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Abstract: Birmele [J Graph Theory 2003] proved that every graph with cir-
cumference t has treewidth at most t − 1. Under the additional assumption
of 2-connectivity, such graphs have bounded pathwidth, which is a quali-
tatively stronger conclusion. Birmele’s theorem was extended by Birmele
et al. [Combinatorica 2007] who showed that every graph without k disjoint
cycles of length at least t has treewidth O(tk2). Our main result states that,
under the additional assumption of (k + 1)-connectivity, such graphs have
bounded pathwidth. In fact, they have pathwidth O(t 3 + tk2). Moreover,
examples show that (k + 1)-connectivity is required for bounded pathwidth
to hold. These results suggest the following general question: for which
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values of k and graphs H does every k-connected H-minor-free graph have
bounded pathwidth? We discuss this question and provide a few observa-
tions. C© 2014 Wiley Periodicals, Inc. J. Graph Theory 00: 1–11, 2014

Keywords: pathwidth; highly connected; minor-free

1. INTRODUCTION

Birmele [7] proved that every graph with circumference t has treewidth at most t − 1,
and this bound is tight for the complete graph Kt . Nešetřil and Ossona de Mendez [16,
p. 118] showed that under the additional assumption of 2-connectivity, such graphs have
treedepth at most 1 + (t − 2)2. Since pathwidth is at most treedepth minus 1, every 2-
connected graph with circumference t has pathwidth at most (t − 2)2. Our first result
strengthens this bound.

Theorem 1. Every 2-connected graph with circumference t has pathwidth at most
� t

2�(t − 1).

The 2-connectivity assumption is needed in Theorem 1 since complete binary trees have
unbounded pathwidth. In particular, the complete binary tree of height h has pathwidth
� h

2�.
Birmele’s theorem was extended by Birmele et al. [6], who showed that graphs with-

out k disjoint cycles of length at least t have treewidth O(tk2). Under the additional
assumption of (k + 1)-connectivity, we prove that such graphs have bounded pathwidth.

Theorem 2. Every (k + 1)-connected graph without k disjoint cycles of length at least
t has pathwidth at most O(t3 + tk2).

We now show that the assumption of (k + 1)-connectivity is needed in Theorem 2.
Suppose on the contrary that every k-connected graph without k disjoint cycles of length
at least t has pathwidth at most f (k, t) for some function f . Let G be the graph obtained
from the complete binary tree of height h by adding k − 1 dominant vertices. Observe
that G is k-connected. Since every cycle in G uses at least one of the dominant vertices,
G contains no k disjoint cycles. Thus G has pathwidth at most f (k, t) for all t ≥ 3. On
the other hand, the pathwidth of G equals � h

2� + k − 1. We obtain a contradiction by
choosing h > 2 · f (k, t).

The proofs of Theorems 1 and 2 are given in Sections 3 and 4, respectively. We con-
clude in Section 5 by reinterpreting these results in terms of excluded minors. In general,
we observe that highly connected H-minor-free graphs have bounded pathwidth. Deter-
mining the minimum connectivity required for this behavior to occur is an interesting
line of future research.

2. DEFINITIONS

Let G be an (undirected, simple, finite) graph. The circumference of G is the length of
the longest cycle in G, or is 0 if G is acyclic. A tree decomposition (T, {Bx ⊆ V (G) : x ∈
V (T )}) of G consists of a tree T and a set {Bx ⊆ V (G) : x ∈ V (T )} of sets of vertices of
G indexed by the nodes of T , such that:
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� for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Bx} induces a nonempty (con-
nected) subtree of T , and

� for each edge uv ∈ E(G), there is some x ∈ V (T ) such that u, v ∈ Bx.

