case 2. k+1 ≤ i < j ≤ n: Then d(vi, v1)−d(vj , v1) = (n+1−i)−(n+1−j) = j−i

and d(vi, vk+1)− d(vj , vk+1) = (i− k− 1)− (j − k− 1) = i− j �= j − i. Thus v1, vk+1

doubly resolve vi, vj .
Case 3. 1 ≤ i ≤ k + 1 < j ≤ n: Suppose that v1, vk+1 does not doubly resolve

vi, vj . That is, d(vi, v1)−d(vj , v1) = d(vi, vk+1)−d(vj , vk+1). Thus (i−1)−(n+1−j) =
(k + 1 − i) − (j − k − 1). Hence n = 2i + 2j − 2k − 4 is even.

Therefore for odd n, {v1, vk+1} doubly resolves Cn, and ψ(Cn) = 2.
For even n, in Case 3, suppose that v1, v2 does not doubly resolve vi, vj . That is,

d(vi, v1)−d(vj , v1) = d(vi, v2)−d(vj , v2). Thus (i−1)−(n+1−j) = (i−2)−(n+2−j)
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and −2 = −4, a contradiction. Hence for even n, {v1, v2, vk+1} doubly resolve Cn,
and ψ(Cn) ≤ 3.

It remains to prove that ψ(Cn) ≥ 3 for even n. Suppose that ψ(Cn) ≤ 2 for some
even n = 2k. By symmetry we can assume that {v1, vi} doubly resolves Cn for some
2 ≤ i ≤ k + 1.

Case 1. 2 ≤ i ≤ k − 1: Then d(vi+1, v1) − d(vi+2, v1) = i − (i + 1) = −1 and
d(vi+1, vi) − d(vi+2, vi) = 1 − 2 = −1. Thus v1, vi does not resolve vi+1, vi+2.

Case 2. i = k: Then d(v2, v1) − d(vn−1, v1) = 1 − 2 = −1 and d(v2, vi) −
d(vn−1, vi) = (k − 2) − (k − 1) = −1. Thus v1, vi does not resolve v2, vn−1.

Case 3. i = k+1: Then d(v2, v1)−d(vn, v1) = 1−1 = 0 and d(v2, vi)−d(vn, vi) =
(k − 1) − (k − 1) = 0. Thus v1, vi does not resolve v2, vn.

In each case we have derived a contradiction. Thus ψ(Cn) ≥ 3 for even n.
Theorem 4.1 and Lemma 8.2 imply that every graph G satisfies

(8.1) β(G) ≤ β(G�Cn) ≤
{
β(G) + 1 if n is odd,

β(G) + 2 if n is even.

Theorem 8.3. For every graph G and for all n ≥ 3, we have β(G�Cn) = 2 if
and only if G is a path and n is odd.

Proof. (⇐=) Since G is a path, β(G) = 1 by (7.1). Since n is odd, ψ(Cn) = 2 by
Lemma 8.2. Thus β(G�Cn) ≤ ψ(Cn) + β(G) − 1 = 2 by Theorem 4.1.

(=⇒) Suppose that β(G�Cn) = 2. Say S = {av, bw} resolves G�Cn. Then G
is a path by Lemma 7.2. It remains to show that n is odd. Suppose on the contrary
that n = 2r is even. Let C = Cn. By Corollary 3.2, the projection {v, w} of S onto
C resolves C. By Lemma 8.1, we have β(C) = 2, and thus v �= w. Moreover, v and
w are not antipodal. That is, dC(v, w) ≤ r − 1. Hence there is a neighbor x of w in
C with dC(v, x) = dC(v, w) + 1. Now consider G. If a �= b, then using the argument
from the proof of Lemma 7.2, we can construct a pair of vertices that are not resolved
by S. So now assume a = b. That is, our resolving set is contained in a single column
of G�Cn. Let p be a neighbor of a in G. Then S does not resolve pw and ax, since
d(pw, bw) = 1 = d(ax, bw) and d(pw, av) = 1 + dC(v, w) = dC(x, v) = d(ax, av). This
contradiction proves the result.

By Lemma 8.2 and (7.1), we have β(Pm �Cn) ≤ ψ(Cn)+β(Pm)−1 ≤ 3+1−1 = 3.
Thus Theorem 8.3 implies that for all m ≥ 2 and n ≥ 3 we have

(8.2) β(Pm �Cn) =

{
2 if n is odd,

3 if n is even.

