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Hajós conjectured that every graph containing no subdivision 
of the complete graph Ks+1 is properly s-colorable. This 
conjecture was disproved by Catlin. Indeed, the maximum 
chromatic number of such graphs is Ω(s2/ log s). We prove 
that O(s) colors are enough for a weakening of this conjecture 
that only requires every monochromatic component to have 
bounded size (so-called clustered coloring).
Our approach leads to more results, many of which only 
require a much weaker assumption that forbids an ‘almost 
(� 1)-subdivision’ (where at most one edge is subdivided more 
than once). This assumption is best possible, since no bound 
on the number of colors exists unless we allow at least one 
edge to be subdivided arbitrarily many times. We prove the 
following (where s � 2):

1. Graphs of bounded treewidth and with no almost 
(� 1)-subdivision of Ks+1 are s-choosable with bounded 
clustering.

2. For every graph H, graphs with no H-minor and no 
almost (� 1)-subdivision of Ks+1 are (s + 1)-colorable 
with bounded clustering.

3. For every graph H of maximum degree at most d, graphs 
with no H-subdivision and no almost (� 1)-subdivision 
of Ks+1 are max{s + 3d − 5, 2}-colorable with bounded 
clustering.
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4. For every graph H of maximum degree d, graphs with no 
Ks,t subgraph and no H-subdivision are max{s + 3d −
4, 2}-colorable with bounded clustering.

5. Graphs with no Ks+1-subdivision are (4s − 5)-colorable 
with bounded clustering.

The first result is tight and shows that the clustered analogue 
of Hajós’ conjecture is true for graphs of bounded treewidth. 
The second result implies an upper bound for the clustered 
version of Hadwiger’s conjecture that is only one color away 
from the known lower bound, and shows that the number of 
colors is independent of the forbidden minor. The final result 
is the first O(s) bound on the clustered chromatic number of 
graphs with no Ks+1-subdivision.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In the 1940s, Hajós conjectured that every graph containing no subdivision of the com-
plete graph Ks+1 is s-colorable; see [25,30,31]. Dirac [5] proved the conjecture for s � 3. 
It is open for s ∈ {4, 5}, which would imply the Four Color Theorem. Catlin [3] presented 
counterexamples for all s � 6, and Erdős and Fajtlowicz [9] proved that the conjecture 
is false for almost all graphs. Indeed, there are graphs with no Ks+1-subdivision and 
with chromatic number Ω(s2/ log s). The best upper bound on the number of colors is 
O(s2), independently due to Bollobás and Thomason [2] and Komlós and Szemerédi [19]; 
see [12] for a related result. See [25,31] for more explicit counterexamples and further 
discussion of connections to other areas of graph theory.

The purpose of this paper is to prove several positive results in the direction of weak-
enings of Hajós’ conjecture. Define a coloring of a graph G to simply be a function that 
assigns one color to each vertex of G. For a coloring c of a graph G, a monochromatic c-
component of G is a connected component of a subgraph of G induced by all the vertices 
assigned the same color by c. When c is clear, we simply write monochromatic component. 
A coloring has clustering η if every monochromatic component has at most η vertices. 
Our focus is on minimizing the number of colors, with small clustering as a secondary 
goal. The clustered chromatic number of a graph class F is the minimum integer k for 
which there exists an integer c such that every graph in F has a k-coloring with cluster-
ing c. There have been several recent papers on this topic [1,4,6,10,11,13–18,20,21,26,28]; 
see [33] for a survey.

Most of our results actually hold (in some sense) for more general classes of graphs 
than those with no Ks+1-subdivision, as we now explain. Say a graph H ′ is an almost 
(� 1)-subdivision of a graph H if H ′ can be obtained from H by subdividing edges, 
where at most one edge is subdivided more than once. Most of our results say that all 
graphs containing no almost (� 1)-subdivision of Ks+1, plus some other properties, are 
s-colorable with bounded clustering.
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The following is our first main result. It provides a Hajós-type result for clustered 
coloring of graphs with bounded treewidth.

Theorem 1. For all s, w ∈ N, there exists η ∈ N such that every graph with treewidth 
at most w and with no almost (� 1)-subdivision of Ks+1 is s-choosable with cluster-
ing η.

The notion of s-choosable with bounded clustering is defined in Section 2.1. Note that 
every graph that is s-choosable with bounded clustering is also s-colorable with bounded 
clustering. This shows that the number of colors in Theorem 1 is best possible in the 
following strong sense: for all s ∈ N and η ∈ N there is a graph G with treewidth at 
most s − 1 (and thus with no subdivision of Ks+1), such that every (s − 1)-coloring of G
has a monochromatic component with at least η vertices; see [33]. In particular, at least 
s colors are required even for this weakening of Hajós’ conjecture.

The assumption of bounded treewidth in Theorem 1 is equivalent to saying that the 
graph excludes a planar graph as a minor by Robertson and Seymour’s Grid Minor 
Theorem [29]. What if we exclude a general graph as a minor? Our next result answers 
this question (with one more color).

Theorem 2. For every s ∈ N and every graph H, there exists η ∈ N such that every 
graph containing no H-minor and containing no almost (� 1)-subdivision of Ks+1 is 
(s + 1)-colorable with clustering η.

Theorem 2 (with H = Ks+1) has the following interesting corollary for graphs exclud-
ing a minor.

Corollary 3. For every s ∈ N there exists η ∈ N such that every graph containing no 
Ks+1-minor is (s + 1)-colorable with clustering η.