We refer to the sets Bx in the decomposition as bags. The width of a decomposition is
the maximum size of a bag minus 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all tree decompositions of G. A path decomposition of G is a
tree decomposition whose underlying tree is a path. The pathwidth of a graph G, denoted
by pw(G), is the minimum width over all path decompositions of G. For simplicity, we
describe a path decomposition by (B1, B2, . . . , Bn), where Bi is the bag associated with
the i-th vertex in the path. In such a decomposition, for each vertex v of G, let L(v) be
the bag Bi containing v with i minimum. If L(v) = L(w) = Bi for distinct v, w ∈ V (G),
then replace Bi by the two bags Bi \ {v} and Bi. Now L(v) 
= L(w). Repeat this step
until L(v) 
= L(w) for all distinct v, w ∈ V (G). Such a path decomposition is said to be
normalized. Hence, every graph has a normalized path decomposition with width pw(G).

A graph H is a minor of a graph G if H is isomorphic to a graph formed from a
subgraph of G by contracting edges. When H is a minor of G, for each vertex v ∈ V (H)

there is a connected subgraph C of G that contracts to form v in the minor. We call C the
branch set of v.

In a rooted forest F , the height of a vertex v in F is the distance between v and the root
of the component of F that contains v. The height of F is the maximum height over all
vertices of F . The closure of F , denoted clos(F ), is the graph with vertex set V (F ) and
edge set {xy : x is an ancestor of y, x 
= y}. The treedepth of a graph G, denoted td(G), is
the minimum height plus 1 of a forest F such that G ⊆ clos(F ). Treedepth is equivalent
to several other notions including minimal elimination tree height and is closely related
to a number of graph invariants including pathwidth and treewidth; see [3], [16].

3. PROOF OF THEOREM 1

Lemma 3. Every 2-connected graph G with circumference t has treedepth at most
� t

2�(t − 1) + 1.

Proof. Let T be a depth-first spanning subtree T of G rooted at some vertex r. Thus
G ⊆ clos(F ). Say an edge vw of T has span |i − j|, where v and w are respectively at
height i and j in T . For each edge vw of span s ≥ 2, the vw-path in T plus vw forms a
cycle of length s + 1. Thus s ≤ t − 1. Consider a vertex v in G. By Menger’s Theorem,
there are two internally disjoint vr-paths in G. Their union is a cycle of length at most
t. Thus there is a vr-path P in G of length at most � t

2�. Since each edge in P has span
at most t − 1, the height of v is at most � t

2�(t − 1). Hence the height of T is at most
� t

2�(t − 1). The result follows. �
Theorem 1 follows directly from Lemma 3 since pw(G) ≤ td(G) − 1 (see [16]).

4. PROOF OF THEOREM 2

A block in a graph G is a maximal 2-connected subgraph of G, or the subgraph of G
induced by a bridge edge or an isolated vertex. It is well known that the blocks of G form
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FIGURE 1. Example of a block-cut tree: P is the path
(b1; v1; b2; v2; b3; v3; b4; v4; b5). The subgraphs G0 and G′ respectively consist of

the blocks above and below the dotted line.

a proper partition of E(G). The block-cut-forest T of a graph G is defined as follows:
V (T ) is the set of cut-vertices and blocks of G, where a cut-vertex v is adjacent to a block
B whenever v ∈ B. It is well known that T is a forest, and if G is connected, then T is a
tree called the block-cut-tree.

Lemma 4. Let T be the block-cut-forest of a graph G. Assume that pw(T ) ≤ n and
pw(B) ≤ m for each block B of G. Then pw(G) ≤ (m + 3)(n + 1) − 3.

Proof. We proceed by induction on pw(T ). For the base case, say pw(T ) = 0.
Then T has no edges, and each component of G is 2-connected. Clearly, the pathwidth
of G equals the maximum pathwidth of the components of G. Thus pw(G) ≤ m =
(m + 3)(n + 1) − 3.