Theorem 8.4. For all m,n ≥ 3,

β(Cm �Cn) =

{
3 if m or n is odd,

4 otherwise.

Proof. We have β(Cm �Cn) ≥ 3 by Theorem 8.3. If m or n is odd, then
β(Cm �Cn) ≤ 3 by (8.1) and since β(Cm) = 2. It remains to prove that β(Cm �Cn) ≥
4 when m and n are even. Let G := C2r �C2s. We denote each vertex U of G by
u1u2, where u1 ∈ C2r and u2 ∈ C2s.

Observe that in C2r, every vertex u is antipodal with a unique vertex v; thus
d(x, u) + d(x, v) = r for every vertex x of C2r.
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Two vertices U and V of G are antipodal if u1 and v1 are antipodal in C2r and
u2 and v2 are antipodal in C2s. Suppose that U and V are antipodal. Then for every
vertex W of G,

(8.3) dG(W,U) + dG(W,V ) = d(w1, u1) + d(w2, u2) + d(w1, v1) + d(w2, v2) = r + s.

Claim 8.5. Let U be a vertex in a resolving set S of G. Say U and V are
antipodal. Then the set S′ obtained by replacing U by V in S also resolves G.

Proof. Suppose on the contrary that S′ does not resolve G. Thus there exist
vertices X,Y of G such that dG(X,Z) = dG(Y,Z) for every vertex Z ∈ S′. In
particular, dG(X,V ) = dG(Y, V ). By (8.3), dG(X,U) − r − s = dG(Y,U) − r − s,
implying dG(X,U) = dG(Y,U). Thus dG(X,Z) = dG(Y,Z) for every vertex Z ∈ S;
that is, X and Y are not resolved by S. This contradiction proves the claim.

Suppose on the contrary that S = {U, V,W} is a resolving set of G. Represent
G by the points of a 2r × 2s grid. Consecutive points in the same row or column
are adjacent, and the first and last points of the same row or column are adjacent.
Observe that antipodal vertices of G are in opposite quadrants of the grid. Thus, by
the above claim, we can assume that U, V,W are in one of the four halves of the grid.
Without loss of generality, U, V,W are in the left half of the grid. This implies that
d(u1, v1) < r, d(u1, w1) < r and d(v1, w1) < r. Furthermore, U, V,W are in at least
two different rows and two different columns, since the projections of S resolve C2r

and C2s.

By symmetry, it suffices to consider the following cases:

1. U, V,W are in different rows and different columns.

2. U, V,W are in different rows, but U, V are in the same column.

3. U, V are in the same column and V,W in the same row.

In each case we will find vertices X,Y such that d(X,U) = d(Y,U), d(X,V ) = d(Y, V ),
and d(X,W ) = d(Y,W ); that is, S does not resolve the pair X,Y .

Case 1. Assume that if one of the vertices u2, v2, w2 is in the shortest path
determined by the other two vertices, then that vertex is v2. It is then possible to
draw the grid in such a way that the projections u2, v2, w2 appear from bottom to top
in C2s, d(u2, v2) < s, and d(v2, w2) < s. Now, if v1 is in the shortest path between
u1 and w1 in C2r, then let X,Y be the two neighbors of V lying in shortest paths
between V and W ; see Figure 8.1(a). Otherwise, assume that u1 is in the shortest
path between v1 and w1. Let Z be the vertex u1v2. Let X,Y be the neighbors of Z in
shortest paths between Z and W ; see Figure 8.1(b). It is easy to verify that in both
cases d(X,U) = d(Y,U), d(X,V ) = d(Y, V ), and d(X,W ) = d(Y,W ).

Case 2. Observe that at least two of the distances d(u2, v2), d(v2, w2), and
d(u2, w2) in C2s must be less than s. If u2, v2 are not antipodal in C2s and w2 is not in
the shortest path between u2 and v2 in C2s, then d(u2, w2) < s or d(v2, w2) < s. Let
us assume that d(v2, w2) < s. Let X,Y be the vertices adjacent to V lying in a short-
est path between V and W ; see Figure 8.2(a). If u2, v2 are not antipodal in C2s and
w2 is in the shortest path between u2 and v2 in C2s, then let X,Y be the neighbors of
V not lying in a shortest path between V and W ; see Figure 8.2(b). Finally, if u2, v2

are antipodal in C2s, consider the vertices X,Y at distance two from V ; see Figure
8.2(c). It is easy to verify that in all cases d(X,U) = d(Y,U), d(X,V ) = d(Y, V ), and
d(X,W ) = d(Y,W ).