Kawarabayashi and Mohar [18] first proved that graphs containing no Ks+1-minor are 
O(s)-colorable with bounded clustering. The bound on the number of colors has since 
been steadily improved [7,15,21,27,32]. Prior to the present work, the best bound was 
s + 2, which followed from a general result by the authors [23]. Corollary 3 improves 
this bound to s + 1, although it should be noted that results from [23] are essential for 
the proof of Theorem 2 and Corollary 3. Dvořák and Norin [6] have announced that a 
forthcoming paper will prove that s colors suffice (which is the clustered analogue of 
Hadwiger’s Conjecture, and would be best possible). Their result is incomparable with 
Theorem 2 and the aforementioned general result in [23].

Our next result relaxes the assumption that the graph contains no H-minor, and 
instead assumes that it contains no H-subdivision. The price paid is an increase in the 
number of colors, depending only on the maximum degree of H.
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Theorem 4. For every s ∈ N and every graph H with maximum degree d ∈ N, there exists 
η ∈ N such that every graph with no H-subdivision and no almost (� 1)-subdivision of 
Ks+1 is max{s + 3d − 5, 2}-colorable with clustering η.

The next theorem relaxes the assumption of no almost (� 1)-subdivision of Ks+1, 
and instead assumes the graph contains no Ks,t-subgraph. Interestingly the number of 
colors does not depend on t. Note that Ks,t contains a Ks+1-subdivision where every 
edge is subdivided at most once, when t is sufficiently large.

Theorem 5. For s, t, d ∈ N and every graph H of maximum degree d, there exists η ∈ N

such that every graph with no Ks,t-subgraph and no H-subdivision is max{s +3d −4, 2}-
colorable with clustering η.

We remark that all of the above theorems forbid (� 1)-subdivisions of Ks+1 or subdi-
visions of H. That is, we forbid a subdivision of a graph where some edge is allowed to be 
subdivided arbitrarily many times. This condition is required since there are graphs of 
arbitrarily high girth and arbitrarily high chromatic number [8], which therefore require 
arbitrarily many colors for any fixed clustering value; this shows that excluding finitely 
many graphs as subgraphs cannot ensure any upper bound on the number of colors.

Our final theorem simply excludes a Ks+1-subdivision. This is the first O(s) bound 
on the clustered chromatic number of the class of graphs excluding a Ks+1-subdivision.

Theorem 6. For each s ∈ N, there exists η ∈ N such that every graph containing no 
Ks+1-subdivision is max{4s − 5, 1}-colorable with clustering η.

We now compare the above theorems with Hajós’ conjecture. First note that The-
orems 1–4 are stronger than Hajós’ conjecture in the sense that they only exclude an 
almost (� 1)-subdivision of Ks+1, whereas Hajós’ conjecture excludes all subdivisions 
of Ks+1. Moreover, Theorem 1 also holds in the stronger setting of choosability. On the 
other hand, Theorems 1–6 are weaker than Hajós’ conjecture in the sense that they have 
bounded clustering rather than a proper coloring. However, such a weakening is un-
avoidable since Hajós’ conjecture is false. Indeed, the proof of the theorem of Erdős and 
Fajtlowicz [9] mentioned above shows that, for a suitable constant c, almost every graph 
on cs2 vertices contains no subdivision of Ks+1 and has chromatic number Ω(s2/ log s). 
Trivially, such a graph has treewidth at most cs2 and contains no Kcs2-minor. Thus the 
clustering function in all of the above theorems is at least Ω(s/ log s).

The paper is organized as follows. Section 2 introduces preliminary definitions and 
results from our companion papers [23,24] that are used in the present paper. Section 3
introduces a structure theorem of the first author and Thomas [22] for graphs excluding 
a fixed subdivision, and uses it to prove Theorem 5. Building on this work, Section 4
proves the remaining theorems mentioned above.
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2. Preliminaries

We use the following notation. Let N0 := {0, 1, 2, . . . } and N := {1, 2, . . . }. For 
m, n ∈ N0, let [m, n] := {m, m + 1, . . . , n} and [n] := [1, n].

Let G be a graph (allowing loops and parallel edges). For v ∈ V (G), let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} be the neighborhood of v, and let NG[v] := NG(v) ∪ {v}. For 
X ⊆ V (G), let NG(X) :=

⋃
v∈X(NG(v) − X) and NG[X] := NG(X) ∪ X. Denote the 

subgraph of G induced by X by G[X].
For a graph G, a subset X of V (G), and an integer s � 1, let

N�s
G (X) := {v ∈ V (G) −X : |NG(v) ∩X| � s} and

N<s
G (X) := {v ∈ V (G) −X : 1 � |NG(v) ∩X| < s}.

When the graph G is clear from the context we write N�s(X) instead of N�s
G (X), and 

similarly for N<s(X).

Lemma 7 ([24, Lemma 12]). For all s, t ∈ N, there exists a function fs,t : N0 → N0 such 
that for every graph G with no Ks,t subgraph, if X ⊆ V (G) then |N�s(X)| � fs,t(|X|).

Lemma 7 is sufficient to prove the theorems in this paper. But when G excludes a fixed 
minor or subdivision of a fixed graph, the function fs,t in Lemma 7 can be made linear; 
see [24]. This improves the clustering function in all our results, although to simplify the 
presentation, we choose not to explicitly evaluate our clustering functions.

A tree-decomposition of a graph G is a pair (T, X = (Xx : x ∈ V (T ))), where T is a 
tree and for each node x ∈ V (T ), Xx is a subset of V (G) called a bag, such that for each 
vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Xx} induces a non-empty (connected) subtree 
of T , and for each edge vw ∈ E(G) there is a node x ∈ V (T ) such that {v, w} ⊆ Xx. 
The width of a tree-decomposition (T, X ) is max{|Xx| − 1 : x ∈ V (T )}. The treewidth of 
a graph G is the minimum width of a tree-decomposition of G.

