Majority Colourings of Digraphs

Stephan Kreutzer ${ }^{\dagger}$ Sang-il Oum ${ }^{\ddagger}$ Paul Seymour ${ }^{\S}$

Dominic van der Zypen ${ }^{\text {" }}$ David R. Wood*
Abstract. We prove that every digraph has a vertex 4 -colouring such that for each vertex v, at most half the out-neighbours of v receive the same colour as v. We then obtain several results related to the conjecture obtained by replacing 4 by 3.

1 Introduction

A majority colouring of a digraph is a function that assigns each vertex v a colour, such that at most half the out-neighbours of v receive the same colour as v. In other words, more than half the out-neighbours of v receive a colour different from v (hence the name 'majority'). Whether every digraph has a majority colouring with a bounded number of colours was posed as an open problem on mathoverflow [7]. In response, Ilya Bogdanov proved that a bounded number of colours suffice for tournaments. The following is our main result.

Theorem 1. Every digraph has a majority 4-colouring.

Proof. Fix a vertex ordering. First, 2-colour the vertices left-to-right so that for each vertex v, at most half the out-neighbours of v to the left of v in the ordering receive the same colour as v. Second, 2 -colour the vertices right-to-left so that for each vertex v, at most half the outneighbours of v to the right of v in the ordering receive the same colour as v. The product colouring is a majority 4 -colouring.

Note that this proof implicitly uses two facts: (1) every digraph has an edge-partition into two acyclic subgraphs, and (2) every acyclic digraph has a majority 2-colouring.

The following conjecture naturally arises:
Conjecture 2. Every digraph has a majority 3-colouring.

[^0]This conjecture would be best possible. For example, a majority colouring of an odd directed cycle is proper (since each vertex has out-degree 1), and therefore three colours are necessary. There are examples with large outdegree as well. For odd $k \geqslant 1$ and prime $n \gg k$, let G be the directed graph with $V(G)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ where $N_{G}^{+}\left(v_{i}\right)=\left\{v_{i+1}, \ldots, v_{i+k}\right\}$ and vertex indices are taken modulo n. Suppose that G has a majority 2 -colouring. If some sequence $v_{i}, v_{i+1}, \ldots, v_{i+k}$ contains more than $\frac{k+1}{2}$ vertices of one colour, say red, and v_{i} is the leftmost red vertex in this sequence, then more than $\frac{k-1}{2}$ out-neighbours of v_{i} are red, which is not allowed. Thus each sequence $v_{i}, v_{i+1}, \ldots, v_{i+k}$ contains exactly $\frac{k+1}{2}$ vertices of each colour. This implies that v_{i} and v_{i+k+1} receive the same colour, as otherwise the sequence $v_{i+1}, \ldots, v_{i+k+1}$ would contain more than $\frac{k+1}{2}$ vertices of the colour assigned to v_{i+k+1}. For all vertices v_{i} and v_{j}, if $\ell=\frac{j-i}{k+1}$ in the finite field \mathbb{Z}_{n}, then $j=i+\ell(k+1)$ and $v_{i}, v_{i+(k+1)}, v_{i+2(k+1)}, \ldots, v_{i+\ell(k+1)}=v_{j}$ all receive the same colour. Thus all the vertices receive the same colour, which is a contradiction. Hence the claimed 2-colouring does not exist.

Note that being majority c-colourable is not closed under taking induced subgraphs. For example, let G be the digraph with $V(G)=\{a, b, c, d\}$ and $E(G)=\{a b, b c, c a, c d\}$. Then G has a majority 2-colouring: colour a and c by 1 and colour b and d by 2. But the subdigraph induced by $\{a, b, c\}$ is a directed 3-cycle, which has no majority 2-colouring.

The remainder of the paper takes a probabilistic approach to Conjecture 2, proving several results that provide evidence for Conjecture 2. A probabilistic approach is reasonable, since in a random 3-colouring, one would expect that a third of the out-neighbours of each vertex v receive the same colour as v. So one might hope that there is enough slack to prove that for every vertex v, at most half the out-neighbours of v receive the same colour as v. Section 2 proves Conjecture 2 for digraphs with very large minimum outdegree (at least logarithmic in the number of vertcies), and then for digraphs with large minimum outdegree (at least a constant) and not extremely large maximum indegree. Section 3 shows that large minimum outdegree (at least a constant) is sufficient to prove the existence of one of the colour classes in Conjecture 2. Section 4 discusses multi-colour generalisations of Conjecture 2.