Case 3. In this case, d(u2, v2) < s since the projection {u2, v2, w2} = {u2, v2}
resolves C2s. Let Z := (w1, u2). Let X,Y be the neighbors of Z not lying in a shortest
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Fig. 8.1. Illustration for Case 1 in the proof of Theorem 8.4.
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Fig. 8.2. Illustration for Case 2 in the proof of Theorem 8.4.
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Fig. 8.3. Illustration for Case 3 in the proof of Theorem 8.4.

path between Z and V ; see Figure 8.3. It is easy to verify that d(X,U) = d(Y,U),
d(X,V ) = d(Y, V ), and d(X,W ) = d(Y,W ).

Theorem 8.6. For all n ≥ 1 and m ≥ 3,

β(Kn �Cm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if n = 1,

2 if n = 2 and m is odd,

3 if n = 2 and m is even,

3 if n = 3,

3 if n = 4 and m is even,

4 if n = 4 and m is odd,

n− 1 if n ≥ 5.
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Proof. The case n ≥ 2β(Cn) + 1 = 5 is an immediate corollary of Theorem 5.3
and Lemma 8.1. The case n = 3 is a special case of Theorem 8.4 since K3 = C3.
The case n = 2 is a special case of (8.2) since K2 = P2. The case n = 1 is a repetition
of Lemma 8.1. It remains to prove the case n = 4. Say V (K4) = {a, b, c, d}. First note
that β(K4 �Cm) ≥ β(K4) = 3 by Corollary 3.2 and (5.1). By Lemma 5.1 we have
ψ(K4) = 3. Thus β(K4 �Cm) ≤ 4 by Lemma 8.1 and Theorem 4.1 with H = K4.
For even m, it is easily verified that {av, bv, cw} resolves K4 �Cm for any edge vw
of Cm.

It remains to prove that β(K4 �Cm) ≥ 4 for odd m = 2h + 1. Consider the
vertices of K4 �Cm to be in a 4 × m grid, where two vertices in the same row are
adjacent, and two vertices in the same column are adjacent if and only if they are
consecutive rows or they are in the first and last rows. Suppose on the contrary that
S = {u, v, w} resolves K4 �Cm. Then u, v, w are in three different columns and in at
least two different rows (by considering the projections of S onto K4 and Cm).

Case 1. Suppose that two vertices in S, say u and v, are in the same row. Consider
the grid centered at the row of u, v. Without loss of generality, u and v are in the first
and second columns, and w is in a row above u and v. Let x and y be the vertices
shown in Figure 8.4(a). Then d(x, u) = d(y, u) = h + 1, d(x, v) = d(y, v) = h + 1,
and d(x,w) = d(y, w) = p. Thus S does not resolve x and y, which is the desired
contradiction.
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(a)
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h
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q

(b)

Fig. 8.4. Illustration for Theorem 8.6.

Case 2. Now suppose that u, v, w are in different rows. Without loss of generality,
u is in the middle row and the first column, and v is in the second column and in a
row below u, and w is in the third column and in a row above u. Let x and y be the
vertices shown in Figure 8.4(b). Then d(x, u) = d(y, u) = h+ 1, d(x, v) = d(y, v) = q,
and d(x,w) = d(y, w) = p. Thus S does not resolve x and y, which is the desired
contradiction.
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9. Trees. Let v be a vertex of a tree T . Let �v be the number of components
of T \ v that are (possibly edgeless) paths. Slater [42], and subsequently a number of
other authors [9, 24, 27], proved that for every tree T that is not a path,

(9.1) β(T ) =
∑

v∈V (T )

max{�v − 1, 0}.

A leaf of a graph is a vertex of degree 1. The following result for doubly resolving
sets in trees is a generalization of Lemma 7.1 for paths.

Lemma 9.1. The set of leaves L is the unique minimum doubly resolving set for
a tree T , and ψ(T ) = |L|.

Proof. Every pair of vertices v, w of T lies on a path whose endpoints are leaves
x, y. Clearly x, y doubly resolve v, w. Thus L is a doubly resolving set. Say v is a leaf
of T whose neighbor is w. Every shortest path from v passes through w. Thus v, w
can only be doubly resolved by a pair including v. Thus v is in every doubly resolving
set of T . The result follows.