Let H be a graph. An H-minor of a graph G is a map α with domain V (H) ∪E(H)
such that:

• For every h ∈ V (H), α(h) is a nonempty connected subgraph of G.
• If h1 and h2 are different vertices of H, then α(h1) and α(h2) are disjoint.
• For each edge e of H with endpoints h1, h2, α(e) is an edge of G with one end in 

α(h1) and one end in α(h2); furthermore, if h1 = h2, then α(e) ∈ E(G) −E(α(h1)).
• If e1, e2 are two different edges of H, then α(e1) �= α(e2).

2.1. List coloring

For our purposes, a color is an element of Z. Let G be a graph. A list-assignment of 
G is a function L with domain containing V (G), such that L(v) is a non-empty set of 
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colors for each vertex v ∈ V (G). For a list-assignment L of V (G), an L-coloring of G is 
a coloring c of G such that c(v) ∈ L(v) for every v ∈ V (G). An L-coloring has clustering
η if every monochromatic component has at most η vertices. A list-assignment L of G
is an �-list-assignment if |L(v)| � � for every vertex v ∈ V (G). A graph G is �-choosable 
with clustering η if G is L-colorable with clustering η for every �-list-assignment L of G.

For a graph G, a subset Y1 ⊆ V (G), and s, r ∈ N, a list-assignment L of G is an 
(s, r, Y1)-list-assignment if:

(L1) |L(v)| ∈ [s + r] for every v ∈ V (G).
(L2) Y1 = {v ∈ V (G) : |L(v)| = 1}.
(L3) For every y ∈ N<s(Y1),

|L(y)| = s + r − |NG(y) ∩ Y1| � r + 1

and L(y) ∩ L(u) = ∅ for every u ∈ NG(y) ∩ Y1.
(L4) For every v ∈ V (G) −NG[Y1], we have |L(v)| = s + r.
(L5) For every v ∈ V (G) − Y1, we have |L(v)| � r + 1.

We say that an (s, r, Y1)-list-assignment L of G is restricted if:

(L1’) L(v) ⊆ [s + r] for every v ∈ V (G).

Note that a restricted (s, 2, Y1)-list-assignment is called a (s, Y1, 0, 0)-list-assignment in 
our companion paper [23].

For a list-assignment L of a graph G with Y1 = {v ∈ V (G) : |L(v)| = 1}, for η ∈ N

and a nondecreasing function g : N → N, an L-coloring c of G is (η, g)-bounded if:

• the union of the monochromatic components intersecting Y1 contains at most 
|Y1|2g(|Y1|) vertices, and

• every monochromatic component contains at most η2g(η) vertices.

2.2. Companion results

Our companion paper proves the following results for graphs with no Ks,t subgraph. 
The first assumes bounded treewidth, the second assumes an excluded minor.

Theorem 8 ([23, Theorem 17]). For all s, t, w ∈ N, there exist η ∈ N and a nondecreasing 
function g such that if G is a graph of treewidth at most w and with no Ks,t subgraph, 
Y1 is a subset of V (G) with |Y1| � η, and L is an (s, 1, Y1)-list-assignment of G, then 
there exists an (η, g)-bounded L-coloring of G.

Theorem 9 ([23, Theorem 24]). For all s, t ∈ N and for every graph H, there exist η ∈ N

and a nondecreasing function g such that if G is a graph with no Ks,t subgraph and no 
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H-minor, Y1 is a subset of V (G) with |Y1| � η, and L is a restricted (s, 2, Y1)-list-
assignment of G, then there exists an (η, g)-bounded L-coloring.

2.3. Progress

The concept of “progress” from the proofs of the above two theorems is re-used in 
the present paper. Let s, r ∈ N and L be an (s, r, Y1)-list-assignment of a graph G. For 
W ⊆ V (G), a W -progress of L is a list-assignment L′ of G defined as follows:

• Let Y ′
1 := Y1 ∪W .

• For every y ∈ Y1, let L′(y) := L(y).
• For every y ∈ Y ′

1 − Y1, let L′(y) be a 1-element subset of L(y) (which exists by 
(L2)–(L5)).

• For each v ∈ N<s(Y ′
1), let L′(v) be a subset of L(v) −{L′(w) : w ∈ NG(v) ∩(W−Y1)}

of size |L(v)| − |NG(v) ∩ (W − Y1)|.
• For every v ∈ V (G) − (Y ′

1 ∪N<s(Y ′
1)), let L′(v) := L(v).

Lemma 10 ([23, Lemma 12 with F = ∅]). Let s, r ∈ N and L be an (s, r, Y1)-list-
assignment of a graph G. Let W ⊆ V (G). Then every W -progress L′ of L is an 
(s, r, Y1 ∪W )-list-assignment of G, and L′(v) ⊆ L(v) for every v ∈ V (G).

Lemma 11 ([23, Lemma 13 with F = ∅]). For all s, t, k ∈ N, there exist a number η > k

and a nondecreasing function g with domain N0 and with g(0) � η such that if G is a 
graph with no Ks,t subgraph, r ∈ N, Y1 is a subset of V (G) with |Y1| � η, and L is an 
(s, r, Y1)-list-assignment of G, then at least one of the following holds:

1. There exists an (η, g)-bounded L-coloring of G.
2. |Y1| > k.
3. For every color �, there exist a subset Y ′

1 of V (G) with η � |Y ′
1 | > |Y1| and an 

(s, r, Y ′
1)-list-assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G), such that:

(a) there does not exist an (η, g)-bounded L′-coloring c′ of G,
(b) for every L′-coloring of G, every monochromatic component intersecting Y1 is 

contained in G[Y ′
1 ], and

(c) for every y ∈ Y ′
1 with � ∈ L′(y), we have {v ∈ NG(y) − Y ′

1 : � ∈ L′(v)} = ∅.
4. Y1 �= ∅, NG(Y1) = ∅, and there does not exist an (η, g)-bounded L|G−Y1-coloring of 

G − Y1.