Now assume that pw(T ) ≥ 1. Since the pathwidth of G equals the maximum pathwidth
of the components of G, we may assume that G is connected. Thus T is connected. Let
(X1, X2, . . . , Xs) be a path decomposition of T with width at most n. Choose vertices
x ∈ X1 and y ∈ Xs. Let P be a maximal path in T that contains an xy-path. Then V (P) ∩
Xi 
= ∅ for all i. Let X ′

i = Xi − V (P); then |X ′
i | ≤ |Xi| − 1. Now (X ′

1, X ′
2, . . . , X ′

s ) is a
path decomposition of T − V (P) with width at most n − 1. By the maximality of P, the
endpoints of P are leaf vertices of T . No cut-vertex of G is a leaf of T . Thus the endpoints
of P correspond to blocks. Say P = b1v1b2v2 . . . bs−1vs−1bs, where bi represents the block
Bi in G, and vi is a cut-vertex in G. For each vi, let Ci,1,Ci,2, . . . ,Ci,ti be the blocks in G
corresponding to neighbors of vi in T − V (P). Let G0 := ⋃{Bi : 1 ≤ i ≤ s} ⋃{Ci, j : 1 ≤
i ≤ s − 1, 1 ≤ j ≤ ti}. Let G′ be the union of the blocks not in G0. Then G = G0

⋃
G′,

as illustrated in Figure 1.
Let T ′ be the forest obtained from T − V (P) by removing the leaf vertices that corre-

spond to cut-vertices in G. This step removes all cut-vertices in G that are not cut-vertices
in G′, and the blocks that remain are blocks in G′. Thus T ′ is the block-cut-forest of G′.
Since T ′ is a subgraph of T − V (P), we have pw(T ′) ≤ pw(T − V (P)) ≤ n − 1. Fur-
thermore, since each block B of G′ is also a block of G, pw(B) ≤ m. Let G′

1, G′
2, . . . , G′

r
be the components of G′. By induction, pw(G′

j) ≤ (m + 3)n − 3 for 1 ≤ j ≤ r. Let
(Hj,1, Hj,2, . . . , Hj,k j ) be a path decomposition of G′

j with |Hj,�| ≤ (m + 3)n − 2.
We now construct a path decomposition of G0. For 1 ≤ i ≤ s, let (Xi,1, Xi,2, . . . , Xi,ki )

be a path decomposition of Bi with |Xi, j| ≤ m + 1 for 1 ≤ j ≤ ki. Define X+
1, j := X1, j ∪

{v1} and X+
s, j := Xs, j ∪ {vs−1} and X+

i, j := Xi, j ∪ {vi−1, vi} for 1 < i < s. For each Ci, j, let
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FIGURE 2. Left-to-right labeling of the leaves of the complete binary tree.

(Si, j,1, Si, j,2, . . . , Si, j,ki, j ) be a path decomposition with |Si, j,�| ≤ m + 1. Define S+
i, j,� :=

Si, j,� ∪ {vi}. Denote by Ti, j the sequence of bags (S+
i, j,1, S+

i, j,2, . . . , S+
i, j,ki, j

). It is easily
proved that(

X+
1,1, . . . , X+

1,k1
, T1,1, . . . , T1,t1, X+

2,1, . . . , X+
2,k2

, T2,1, . . . , T2,t2, . . . , Ts−1,1, . . . ,

Ts−1,ts−1, X+
s,1, . . . , X+

s,ks

)
is a path decomposition of G0. The maximum bag size is at most m + 3. Let (Y1,Y2, . . . ,Yp)

be a normalized path decomposition of G0 with |Yi| ≤ m + 3 for 1 ≤ i ≤ p. Then L(v) 
=
L(w) for v 
= w.

We now construct a path decomposition of G. For each component G′
j of G′, let wj be

the cut-vertex in G0 ∩ G′
j. Note that wj is distinct for each G′

j. Replace the bag L(wj)

with the bags

(L(wj) ∪ Hj,1, L(wj) ∪ Hj,2, . . . , L(wj) ∪ Hj,k j ).