Before proceeding, we mention some related topics in the literature:

- For undirected graphs, the situation is much simpler. Lovász [4] proved that for every undirected graph G and integer $k \geqslant 1$, there is a k-colouring of G such that every vertex v has at most $\frac{1}{k} \operatorname{deg}(v)$ neighbours receiving the same colour as v. The proof is simple. Consider a k-colouring of G that minimises the number of monochromatic edges. Suppose that some vertex v coloured i has greater than $\frac{1}{k} \operatorname{deg}(v)$ neighbours coloured i. Thus less than $\frac{k-1}{k} \operatorname{deg}(v)$ neighbours of v are not coloured i, and less than $\frac{1}{k} \operatorname{deg}(v)$ neighbours of v receive some colour $j \neq i$. Thus, if v is recoloured j, then the number of monochromatic edges decreases. Hence no vertex v has greater than $\frac{1}{k} \operatorname{deg}(v)$ neighbours with the same
colour as v.
- Seymour [6] considered digraph colourings such that every non-sink vertex receives a colour different from some outneighbour, and proved that a strongly-connected digraph G admits a 2-colouring with this property if and only G has an even directed cycle. The proof shows that every digraph has such a 3-colouring, which we repeat here: We may assume that G is strongly connected. In particular, there are no sink vertices. Choose a maximal set X of vertices such that $G[X]$ admits a 3-colouring where every vertex has a colour different from some outneighbour. Since any directed cycle admits such a colouring, $X \neq \emptyset$. If $X \neq V(G)$, then choose an edge $u v$ entering X and colour u different from the colour of v, contradicting the maximality of X. So $X=V(G)$. (The same proof show two colours suffice if you start with an even cycle.)
- Alon $[1,2]$ posed the following problem: Is there a constant c such that every digraph with minimum outdegree at least c can be vertex-partitioned into two induced digraphs, one with minimum outdegree at least 2 , and the other with minimum outdegree at least 1 ?
- Wood [8] proved the following edge-colouring variant of majority colourings: For every digraph G and integer $k \geqslant 2$, there is a partition of $E(G)$ into k acyclic subgraphs such that each vertex v of G has outdegree at most $\left\lceil\frac{\operatorname{deg}^{+}(v)}{k-1}\right\rceil$ in each subgraph. The bound $\left\lceil\frac{\mathrm{deg}^{+}(v)}{k-1}\right\rceil$ is best possible, since in each acyclic subgraph at least one vertex has outdegree 0.

2 Large Outdegree

We now show that minimum outdegree at least logarithmic in the number of vertices is sufficient to guarantee a majority 3 -colouring. All logarithms are natural.

Theorem 3. Every graph G with n vertices and minimum outdegree $\delta>72 \log (3 n)$ has a majority 3-colouring. Moreover, at most half the out-neighbours of each vertex receive the same colour.

Proof. Randomly and independently colour each vertex of G with one of three colours $\{1,2,3\}$. Consider a vertex v with out-degree d_{v}. Let $X(v, c)$ be the random variable that counts the number of out-neighbours of v coloured c. Of course, $\mathbf{E}(X(v, c))=d_{v} / 3$. Let $A(v, c)$ be the event that $X(v, c)>d_{v} / 2$. Note that $X(v, c)$ is determined by d_{v} independent trials and changing the outcome of any one trial changes $X(v, c)$ by at most 1 . By the simple concentration bound ${ }^{1}$,

$$
\mathbf{P}(A(v, c)) \leqslant \exp \left(-\left(d_{v} / 6\right)^{2} / 2 d_{v}\right)=\exp \left(-d_{v} / 72\right) \leqslant \exp (-\delta / 72)
$$

[^1]The expected number of events $A(v, c)$ that hold is

$$
\sum_{v \in V(G)} \sum_{c \in\{1,2,3\}} \mathbf{P}(A(v, c)) \leqslant 3 n \exp (-\delta / 72)<1
$$

where the last inequality holds since $\delta>72 \log (3 n)$. Thus there exists colour choices such that no event $A(v, c)$ holds. That is, a majority 3-colouring exists.