2.4. Separations and tangles

A separation of a graph G is an ordered pair (A, B) of edge-disjoint subgraphs of G
with A ∪B = G. The order of (A, B) is |V (A ∩B)|. A tangle T in a graph G of order θ
is a set of separations of G of order less than θ such that:
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(T1) For every separation (A, B) of G of order less than θ, either (A, B) ∈ T or (B, A) ∈
T .

(T2) If (Ai, Bi) ∈ T for i ∈ [3], then A1 ∪A2 ∪A3 �= G.
(T3) If (A, B) ∈ T , then V (A) �= V (G).

Lemma 12 ([23, Lemma 16 with F = ∅]). For all s, t, θ, η, r ∈ N with η � 9θ + 1, for 
every nondecreasing function g with domain N0, if G is a graph with no Ks,t subgraph, 
Y1 is a subset of V (G) with 9θ + 1 � |Y1| � η, and L is an (s, r, Y1)-list-assignment of 
G, then at least one of the following holds:

1. There exists an (η, g)-bounded L-coloring of G.
2. There exist an induced subgraph G′ of G with |V (G′)| < |V (G)|, a subset Y ′

1 of V (G′)
with |Y ′

1 | � η and an (s, r, Y ′
1)-list-assignment L′ of G′ such that:

(a) L′(v) ⊆ L(v) for every v ∈ V (G′).
(b) There does not exist an (η, g)-bounded L′-coloring of G′.

3. T := {(A, B) : |V (A ∩B)| < θ, |V (A) ∩ Y1| � 3θ} is a tangle of order θ in G.

A tangle T in G controls an H-minor α if there does not exist (A, B) ∈ T of order 
less than |V (H)| such that V (α(h)) ⊆ V (A) for some h ∈ V (H).

Lemma 13 ([23, Lemma 23 with � = r = 0]). For all s, t, t′ ∈ N, there exist θ∗ ∈ N and 
nondecreasing functions g∗, η∗ with domain N0 such that if G is a graph with no Ks,t

subgraph, θ ∈ N with θ � θ∗, η ∈ N with η � η∗(θ), Y1 ⊆ V (G) with 3θ < |Y1| � η, L
is a restricted (s, 2, Y1)-list-assignment of G, g is a nondecreasing function with domain 
N0 with g � g∗, and T := {(A, B) : |V (A ∩ B)| < θ, |V (A) ∩ Y1| � 3θ} is a tangle in G
of order θ that does not control a Kt′-minor, then either:

1. there exists an (η, g)-bounded L-coloring of G, or
2. there exist (A∗, B∗) ∈ T , a set YA∗ with |YA∗ | � η∗(θ) and Y1 ∩ V (A∗) ⊆ YA∗ ⊆

V (A∗), and a restricted (s, 2, YA∗)-list-assignment LA∗ of G[V (A∗)] such that there 
exists no (η, g)-bounded LA∗-coloring of G[V (A∗)].

3. Excluding subdivisions

The following theorem is a special case of a theorem by the first author and 
Thomas [22].

Theorem 14 ([22, Theorem 6.8]). For any integers d, h and graph H on h vertices with 
maximum degree at most d, there exist integers θ, ξ such that if G is a graph containing 
no H-subdivision, and if T is a tangle in G of order at least θ controlling a K� 3

2dh�-minor, 
then there exists Z ⊆ V (G) with |Z| � ξ such that for every vertex v ∈ V (G) − Z, there 
exists (A, B) ∈ T − Z of order less than d such that v ∈ V (A) − V (B).



C.-H. Liu, D.R. Wood / Journal of Combinatorial Theory, Series B 152 (2022) 27–54 35
The next two lemmas imply Theorem 5, since if s, d ∈ N and 3d + s < 7, then d = 1.

Lemma 15. If H is a graph of maximum degree at most 1, then every graph with no 
H-subdivision is 2-colorable with clustering max{2|V (H)| − 2, 1}.

Proof. Since H is of maximum degree at most one, G has no H-subdivision implies that 
G does not contain a matching of size |V (H)|, and hence G contains a vertex-cover S
of size at most 2|V (H)| − 2. By coloring every vertex in S with 1 and coloring every 
vertex in V (G) − S with 2, we obtain a 2-coloring of G with clustering max{|S|, 1} �
max{2|V (H)| − 2, 1}. �
Lemma 16. For any s, t, d ∈ N and graph H of maximum degree d with 3d + s � 7, 
there exist η ∈ N and a nondecreasing function g such that if G is a graph with no Ks,t

subgraph and no H-subdivision, Y1 ⊆ V (G) with |Y1| � η and L is a restricted (s′, 2, Y1)-
list-assignment of G, then there exists an (η, g)-bounded L-coloring, where s′ = 3d +s −6.

Proof. Define the following:

• Let f be the function fs,t mentioned in Lemma 7.
• Let θ0 be the number θ∗ and g0, η0 be the functions g∗, η∗, respectively, mentioned 

in Lemma 13 by taking s = s′, t = t and t′ = 	3
2d|V (H)|
.

• Let θ1 and ξ be the numbers θ and ξ mentioned in Theorem 14, respectively, by 
taking d = d, h = |V (H)| and H = H.

• Let a0 := f(ξ)d2 + ξ + 1, and let ai := dai−1 + 1 for i ∈ N.
• Let θ := θ0 + θ1 + (d − 1)a(d−1)a0 .
• Let η1 be the number η and let g1 be the function g mentioned in Lemma 11 by 

taking s = s′, t = t and k = 9θ. Note that g(0) � η1 > 9θ by Lemma 11.
• Let η := η0(θ) + η1 + (d − 1)a(d−1)a0 .
• Let g : N → N be the function defined by g(0) := g0(0) + g1(0) and g(x + 1) :=

g0(x + 1) + g1(x + 1) +
∑x

i=0 i
2g(i) for x ∈ N.