The bag size is at most m + 3 + (m + 3)n − 2 = (m + 3)(n + 1) − 2. For simplicity,
rename the decomposition (Z1, . . . , Zq). It remains to show that (Z1, . . . , Zq) is a path
decomposition of G. For each edge xy in G, we have x, y ∈ Zi for some i. Suppose
v ∈ Zi ∩ Zj for j > i + 1. Furthermore, assume v ∈ V (G′ − G0) and without loss of
generality, v ∈ V (G′

1). Then by construction, H1,r ⊂ Zi, H1,r+1 ⊂ Zi+1, . . . , H1,r+ j−i ⊂
Zj for some r. v ∈ H1,t for r ≤ t ≤ r + j − i so v ∈ Zs for i ≤ s ≤ j. Now instead assume
v ∈ V (G0). Then by construction, Yr ⊂ Zi and Ys ⊂ Zj for some r, s with s ≥ r. v ∈ Yt for
r ≤ t ≤ s so v ∈ Z� for i ≤ � ≤ j.

We conclude that (Z1, . . . , Zq) is a valid path decomposition. Since |Zi| ≤ (m + 3)(n +
1) − 2, we have pw(G) ≤ (m + 3)(n + 1) − 3. �

Let T be a complete binary tree embedded in the plane as illustrated in Figure 2.
Vertices at the same distance from the root are at the same level. Number the leaf vertices
from left to right; let vi be the leaf labeled i as shown.

Lemma 5. Let T be a complete binary tree with leaf vertices numbered as in Figure 2.
Then the path in T between va and vb has length at least 2 log2(b − a + 1) where a ≤ b.

Proof. Let V0 be the set of all leaf vertices of T . Let Vi be the set of all vertices
u of T such that the shortest path from u to a vertex in V0 has length i. Since T is
a complete binary tree, each u ∈ Vi has exactly 2i descendants in V0; furthermore, the
descendants are v j, v j+1, . . . , v j+2i−1 for some number j. Consider the vertex va and
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suppose u ∈ Vi is an ancestor of va. Then if v j ∈ V0 also has u as an ancestor, then
j ∈ [a − (2i − 1), a + (2i − 1)].

For all b ≥ a, there exists k such that 2k ≤ (b − a + 1) < 2k+1. Then, for i < k, b /∈
[a − (2i − 1), a + (2i − 1)], so va and vb do not have a common ancestor in Vi. However,
b ∈ [a − (2 j − 1), a + (2 j − 1)] for all j ≥ k and there exists some j ≥ k such that
va and vb have a common ancestor u in Vj. Then by the definition of Vj, the path P1

from va to u has length j and the path P2 from u to vb has length j. Thus P1P2 is
a path of length 2 j from va to vb. Since 2k ≤ b − a + 1 < 2k+1 and j ≥ k, we have
2 j ≥ 2 log2(b − a + 1). �
Lemma 6. Let T be a forest with pw(T ) ≥ t ≥ 1. Then T contains a complete binary
tree of height t − 1 as a minor. Moreover, for any vertex v ∈ V (T ), there is such a minor
in T with the property that v is in the branch set of the root of the binary tree.

Proof. Since the pathwidth of a graph equals the maximum pathwidth of its compo-
nents, we may assume that T is a tree. For a vertex v of T , define the rooted pathwidth of
T at v, denoted rpw(T, v), as the minimum width of a path decomposition of T such that
v is in the last bag of the decomposition. We say such a decomposition is rooted at v.

We prove, by induction on |V (T )|, that if rpw(T, v) ≥ t for some vertex v of a tree T ,
then T contains a complete binary tree of height t − 1 as a minor with v in the branch set
of the root. Since rpw(T, v) ≥ pw(T ), the result follows when pw(T ) ≥ t.

In the base case with |V (T )| = 2, the rooted pathwidth at a given vertex is 1 and the
tree trivially contains a complete binary tree of height 0 rooted at the given vertex.