Theorem 4.1 and Lemma 9.1 imply that for every tree T with k leaves and for
every graph G,

(9.2) β(T �G) ≤ β(G) + k − 1.

Moreover, many leaves force up the metric dimension of a cartesian product.
Lemma 9.2. Every graph G with k ≥ 2 leaves satisfies β(G�G) ≥ k.
Proof. Let S be a metric basis of G�G. Let b and w be distinct leaves of G

adjacent to a and v, respectively. There is a vertex xy ∈ S that resolves aw and bv.
Suppose on the contrary that x �= b and y �= w. Thus dG(b, x) = dG(a, x) + 1 and
dG(w, y) = dG(v, y)+1. Hence dG(a, x)− dG(b, x) = dG(v, y)− dG(w, y) = −1, which
implies that dG(a, x)+ dG(w, y) = dG(b, x)+ dG(v, y). That is, d(aw, xy) = d(bv, xy).
Thus xy does not resolve aw and bv. This contradiction proves that x = b or y = w.
Thus for every pair of leaves b, w there is a vertex by or xw in S. Suppose that
for some leaf b, there is no vertex by ∈ S. Then for every leaf w, there is a vertex
xw ∈ S, and |S| ≥ k. Otherwise for every leaf b, there is a vertex by ∈ S, and again
|S| ≥ k.

The following result implies that ψ is not bounded by any function of metric
dimension.

Theorem 9.3. For every integer n ≥ 4 there is a tree Bn with β(Bn) = 2 and

n = ψ(Bn) ≤ β(Bn �Bn) ≤ n + 1.

Proof. Let Bn be the comb graph obtained by attaching one leaf at every vertex
of Pn. Now �v = 0 for every leaf v of Bn, and �w = 1 for every other vertex w of Bn,
except for the two vertices x and y indicated in Figure 9.1, for which �x = �y = 2.
Thus β(Bn) = 2 by (9.1). Since Bn has n leaves, we have ψ(Bn) = n by Lemma 9.1.
Moreover, β(Bn �Bn) ≥ n by Lemma 9.2. The upper bound β(Bn �Bn) ≤ n + 1
follows from Theorem 4.1.

Given that the proof of Theorem 9.3 is heavily dependent on the presence of
leaves in Bn, it is tempting to suspect that such behavior does not occur among more
highly connected graphs. This is not the case.

Theorem 9.4. For all k ≥ 1 and n ≥ 2 there is a k-connected graph Gn,k for
which β(Gn,k) ≤ 2k and β(Gn,k �Gn,k) ≥ n.
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0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
x y

2 21 1

Fig. 9.1. An illustration of the comb graph B10 showing the �-values at each vertex.
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Fig. 9.2. The construction in Theorem 9.4 with k = 3 and n = 2.

Proof. As illustrated in Figure 9.2, let Gn,k be the graph with vertex set {vi, wi :
1 ≤ i ≤ 2kn}, where every viwi is an edge, vivj is an edge whenever |i − j| ≤ k,
and wiwj is an edge whenever 
i/k� = 
j/k�. Note that Gn,1 = B2n. Clearly Gn,k

is k-connected. It is easily seen that {vi, v2kn+1−i : 1 ≤ i ≤ k} resolves Gn,k. Thus
β(Gn,k) ≤ 2k.

Say S doubly resolves Gn,k. On the contrary, suppose that

S ∩ {w�k+1, w�k+2, . . . , w�k+k} = ∅

for some � with 0 ≤ � ≤ 2n−1. This implies that d(w�k+1, x) = d(v�k+1, x)+1 for every
vertex x ∈ S. Hence S does not doubly resolve w�k+1 and v�k+1. This contradiction
proves that S ∩ {w�k+1, w�k+2, . . . , w�k+k} �= ∅ for every � with 0 ≤ � ≤ 2n− 1. Thus
|S| ≥ 2n and ψ(Gn,k) ≥ 2n. That β(Gn,k �Gn,k) ≥ n follows from Lemma 4.2.

We conclude that for all k ≥ 1, there is no function f such that β(G�H) ≤
f(β(G), β(H)) for all k-connected graphs G and H.

Note added in proof. The metric dimension of the cartesian product of a cycle
and a graph was independently studied by Peters-Fransen and Oellermann [33]. They
independently proved (8.1), Theorem 8.4, and Theorem 8.6 with n = 2.
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