Let G be a graph with no Ks,t subgraph and with no subdivision of H, let Y1 ⊆ V (G)
with |Y1| � η, and let L be a restricted (s′, 2, Y1)-list-assignment of G. Suppose to the 
contrary that there exists no (η, g)-bounded L-coloring of G. We further assume that 
|V (G)| is minimum, and subject to this, |Y1| is maximum.

Claim 16.1. Y1 �= ∅ and NG(Y1) �= ∅.

Proof. First suppose that Y1 = ∅. Let v be a vertex of G, and let L′ be a {v}-progress of 
L. Let Y ′

1 = {v}. By Lemma 10, L′ is an (s′, 2, Y ′
1)-list-assignment of G. Since |Y ′

1 | � η, 
the maximality of |Y1| implies that there exists an (η, g)-bounded L′-coloring c′ of G. 
But c′ is an (η, g)-bounded L-coloring c of G, a contradiction.
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So Y1 �= ∅. Suppose that NG(Y1) = ∅. Let G′ := G − Y1. Then L|G′ is an (s′, 2, ∅)-
list-assignment of G − Y1. By the minimality of |V (G)|, there exists an (η, g)-bounded 
L|G′ -coloring c of G′. Color each vertex y in Y1 with the unique element in L(y). Since 
|Y1| � |Y1|2g(|Y1|), we obtain an (η, g)-bounded L-coloring of G, a contradiction. �
Claim 16.2. |Y1| � 9θ + 1.

Proof. Suppose |Y1| � 9θ. So |Y1| < η1. Since G has no Ks,t subgraph, G has no Ks′,t

subgraph. Applying Lemma 11 and Claim 16.1, either there exists an (η1, g1)-bounded 
L-coloring of G, or there exist Y ′

1 ⊆ V (G) with η1 � |Y ′
1 | > |Y1| and an (s′, 2, Y ′

1)-list-
assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G) such that for every L′-coloring 
of G, every monochromatic component intersecting Y1 is contained in G[Y ′

1 ]. Since η1 � η

and g1 � g, every (η1, g1)-bounded L-coloring of G is an (η, g)-bounded L-coloring of 
G, so the former does not hold. Hence there exist Y ′

1 ⊆ V (G) with η1 � |Y ′
1 | > |Y1|

and a restricted (s′, 2, Y ′
1)-list-assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G)

such that for every L′-coloring of G, every monochromatic component intersecting Y1 is 
contained in G[Y ′

1 ]. Since |Y ′
1 | � η1 � η, the maximality of |Y1| implies that there exists 

an (η, g)-bounded L′-coloring c′ of G. So every monochromatic component respect to 
c′ contains at most η2g(η) vertices. Since L′(v) ⊆ L(v) for every v ∈ V (G), c′ is also 
an L-coloring of G. Every monochromatic c′-component intersecting Y1 is contained in 
G[Y ′

1 ] and hence contains at most |Y ′
1 | � η1 � g1(0) � g(0) � |Y1|2g(|Y1|) vertices. So c′

is an (η, g)-bounded L-coloring of G, a contradiction. �
Let T be the set of separations (A, B) of G such that |V (A ∩B)| < θ and |V (A) ∩Y1| �

3θ.

Claim 16.3. T is a tangle in G of order θ.

Proof. Suppose that T is not a tangle in G of order θ. Note that G has no Ks′,t subgraph 
and L is an (s′, 2, Y1)-list-assignment of G with η � |Y1| � 9θ+1 by Claim 16.2. Applying 
Lemma 12 by taking s = s′, t = t, θ = θ, η = η, r = 2 and g = g, there exists an induced 
subgraph G′ of G with |V (G′)| < |V (G)|, a subset Y ′

1 ⊆ V (G′) with |Y ′
1 | � η, and an 

(s′, 2, Y ′
1)-list-assignment L′ of G′ with L′(v) ⊆ L(v) for every v ∈ V (G) such that there 

exists no (η, g)-bounded L′-coloring of G′. This contradicts the minimality of |V (G)|. �
Claim 16.4. T controls a K� 3

2d|V (H)|�-minor.

Proof. Suppose to the contrary that T does not control a K� 3
2d|V (H)|�-minor. Note that 

θ � θ0, η � η0(θ) and g � g0. Apply Lemma 13 with s = s′, t = t and t′ = 	3
2d|V (H)|
. 

Since there does not exist an (η, g)-bounded L-coloring of G, we know there exist 
(A∗, B∗) ∈ T , a set YA∗ with |YA∗ | � η0(θ) � η and Y1 ∩ V (A∗) ⊆ YA∗ ⊆ V (A∗), and 
a restricted (s′, 2, YA∗)-list-assignment LA∗ of G[V (A∗)] such that there exists no (η, g)-
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bounded LA∗-coloring of G[V (A∗)]. But |V (A∗)| < |V (G)| since |V (A∗) ∩Y1| < 3θ < |Y1|. 
This contradicts the minimality of |V (G)|. �

Since G contains no subdivision of H, by Theorem 14 and Claim 16.4, there exists 
Z ⊆ V (G) with |Z| � ξ such that for every v ∈ V (G) −Z, there exists (Av, Bv) ∈ T −Z

of order at most d − 1 such that v ∈ V (Av) − V (Bv).
We may assume that for every v ∈ V (G) − Z,

(i) (Av, Bv) ∈ T − Z has order at most d − 1 and v ∈ V (Av) − V (Bv),
(ii) subject to (i), Av − V (Av ∩Bv) is connected,
(iii) subject to (i) and (ii), every vertex in V (Av ∩ Bv) is adjacent to some vertex in 

V (Av) − V (Bv),
(iv) subject to (i)–(iii), V (Av) is maximal,
(v) subject to (i)–(iv), |V (Av ∩Bv)| is minimal, and
(vi) subject to (i)–(v), Av is maximal.