Now suppose |V (T )| ≥ 3 and let v be such that rpw(T, v) ≥ t. Let w1, w2, . . . , wd be
the neighbors of v and let Ti be the component of T − v rooted at wi for 1 ≤ i ≤ d. Let
ri = rpw(Ti, wi). Without loss of generality, r1 ≥ r2 ≥ · · · ≥ rd .

Let (Xi,1, Xi,2, . . . , Xi,ki ) be a path decomposition of Ti rooted at wi with width ri. For
2 ≤ i ≤ d, let X+

i, j = Xi, j ∪ {v}. Then(
X1,1, X1,2, . . . , X1,k1, {w1, v}, X+

2,1, X+
2,2, . . . , X+

2,k2
, X+

3,1, X+
3,2, . . . , X+

3,k3
, . . . , X+

d,1,

X+
d,2, . . . , X+

d,kd

)
is a path decomposition of T rooted at v with width max{r1, r2 + 1}. Here we use the fact
that w1 ∈ X1,k1 . Thus rpw(T, v) ≤ max{r1, r2 + 1}.

First suppose that r1 ≥ r2 + 1. Then rpw(T1, w1) = r1 ≥ rpw(T, v) ≥ t. By induction,
T1 contains a complete binary tree of height t − 1 rooted at w1 as a minor. Extend the
branch set containing w1 to include v. We obtain a complete binary tree of height t − 1
rooted at v as a minor in T .

Now suppose that r2 + 1 > r1. Then r1 = r2 ≥ rpw(T, v) − 1 ≥ t − 1. By induction,
T1 and T2 each contain a complete binary tree of height t − 2 as a minor rooted at w1 and
w2, respectively. Thus T contains a complete binary tree of height t − 1 rooted at v as a
minor. �

To prove Theorem 2, we need the following. Let F be a family of graphs. For a graph
G, a hitting set H of F is a set of vertices of G such that G − H contains no member
of F . The family F is said to satisfy the Erdős-Pósa property if there is a function
f : N → N such that for all graphs G, either G contains k vertex-disjoint members of F
or G contains a hitting set H of size at most f (k). Birmele et al. [6] proved that if Ft is
the family of cycles of length at least t, then Ft satisfies the Erdős-Pósa property with
f (k) = 13t(k − 1)(k − 2) + (2t + 3)(k − 1).

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 3. Complete binary tree of height i + j with 2i disjoint subtrees of height
j .

Proof of Theorem 2. Since G contains no k vertex-disjoint cycles of length at least t,
by the above-mentioned result of Birmele et al. [6], there is a hitting set H ⊆ V (G) such
that |H| ≤ h := 13t(k − 1)(k − 2) + (2t + 3)(k − 1). Let T be the block-cut-forest of
G − H. Define

i := �log2(k − 1)(2h − 2k + 1)� + 1 and j :=
⌈

t

2
+ log2(h − k + 1)

⌉
.

Since G is (k + 1)-connected, |H| ≥ k. Hence h ≥ |H| ≥ k, and i and j are well
defined.

First suppose that pw(T ) ≤ i + j. Since H is a hitting set, G − H has circumference at
most t − 1. Thus the 2-connected blocks of G − H have pathwidth at most � t−1

2 �(t − 2)

by Theorem 1. The blocks that are not 2-connected consist of bridges or isolated vertices,
which have pathwidth at most 1. By Lemma 4 with m = � t−1

2 �(t − 2) and n = i + j, we
have pw(G − H) ≤ (� t−1

2 �(t − 2) + 3)(i + j + 1) − 3. Add H to each bag of an optimal
path decomposition of G − H to obtain a path decomposition of G with width at most
(� t−1

2 �(t − 2) + 3)(i + j + 1) − 3 + h ∈ O(t3 + tk2).
It remains to handle the case when pw(T ) > i + j. We claim, however, that this case

does not occur. Suppose it does and assume pw(T ) > i + j. By Lemma 6, T contains a
complete binary tree T ′ of height i + j as a minor. It is well known and easily proved
that if a graph A contains a graph B with maximum degree 3 as a minor, then A contains
a subdivision of B as a subgraph. Thus, T contains a subdivision S of T ′ as a subgraph.
By taking S maximal, each leaf of S is a leaf of T .