The following result shows that large outdegree (at least a constant) and not extremely large indegree is sufficient to guarantee a majority 3-colouring.

Theorem 4. Every digraph with minimum out-degree $\delta \geqslant 1200$ and maximum in-degree at most $\exp (\delta / 72) / 12 \delta$ has a majority 3-colouring. Moreover, at most half the out-neighbours of each vertex receive the same colour.

Proof. We assume $\delta \geqslant 1200$, as otherwise the minimum out-degree δ is greater than the maximum in-degree $\exp (\delta / 72) / 12 \delta$, which does not make sense.

We use the following weighted version of the Local Lemma [3, 5]: Let $\mathcal{A}:=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of 'bad' events, such that each A_{i} is mutually independent of $\mathcal{A} \backslash\left(D_{i} \cup\left\{A_{i}\right\}\right)$, for some subset $D_{i} \subseteq A$. Assume there are numbers $t_{1}, \ldots, t_{n} \geqslant 1$ and a real number $p \in\left[0, \frac{1}{4}\right]$ such that for $1 \leqslant i \leqslant n$,

$$
\text { (a) } \mathbf{P}\left(A_{i}\right) \leqslant p^{t_{i}} \quad \text { and } \quad(b) \sum_{A_{j} \in \mathcal{D}_{i}}(2 p)^{t_{j}} \leqslant t_{i} / 2
$$

Then with positive probability no event A_{i} occurs.
Define $p:=\exp (-\delta / 72)$. Since $\delta \geqslant 1200$ we have $p \in\left[0, \frac{1}{4}\right]$. Randomly and independently colour each vertex of G with one of three colours $\{1,2,3\}$. Consider a vertex v with out-degree d_{v}. Let $X(v, c)$ be the random variable that counts the number of out-neighbours of v coloured c. Of course, $\mathbf{E}(X(v, c))=d_{v} / 3$. Let $A(v, c)$ be the event that $X(v, c)>d_{v} / 2$. Let $\mathcal{A}:=\{A(v, c)$: $v \in V(G), c \in\{1,2,3\}\}$ be our set of events. Let $t(v, c):=t_{v}:=d_{v} / \delta$ be the associated weight. Then $t_{v} \geqslant 1$. It suffices to prove that conditions (a) and (b) hold.

Note that $X(v, c)$ is determined by d_{v} independent trials and changing the outcome of any one trial changes $X(v, c)$ by at most 1 . By the simple concentration bound,

$$
\mathbf{P}(A(v, c)) \leqslant \exp \left(-\left(d_{v} / 6\right)^{2} / 2 d_{v}\right)=\exp \left(-d_{v} / 72\right)=\exp \left(-\delta t_{v} / 72\right)=p^{t_{v}}
$$

Thus condition (a) is satisfied. For each event $A(v, c)$ let $D(v, c)$ be the set of all events $A\left(w, c^{\prime}\right) \in \mathcal{A}$ such that v and w have a common out-neighbour. Then $A(v, c)$ is mutually
independent of $\mathcal{A} \backslash(D(v, c) \cup\{A(v, c)\})$. Since $t_{w} \geqslant 1$,

$$
\sum_{A\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{t_{w}} \leqslant \sum_{A\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{1}=2 p|D(v, c)| .
$$

Since each out-neighbour of v has in-degree at most $\exp (\delta / 72) / 12 \delta$, we have $|D(v, c)| \leqslant$ $d_{v} \exp (\delta / 72) / 4 \delta$ and

$$
\sum_{A\left(w, c^{\prime}\right) \in D(v, c)}(2 p)^{t_{w}} \leqslant p d_{v} \exp (\delta / 72) / 2 \delta=\exp (-\delta / 72) t_{v} \exp (\delta / 72) / 2=t_{v} / 2
$$

Thus condition (b) is satisfied. By the local lemma, with positive probability, no event $A(v, c)$ occurs. That is, a majority 3-colouring exists.

Note that the conclusion in Theorem 3 and Theorem 4 is stronger than in Conjecture 2. We now show that such a conclusion is impossible (without some extra degree assumption).

Lemma 5. For all integers k and δ, there are infinitely many digraphs G with minimum outdegree δ, such that for every vertex k-colouring of G, there is a vertex v such that all the out-neighbours of v receive the same colour.