Note that for every v ∈ V (G) − Z, Av is connected and for every two vertices x, y ∈
V (Av), there exists a path in Av from x to y internally disjoint from V (Av ∩ Bv) since 
Av−V (Av ∩Bv) is connected and every vertex in V (Av ∩Bv) is adjacent to some vertex 
in V (Av) − V (Bv).

For any subset C ⊆ T − Z, let (AC, BC) be the separation (
⋃

(A,B)∈C A, 
⋂

(A,B)∈C B). 
Note that V (AC ∩BC) ⊆

⋃
(A,B)∈C V (A ∩B), so |V (AC ∩BC)| � |C|(d − 1).

Claim 16.5. Let C = {(Aw, Bw) : w ∈ W} for some W ⊆ V (G) − Z. If x is a vertex in 
V (AC ∩BC), then V (Ax ∩Bx) −V (Bw) �= ∅ for some w ∈ V (G) −Z with (Aw, Bw) ∈ C.

Proof. Since x ∈ V (AC ∩BC), there exists w ∈ W ⊆ V (G) − Z such that (Aw, Bw) ∈ C
and x ∈ V (Aw ∩Bw). Suppose to the contrary that V (Ax ∩Bx) ⊆ V (Bw).

First suppose that there exists v ∈ V (Aw) − (V (Bw) ∪ V (Ax)). Since Aw − V (Bw) is 
connected by (ii) and every vertex in V (Aw ∩ Bw) is adjacent to a vertex in V (Aw) −
V (Bw) by (iii), there exists a path P in G[(V (Aw) − V (Bw)) ∪ {x}] from x to v. Since 
x ∈ V (Ax) −V (Bx) and v ∈ V (G) − (Z∪V (Ax)), P −x intersects V (Ax∩Bx) ⊆ V (Bw). 
But V (P − x) ⊆ V (Aw) − V (Bw), a contradiction. So V (Aw) − V (Bw) ⊆ V (Ax).

Suppose that there exists a vertex u ∈ V (Aw ∩Bw) − V (Ax). Since u ∈ V (Aw ∩Bw), 
there exists u′ ∈ NG(u) ∩ V (Aw) − V (Bw) by (iii). So u′ ∈ NG(u) ∩ V (Aw) − V (Bw) ⊆
NG(u) ∩V (Ax). Since u /∈ V (Ax), u′ ∈ V (Ax ∩Bx) ∩V (Aw) −V (Bw), contradicting the 
assumption V (Ax ∩Bx) ⊆ V (Bw). Hence V (Aw ∩Bw) ⊆ V (Ax).

Therefore, V (Aw) ⊆ V (Ax). By (v), every vertex in V (Ax ∩ Bx) is adjacent to some 
vertex in V (Bx) − V (Ax). So if V (Ax) = V (Aw), then V (Ax ∩Bx) ⊆ V (Aw ∩Bw), and 
since (Aw, Bw) satisfies (v), V (Bw) = V (Bx). Hence if V (Ax) = V (Aw), then (Ax, Bx) =
(Aw, Bw) by (vi). Since x ∈ V (Ax) −V (Bx) and x ∈ V (Aw ∩Bw), (Ax, Bx) �= (Aw, Bw). 
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So V (Aw) ⊂ V (Ax). Since (Aw, Bw) satisfies (iv), w ∈ V (Bx). Since V (Ax∩Bx) ⊆ V (Bw)
and w /∈ V (Bw), w ∈ V (Bx) − V (Ax). So V (Aw) � V (Ax), a contradiction. �

Let Z ′ := {v ∈ V (G) − (Y1 ∪ Z) : |NG(v) ∩ Z| � s}. Note that |Z ′| � f(|Z|) � f(ξ)
by Lemma 7.

We say that a triple (C, S, T ) is useful if the following hold:

(U1) There exists W ⊆ V (G) − Z such that C = {(Av, Bv) : v ∈ W}.
(U2) NG[NG[Z ′]] ∩ V (BC) = ∅.
(U3) S is a subset of NG[V (AC ∩BC)] ∩V (AC) and T is a subset of Y1 ∩V (AC) −V (BC)

such that there exists a bijection ι from a subset of Y1 ∩ V (AC) to S such that:
– |S| +|T | +|Z| +1 � |Y1∩V (AC) −V (BC)| +|{y ∈ Y1∩S∩V (AC∩BC) : ι(y) = y}|, 

and
– for every vertex y in the domain of ι,

∗ if y ∈ V (AC) − V (BC) and there exists a vertex v ∈ NG(y) ∩ V (AC ∩BC) − S, 
then ι(y) ∈ NG(y) ∩ V (AC ∩BC), and

∗ if y ∈ V (AC ∩BC), then ι(y) = y.
(U4) T is disjoint from Z ′ and the domain of ι.

Claim 16.6. There exists a collection C of members of T − Z with |C| � |Z ′|d2 + |Z| + 1
such that (C, ∅, ∅) is useful.

Proof. For every u ∈ V (G) − Z, let Cu := {(Au, Bu), (Av, Bv) : v ∈ NG(u) ∩ V (Bu)}. 
Note that |NG(u) ∩V (Bu)| � |V (Au∩Bu)| � d −1 since u ∈ V (Au) −V (Bu). So |Cu| � d. 
Note that NG[{u}] ∩ V (BCu

) = ∅.
For every u ∈ V (G) − Z, let C′

u := Cu ∪ {(Av, Bv) : v ∈ NG(NG[{u}]) ∩ V (BCu
)}. 