For each v ∈ H, let d(v) be the number of leaves u of S such that v is adjacent in G
to some vertex in the block corresponding to u (in which case we say that v is adjacent
to u). Since G is (k + 1)-connected, each leaf of S has at least k neighbors in H. Since
S contains 2i+ j leaves,

∑
v∈H d(v) ≥ k 2i+ j. Let H = {v1, v2, . . . , vh} and dm := d(vm).

Without loss of generality, d1 ≥ d2 ≥ · · · ≥ dh. Since dm ≤ 2i+ j for 1 ≤ m ≤ h,

dk + dk+1 + · · · + dh ≥ k 2i+ j − (d1 + d2 + · · · + dk−1) ≥ k 2i+ j − (k − 1)2i+ j = 2i+ j.

Hence d1 ≥ d2 ≥ · · · ≥ dk ≥ 2i+ j/(h − k + 1). Let X := {v1, v2, . . . , vk}.
Since T ′ has height i + j, there are 2i pairwise disjoint subtrees T1, T2, . . . , T2i in S,

each a subdivision of a complete binary tree of height j, such that for 1 ≤ m ≤ 2i, the
leaves of Tm are leaves of S and the root of Tm is at height i in T ′, as illustrated in Figure 3.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 4. Routing the cycles in G.

For each v ∈ X , we say the pair (v, Tm) is good if v is adjacent to at least 2 j−1/(h − k + 1)

leaves of Tm. We claim that each v ∈ X is in at least k good pairs. Suppose for the sake of
contradiction that some v ∈ X is in at most k − 1 good pairs. Then

2i+ j

h − k + 1
≤ d(v) ≤ (k − 1)2 j + (2i − k + 1)

2 j

2(h − k + 1)
.

Thus 2i ≤ (k − 1)(2h − 2k + 1), which contradicts the definition of i. Thus each v ∈ X
is in at least k good pairs. Since |X | = k, there is a distinct Tm for each v ∈ X such that
(v, Tm) is a good pair.

For each such pair (v, Tm), label the leaf vertices of Tm as in Figure 2. Since v is
adjacent to at least 2 j−1/(h − k + 1) leaf vertices, there are two leaves x and y labeled a
and b respectively such that b − a + 1 ≥ 2 j−1

h−k+1 . Then by Lemma 5, there is a path P of

length at least 2 log2(
2 j−1

h−k+1 ) = 2 j − 2 − 2 log2(h − k + 1) in Tm between x and y. Thus
vPv is a cycle of length 2 j − 2 log2(h − k + 1) ≥ t in Tm ∪ {v}. Since the Tm are pairwise
disjoint, we have k pairwise disjoint cycles C1,C2, . . . ,Ck of length at least t in T ∪ H.

We now construct pairwise disjoint cycles C′
1,C′

2, . . . ,C′
k in G. Say C1 =

v1B1v2B2 . . . Brv1, where v1 ∈ H, vi is a cut-vertex in G − H for 2 ≤ i ≤ r − 1, and Bi is
a block in G − H. The vertex v1 is adjacent to a vertex x in B1. Let P1 be a path from x to
v2 in B1. Next, for 2 ≤ i ≤ r − 1, let Pi be a path from vi to vi+1 in Bi, such that if there is
a vertex v in Bi ∩ V (Cj) for some j 
= 1, then choose Pi such that v /∈ V (Pi), as illustrated
in Figure 4. Since each vertex in S has degree at most 3, there is at most one such vertex
v to be avoided. Therefore, since Bi is 2-connected, such a Pi exists. For Br, let Pr be a
path from vr to y in Br, where y is a neighbor of v1. Let C′

1 = v1xP1v2P2v3 . . . Pryv1. From
each Ci, construct C′

i in G in this same manner. The cycles C′
1,C′

2, . . . ,C′
k by construction

are pairwise disjoint with length at least t in G, which is a contradiction. �

5. RELATIONSHIP TO FORBIDDEN MINORS

Another way to describe a graph G with circumference t − 1 is to say G is Ct-minor-free
where Ct is a cycle on t vertices. Our two main theorems can thus be restated in terms of
minors:

Theorem 7. Let G be a 2-connectedCt-minor-free graph. Then pw(G) ≤ � t−1
2 �(t − 2).