Proof. Start with a digraph G_{0} with at least $k \delta$ vertices and minimum outdegree δ. For each set S of δ vertices in G_{0}, add a new vertex with out-neighbourhood S. Let G be the digraph obtained. In every k-colouring of G, at least δ vertices in G_{0} receive the same colour, which implies that for some vertex $v \in V(G) \backslash V\left(G_{0}\right)$, all the out-neighbours of v receive the same colour.

3 Stable Sets

A set T of vertices in a digraph G is a stable set if for each vertex $v \in T$, at most half the out-neighbours of v are also in T. A majority colouring is a partition into stable sets. Of course, if a digraph has a majority 3 -colouring, then it contains a stable set with at least one third of the vertices. The next lemma provides a sufficient condition for the existence of such a set.

Theorem 6. Every digraph G with n vertices and minimum outdegree at least 22 has a stable set with at least $\frac{n}{3}$ vertices.

Theorem 6 is proved via the following more general lemma.

Lemma 7. For $0<\alpha<p<\beta<1$, every digraph G with minimum outdegree at least

$$
\delta:=\left\lceil\frac{(\beta+p) \log \left(\frac{p}{p-\alpha}\right)}{(\beta-p)^{2}}\right\rceil
$$

contains a set T of at least α n vertices, such that $\left|N_{G}^{+}(v) \cap T\right| \leqslant \beta\left|N_{G}^{+}(v)\right|$ for every vertex $v \in T$.

Proof. Let $d_{v}:=\left|N_{G}^{+}(v)\right|$ be the outdegree of each vertex v of G. Initialise $S:=\emptyset$. For each vertex v of G, add v to S independently and randomly with probability p. Let $X_{v}:=\left|N_{G}^{+}(v) \cap S\right|$. Note that $X_{v} \sim \operatorname{Bin}\left(d_{v}, p\right)$ and

$$
\begin{equation*}
\mathbf{P}\left(X_{v}>\beta d_{v}\right)=\sum_{k \geqslant\left\lfloor\beta d_{v}\right\rfloor+1}^{d_{v}}\binom{d_{v}}{k} p^{k}(1-p)^{d_{v}-k} . \tag{1}
\end{equation*}
$$

By the Chernoff bound ${ }^{2}$,

$$
\begin{equation*}
\mathbf{P}\left(X_{v}>\beta d_{v}\right) \leqslant \exp \left(-\frac{(\beta-p)^{2}}{\beta+p} d_{v}\right) \leqslant \exp \left(-\frac{(\beta-p)^{2}}{\beta+p} \delta\right) \leqslant \frac{p-\alpha}{p} . \tag{2}
\end{equation*}
$$

where the last inequality follows from the definition of δ. Let $B:=\left\{v \in S: X_{v}>\beta d_{v}\right\}$. Then

$$
\mathbf{E}(|B|)=\sum_{v \in V(G)} \mathbf{P}\left(v \in S \text { and } X_{v}>\beta d_{v}\right) .
$$

Since the events $v \in S$ and $X_{v}>\beta d_{v}$ are independent,

$$
\mathbf{E}(|B|)=\sum_{v \in V(G)} \mathbf{P}(v \in S) \mathbf{P}\left(X_{v}>\beta d_{v}\right)=p \sum_{v \in V(G)} \mathbf{P}\left(X_{v}>\beta d_{v}\right) \leqslant(p-\alpha) n .
$$

Let $T:=S \backslash B$. Thus $\left|N_{G}^{+}(v) \cap T\right| \leqslant \beta d_{v}$ for each vertex $v \in T$, as desired. By the linearity of expectation,

$$
\mathbf{E}(|T|)=\mathbf{E}(|S|)-\mathbf{E}(|B|)=p n-\mathbf{E}(|B|) \geqslant \alpha n .
$$

Thus there exists the desired set T.

Proof of Theorem 6. The proof follows that of Lemma 7 with one change. Let $\alpha:=\frac{1}{3}$ and $\beta:=\frac{1}{2}$ and $p:=0.38$. Then $\delta=129$. If $22 \leqslant d_{v} \leqslant 128$ then direct calculation of the formula in (1) verifies that $\mathbf{P}\left(X_{v}>\beta d_{v}\right) \leqslant \frac{p-\alpha}{p}$, as in (2). For $d_{v} \geqslant 129$ the Chernoff bound proves (2). The rest of the proof is the same as in Lemma 7.