Note that |NG(NG[{u}]) ∩ V (BCu
)| � |V (ACu

∩ BCu
)| � (d − 1)|Cu| � (d − 1)d. So 

|C′
u| � |Cu| + (d − 1)d � d2. Note that NG[NG[{u}]] ∩ V (BC′

u
) = ∅.

Let C′ :=
⋃

z∈Z′ C′
z. Then NG[NG[Z ′]] ∩V (BC′) = ∅. And |C′| � |Z ′|d2. Since |Y1−Z| �

|Y1| − |Z| � 9θ− ξ � 8θ > |Z|, there exists a subset Y of Y1 −Z with |Y | = |Z| + 1. Let 
C := C′ ∪ {(Ay, By) : y ∈ Y }. Clearly (C, ∅, ∅) satisfies (U1) and (U4). Since BC′ ⊇ BC , 
(C, ∅, ∅) satisfies (U2). Since Y ⊆ V (AC) −V (BC), |Z| +1 = |Y | � |Y1∩V (AC) −V (BC)|, 
so (C, ∅, ∅) satisfies (U3). Note that |C| � |C′| + |Y | � |Z ′|d2 + |Z| + 1. �

For a useful triple (C, S, T ), a vertex v of V (G) − Z is:

• (C, S, T )-dangerous if v ∈ V (AC ∩ BC) − S and there exists v′ ∈ NG(v) ∩ V (AC) −
(V (BC) ∪ S) such that either:
– v′ /∈ Y1 and |((Y1 ∩ V (AC)) ∪ (S − V (AC ∩BC))) ∩NG(v′)| � 2d − 4, or
– v′ ∈ Y1 − T ,

• (C, S, T )-heavy if v ∈ V (AC ∩BC) − S and

|NG(v) ∩ ((Y1 ∩ V (AC) − V (BC)) ∪ (S − V (AC ∩BC)))| � d− 1.
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Claim 16.7. Let (C, S, T ) be a useful triple and let x ∈ V (AC ∩ BC) be a (C, S, T )-heavy 
vertex. Then there exists a useful triple (C′, S′, T ′) with C′ = C ∪ {(Ax, Bx)}, such that:

• V (AC′ ∩BC′) − S′ ⊆ V (AC ∩BC) − S,
• the set of (C′, S′, T ′)-heavy vertices is strictly contained in the set of (C, S, T )-heavy 

vertices, and
• the set of (C′, S′, T ′)-dangerous vertices is a subset of the set of (C, S, T )-dangerous 

vertices.

Proof. Let C′ := C ∪{(Ax, Bx)}. Let X := NG(x) ∩ (Y1 ∪S) ∩V (Ax∩AC) −V (Bx∪BC). 
Since x ∈ V (Ax) − V (Bx), NG(x) ⊆ V (Ax). So |X| � |NG(x) ∩ (Y1 ∪ S) ∩ V (AC) −
V (BC)| − |V (Ax ∩ Bx ∩ AC) − V (BC)| � d − 1 − |V (Ax ∩ Bx ∩ AC) − V (BC)| since x is 
(C, S, T )-heavy. That is, |V (Ax∩Bx) −V (BC)| = |V (Ax∩Bx∩AC) −V (BC)| � d −1 −|X|. 
Since x is (C, S, T )-heavy, x /∈ S. Let ι be a bijection mentioned in (U3) witnessing that 
(C, S, T ) is useful. Let X ′ be the intersection of X and the domain of ι.

For each y ∈ X ′, since x ∈ NG(y) ∩V (AC∩BC) −S, ι(y) ∈ NG(y) ∩V (AC∩BC) by (U3). 
Since X ′ ⊆ X ⊆ V (Ax ∩AC) − V (Bx ∪BC), for each y ∈ X ′, NG(y) ⊆ V (Ax), so ι(y) ∈
NG(y) ∩V (AC∩BC) ⊆ V (Ax) ∩V (AC∩BC) ⊆ (V (AC′) −V (BC′)) ∪V (AC∩BC∩Ax∩Bx). 
Let

Z1 := V (Ax ∩Bx) − V (AC)

Z2 := V (Ax ∩Bx ∩AC ∩BC) − {ι(y) : y ∈ X ′}

Z3 := V (Ax ∩Bx ∩AC ∩BC) ∩ {ι(y) : y ∈ X ′}.

So {Z1, Z2, Z3} is a partition of V (Ax ∩Bx ∩BC), and hence

|Z1 ∪ Z2 ∪ Z3| = |V (Ax ∩Bx ∩BC)|

= |V (Ax ∩Bx)| − |V (Ax ∩Bx) − V (BC)|

� d− 1 − |V (Ax ∩Bx) − V (BC)|.

Recall that |V (Ax∩Bx) −V (BC)| � d −1 −|X|. So |Z1∪Z2∪Z3| � (d −1) −(d −1 −|X|) =
|X|.

Let

S′ :=
(
S ∩ V (Bx) − V (Ax ∩Bx ∩AC ∩BC)

)
∪
(
V (AC′ ∩BC′) − V (AC ∩BC)

)

∪ V (Ax ∩Bx ∩AC ∩BC).