Let Ct,k be the graph consisting of k disjoint cycles of length t.

Journal of Graph Theory DOI 10.1002/jgt
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Theorem 8. Let G be a (k + 1)-connected Ct,k-minor-free graph. Then pw(G) ≤
O(t3 + tk2).

These results suggest the following definition. For a graph H, let g(H) be the mini-
mum integer for which there exists a number c = c(H) such that every g(H)-connected
H-minor-free graph has pathwidth at most c. Mader [12] exhibited a function � such
that every �(H)-connected graph contains H as a minor. (Kostochka [13,14] and Thoma-
son [18] independently proved that if t = |V (H)| then �(H) ≤ �(Kt ) ∈ �(t

√
log t).)

Thus every H-minor-free �(H)-connected graph has bounded pathwidth (since there is
no such graph). Hence g(H) is well defined, and g(H) ≤ �(H). We conclude with some
observations about g(H).

For some graphs, g(H) = �(H). For example, g(K5) = �(K5) = 6 (since every 6-
connected graph contains K5 as a minor, but 5-connected planar (and thus K5-minor-free)
graphs have unbounded pathwidth).

On the other hand, g(H) and �(H) can be far apart. For example, we showed that
g(Ct ) = 2 but �(Ct ) ≥ t − 1 since Kt−1 is (t − 2)-connected and contains no Ct-minor.

Observe that if H1 is a minor of H2, then g(H1) ≤ g(H2). Thus, for each integer c, the
class Hc := {H : g(H) ≤ c} is minor closed. By Robertson and Seymour’s graph minor
theorem, for each c, there is a finite set of minimal excluded minors for Hc.

Bienstock et al. [1] proved that for every forest F , every graph with pathwidth at least
|F| − 1 contains F as a minor. Thus g(F ) = 0. Moreover, since complete binary trees
have unbounded pathwidth, g(F ) = 0 if and only if F is a forest. And K3 is the only
minimal excluded minor for H0.

There is no graph H with g(H) = 1 since the pathwidth of a graph equals the maximum
pathwidth of its connected components.

We showed that g(Ct ) = 2 for all t ≥ 3. It is an interesting open problem to characterize
the graphs H with g(H) = 2. (An answer is conjectured below.)

The following example is important. Consider G0 := K3 embedded in the plane. For
i ≥ 0, construct Gi+1 from Gi as follows: for each edge vw on the outerface of Gi, add
one new vertex adjacent to v and w. Thus Gi is 2-connected and outerplanar. Hence Gi

is K4-minor-free and K2,3-minor-free. Observe that the dual of Gi contains a complete
binary tree of height i as a minor, which has pathwidth i. By a result of Bodlaender
and Fomin [2], the class {Gi : i ≥ 0} has unbounded pathwidth. Hence g(K4) ≥ 3 and
g(K2,3) ≥ 3.

Dirac [9] proved that every 3-connected graph has a K4-minor. Thus g(K4) = �(K4) =
3.

An unfinished result of Ding [8] implies that, for some function f , every 3-connected
K2,t-minor-free graph has pathwidth at most f (t), implying g(K2,t ) ≤ 3. Thus g(K2,t ) ≥
g(K2,3) and g(K2,t ) = 3 for t ≥ 3 (assuming Ding’s result).