[^2]Note the following corollary of Lemma 7 obtained with $\alpha=\frac{1}{2}-\epsilon$ and $p=\frac{1}{2}-\frac{\epsilon}{2}$. This says that graphs with large minimum outdegree have a stable set with close to half the vertices.

Proposition 8. For $0<\epsilon<\frac{1}{2}$, every n-vertex digraph G with minimum outdegree at least $2 \epsilon^{-2}(2-\epsilon) \log \left(\frac{1-\epsilon}{\epsilon}\right)$ contains a stable set of at least $\left(\frac{1}{2}-\epsilon\right) n$ vertices.

4 Multi-Colour Generalisation

The following natural generalisation of Conjecture 2 arises.
Conjecture 9. For $k \geqslant 2$, every digraph has a vertex $(k+1)$-colouring such that for each vertex v, at most $\frac{1}{k} \mathrm{deg}^{+}(v)$ out-neighbours of v receive the same colour as v.

The proof of Theorem 1 generalises to give an upper bound of k^{2} on the number of colours in Conjecture 9. It is open whether the number of colours is $O(k)$. This conjecture would be best possible, as shown by the following example. Let G be the k-th power of an n-cycle, with arcs oriented clockwise, where $n \geqslant 2 k+3$ and $n \not \equiv 0(\bmod k+1)$. Each vertex has outdegree k. Say G has a vertex ($k+1$)-colouring such that for each vertex v, at most ϵk out-neighbours of v receive the same colour as v. If $\epsilon k<1$ then the underlying undirected graph of G is properly coloured, which is only possible if $n \equiv 0(\bmod k+1)$. Hence $\epsilon \geqslant \frac{1}{k}$.

Lemma 7 with $\alpha=\frac{1}{k}-\epsilon$ and $\beta=\frac{1}{k}$ and $p=\frac{1}{k}-\frac{\epsilon}{2}$ implies the following 'stable set' version of Conjecture 9 for digraphs with large minimum outdegree.

Proposition 10. For $k \geqslant 2$ and $\epsilon \in\left(0, \frac{1}{k}\right)$, every n-vertex digraph G with minimum outdegree at least $2 \epsilon^{-2}\left(\frac{4}{k}-\epsilon\right) \log \left(\frac{2}{\epsilon k}-1\right)$ contains a set T of at least $\left(\frac{1}{k}-\epsilon\right) n$ vertices, such that for every vertex $v \in T$, at most $\frac{1}{k} \operatorname{deg}^{+}(v)$ out-neighbours of v are also in T.

5 Open Problems

In addition to resolving Conjecture 2, the following open problems arise from this paper:

1. Is there a constant $\beta<1$ for which every digraph has a 3 -colouring, such that for every vertex v, at most $\beta \operatorname{deg}^{+}(v)$ out-neighbours receive the same colour as v ?
2. Does every tournament have a majority 3-colouring?
3. Does every Eulerian digraph have a majority 3-colouring? Note that for an Eulerian digraph G, if each vertex v has in-degree and out-degree $\operatorname{deg}(v)$, then by the result for undirected graphs mentioned in Section 1, the underlying undirected graph of G has a

4-colouring such that each vertex v has at most $\frac{1}{2} \operatorname{deg}(v)$ in- or- out-neighbours with the same colour as v. In particular, G has a majority 4 -colouring. By an analogous argument every Eulerian digraph has a 3 -colouring such that each vertex v has at most $\frac{2}{3} \operatorname{deg}(v)$ in- or- out-neighbours with the same colour as v, thus proving a special case of the first question above.
4. Does every digraph in which every vertex has in-degree and out-degree k have a majority 3 -colouring? A variant of Theorem 4 proves this result for $k \geqslant 144$.
5. Is there a characterisation of digraphs that have a majority 2-colouring (or a polynomial time algorithm to recognise such digraphs)?
6. Does every digraph have a $O(k)$-colouring such that for each vertex v, at most $\frac{1}{k} \operatorname{deg}^{+}(v)$ out-neighbours receive the same colour as v (for all $k \geqslant 2$)?
7. A digraph G is majority c-choosable if for every function $L: V(G) \rightarrow \mathbb{Z}$ with $|L(v)| \geqslant c$ for each vertex $v \in V(G)$, there is a majority colouring of G with each vertex v coloured from $L(v)$. Is every digraph majority c-choosable for some constant c ? The proof of Theorem 1 shows that acyclic digraphs are majority 2-choosable, and obviously Theorem 3 and Theorem 4 extend to the setting of choosability.
8. Consider the following fractional setting. Let $S(G)$ be the set of all stable sets of a digraph G. Let $S(G, v)$ be the set of all stable sets containing v. A fractional majority colouring is a function that assigns each stable set $T \in S(G)$ a weight $x_{T} \geqslant 0$ such that $\sum_{T \in S(G, v)} x_{T} \geqslant 1$ for each vertex v of G. What is the minimum number k such that every digraph G has a fractional majority colouring with total weight $\sum_{T \in S(G)} x_{T} \leqslant k$? Perhaps it is less than 3.