We proved that g(Ct,k) = k + 1 for all t ≥ 3, where the lower bound follows from the
example given after the statement of Theorem 2. This leads to the following lower bound
on g(H): If H contains k disjoint cycles, then C3,k is a minor of H, and g(H) ≥ k + 1.
This observation can be strengthened as follows. A transversal in a graph H is a set X
of vertices such that H − X is acyclic. Let τ (H) be the minimum size of a transversal in
H. Note that if H is a minor of G, then τ (H) ≤ τ (G).

Proposition 9. g(H) ≥ τ (H) + 1 for every graph H with τ (H) ≥ 1.
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Proof. Suppose on the contrary that g(H) ≤ τ (H) for some graph H. Let G be the
graph obtained from the complete binary tree of height h by adding τ (H) − 1 dominant
vertices. Then G is τ (H)-connected, and τ (G) = τ (H) − 1, implying G is H-minor-
free. By the definition of g(H), for some c = c(H), the pathwidth of G is at most c.
This is a contradiction for h > 2c, since G has pathwidth � h

2� + τ (H) − 1. Therefore
g(H) ≥ τ (H) + 1. �

We have described three minor-minimal graphs H with g(H) = 3. Namely, K4, K2,3,

and K3 ∪ K3. (It is easily seen that these graphs are minor-minimal.) There is one more
key example. Let Q be the octahedron graph K2,2,2 minus the edges of a triangle. Observe
that τ (Q) = 2, and thus g(Q) ≥ 3 by Proposition 9. Moreover, Q contains no K4, K2,3,

or K3 ∪ K3 minor.

Conjecture 10. The minimal excluded minors for H2 are {K4, K2,3, K3 ∪ K3, Q}.
It is well known that H is outerplanar if and only if H contains no K4 or K2,3 minor,

and it follows from a result of Lovász [15] that τ (H) ≤ 1 if and only if H contains no
K4, K3 ∪ K3 or Q minor. Thus Conjecture 10 is equivalent to saying that g(H) ≤ 2 if and
only if H is outerplanar and τ (H) ≤ 1.

In the above examples H is planar. Planarity is significant for these types of ques-
tions since the class of H-minor-free graphs has bounded treewidth if and only if H is
planar [17]. However, g(H) is well defined for all graphs, and is interesting for certain
nonplanar graphs. For example, Böhme et al. [5] proved that there is a function n such that
every 7-connected graph with at least n(k) vertices contains K3,k as a minor. That is, ev-
ery 7-connected K3,k-minor-free graph has less than n(k) vertices, implying g(K3,k) ≤ 7.
More generally, Böhme et al. [4] conjectured that for all a, k there is an integer n(a, k)

such that every (2a + 1)-connected graph on at least n(a, k) vertices contains Ka,k as a
minor. This would imply that g(Ka,k) ≤ 2a + 1.

In general, it would be interesting if some function of τ (H) was an upper bound
on g(H). Or is there a family of graphs H with bounded transversals, but with g(H)

unbounded?

NOTES ADDED IN PROOF

Fiorini and Herinckx [11] recently improved the above-mentioned result of Birmele et al.
[6] by showing that cycles of length at least t satisfy the Erdős-Pósa property with
f (k) = O(tk log k) (which is optimal for fixed k or fixed t). It follows that theO(t3 + tk2)

bound in Theorem 2 can be improved to O(t3 + tk log k).
In an early version of this paper, the graph Q was omitted from Conjecture 10.

Proposition 9 and the importance of Q were jointly observed with János Barát and
Gwenaël Joret.

Gwenaël Joret also pointed out the following alternative proof of a slightly weaker
version of Theorem 1. Let G be a 2-connected graph with circumference t. Let p be the
number of edges in the longest path in G. Dirac [10] proved that t >

√
2p. Thus p < � t2

2 �.

That is, G contains no path on � t2

2 � edges. Hence G contains no path on � t2

2 � edges as a
minor. Bienstock et al. [1] proved that every graph that excludes a fixed forest on k edges
as a minor has pathwidth at most k − 1. Thus G has pathwidth at most � t2

2 � − 1.
Thanks János and Gwen.
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