Acknowledgements

This research was initiated at the Workshop on Graph Theory at Bellairs Research Institute (March 25 - April 1, 2016).

References

[1] Noga Alon. Disjoint directed cycles. J. Combin. Theory Ser. B, 68(2):167-178, 1996. doi: 10.1006/jctb.1996.0062. MR: 1417794.
[2] Noga Alon. Splitting digraphs. Combin. Probab. Comput., 15(6):933-937, 2006. doi: 10.1017/S0963548306008042. MR: 2271836.
[3] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, volume 10 of Colloq. Math. Soc. János Bolyai, pages 609-627. North-Holland, 1975. https://www.renyi.hu/~p_erdos/1975-34.pdf.
[4] László Lovász. On decomposition of graphs. Studia Sci. Math. Hungar., 1:237-238, 1966. MR: 0202630.
[5] Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, volume 23 of Algorithms and Combinatorics. Springer, 2002.
[6] Paul D. Seymour. On the two-colouring of hypergraphs. Quarterly J. Math, 25(1):303-311, 1974. doi: 10.1093/qmath/25.1.303. MR: 0371710.
[7] Dominic van der Zypen. Majority coloring for directed graphs. 2016. http://mathoverflow. net/questions/233014/majority-coloring-for-directed-graphs.
[8] David R. Wood. Bounded degree acyclic decompositions of digraphs. J. Combin. Theory Ser. B, 90:309-313, 2004. doi:10.1016/j.jctb.2003.08.004. MR: 2034031.

[^0]: September 1, 2016
 ${ }^{\dagger}$ Chair for Logic and Semantics, Technical University Berlin, Germany (stephan.kreutzer@tu-berlin.de). Research partly supported by DFG Emmy-Noether Grant Games and by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 648527).
 \# Department of Mathematical Sciences, KAIST, Daejeon, South Korea (sangil@kaist.edu).
 § Department of Mathematics, Princeton University, New Jersey, U.S.A. (pds@math. princeton. edu).
 ${ }^{9}$ Federal Office of Social Insurance, Bern, Switzerland (dominic.zypen@gmail.com).

 * School of Mathematical Sciences, Monash University, Melbourne, Australia (david. wood@monash.edu). Research supported by the Australian Research Council.

[^1]: ${ }^{1}$ The simple concentration bound says that if X is a random variable determined by d independent trials, such that changing the outcome of any one trial can affect X by at most c, then $\mathbf{P}(X>\mathbf{E}(X)+t) \leqslant \exp \left(-t^{2} / 2 c^{2} d\right)$; see [5, Chapter 10]. With $\mathbf{E}\left(X_{v}\right)=d_{v} / 3$ and $t=d_{v} / 6$ and $c=1$ we obtain the desired upper bound on $\mathbf{P}\left(X_{v}>d_{v} / 2\right)$.

[^2]: ${ }^{2}$ The Chernoff bound implies that if $X \sim \operatorname{Bin}(d, p)$ then $\mathbf{P}(X \geqslant(1+\epsilon) p d) \leqslant \exp \left(-\frac{\epsilon^{2}}{2+\epsilon} p d\right)$ for $\epsilon \geqslant 0$. With $\epsilon=\frac{\beta}{p}-1$ we have $\mathbf{P}(X>\beta d) \leqslant \exp \left(-\frac{(\beta-p)^{2}}{p+\beta} d\right)$.