Note that (V (AC′ ∩BC′) − V (AC ∩BC) ∪ V (Ax ∩Bx ∩AC ∩BC) ⊆ V (Ax ∩Bx ∩BC) =
Z1 ∪ Z2 ∪ Z3. So
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|S′| � (|S ∩ V (Bx)| − |S ∩ V (Ax ∩Bx ∩AC ∩BC)|) + |Z1 ∪ Z2 ∪ Z3|
� |S ∩ V (Bx)| − |{y ∈ X ′ : ι(y) ∈ Z3}| + |X|
= |S ∩ V (Bx)| + |X − {y ∈ X ′ : ι(y) ∈ Z3}|
= |{y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)}| + |X −X ′| + |X ′ − {y ∈ X ′ : ι(y) ∈ Z3}|.

Recall that for every y ∈ X ′, ι(y) ∈ NG(y) ∩ V (AC ∩ BC) ∩ V (Ax). So if y ∈ X ′ − {y ∈
X ′ : ι(y) ∈ Z3}, then

ι(y) ∈ NG(y) ∩ V (AC ∩BC) ∩ V (Ax) − V (Ax ∩Bx ∩AC ∩BC)

= NG(y) ∩ V (AC ∩BC ∩Ax) − V (Bx),

so ι(y) /∈ S ∩ V (Bx). That is, {y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)} and X ′ − {y ∈
X ′ : ι(y) ∈ Z3} are disjoint. Note that X − X ′ is disjoint from the domain of ι. So 
{y ∈ Y1 ∩V (AC) : ι(y) ∈ S ∩V (Bx)}, X−X ′ and X ′−{y ∈ X ′ : ι(y) ∈ Z3} are pairwise 
disjoint sets. Therefore,

|S′| � |{y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)} ∪ (X − {y ∈ X ′ : ι(y) ∈ Z3})|.

Since X ⊆ Y1 ∪ S and X ∩ V (Bx) = ∅, for every x ∈ X − {y ∈ X ′ : ι(y) ∈ Z3}, 
if x /∈ X ∩ Y1 − {y ∈ X ′ : ι(y) ∈ Z3}, then x ∈ X ∩ S − Y1 and ι(y) = x for some 
y ∈ Y1 ∩ V (AC) such that ι(y) /∈ S ∩ V (Bx). In addition, if y is a vertex in Y1 ∩ V (AC)
such that ι(y) ∈ X ∩ S − Y1, then ι(y) /∈ S ∩ V (Bx).

Since |S′| � |{y ∈ Y1 ∩V (AC) : ι(y) ∈ S ∩V (Bx)} ∪ (X−{y ∈ X ′ : ι(y) ∈ Z3})|, there 
exists an injection ι′ such that

• ι′(y) = ι(y) if y is in the domain of ι and ι(y) ∈ S ∩ V (Bx),
• for each v ∈ S′ − (S ∩ V (Bx)), there exists exactly one element y ∈ (X ∩ Y1 − {y ∈

X ′ : ι(y) ∈ Z3}) ∪ {y ∈ Y1 ∩ V (AC) : ι(y) ∈ X ∩ S − Y1} such that ι′(y) = v, and
• if ι(y1) = ι′(y2) for some y1, y2, then y1 = y2.

Recall that ι(y) /∈ S ∩ V (Bx) for every y ∈ (X ∩ Y1 − {y ∈ X ′ : ι(y) ∈ Z3}) ∪ {y ∈
Y1 : ι(y) ∈ X ∩ S − Y1}. Then ι′ is a bijection from a subset of Y1 ∩ V (AC′) to S′. 
We further modify ι′ and S′ by applying the following operations for some vertex y ∈
V (AC′) − V (BC′) in the domain of ι′ with ι′(y) /∈ NG(y) ∩ V (AC′ ∩ BC′) and NG(y) ∩
V (AC′ ∩BC′) − S′ �= ∅, and then repeating until no such vertex y exists:

• add a vertex v ∈ NG(y) ∩ V (AC′ ∩BC′) − S′ into S′,
• delete ι′(y) from S′, and
• redefine ι′(y) to be v.”

Now, further modify ι′ and S′ by applying the following operations for some vertex 
z ∈ S′ −NG[V (AC′ ∩BC′)], and repeating until no such vertex z exists:
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• remove z from S′, and
• if y is the element in the domain of ι′ with ι′(y) = z, then remove y from the domain 

of ι′.

Notice that for each vertex z removed from S′ in the above procedure, z ∈ S−V (AC∩
BC) and NG(z) ∩ V (AC ∩BC) ⊆ V (AC ∩BC) − V (Bx). Note that ι′ remains a bijection 
from a subset of Y1 ∩ V (AC′) to S′.

Observe that for every y in the domain of ι′ with y ∈ V (A′
C) − V (B′

C) and NG(y) ∩
V (AC′ ∩BC′) − S′ �= ∅, ι′(y) ∈ NG(y) ∩ V (AC′ ∩BC′) due to the above modification. In 
addition, if y is in the domain of ι′ and y ∈ V (AC′ ∩ BC′), then y ∈ V (AC ∩ BC) and y
is in the domain of ι such that ι(y) = ι′(y), so ι′(y) = ι(y) = y.

Let T ′ be the set obtained from T by deleting the domain of ι′. So T ′ is disjoint from 
the domain of ι′. Since T is disjoint from Z ′, T ′ is disjoint from Z ′. So (C′, S′, T ′) satisfies 
(U4). In addition, |S′| − |S| is at most the number of vertices in X and in the domain 
of ι′ but not in the domain of ι. So |S′| − |S| � |T | − |T ′|. Hence |S′| + |T ′| � |S| + |T |. 
Since {y ∈ Y1 ∩ S ∩ V (AC ∩BC) : ι(y) = y} − {y ∈ Y1 ∩ S′ ∩ V (AC′ ∩BC′) : ι′(y) = y} ⊆
(V (AC′) − V (BC′)) − (V (AC) − V (BC)), (C′, S′, T ′) satisfies (U3) and is useful.

It is easy to see that V (AC′ ∩ BC′) − S′ ⊆ V (AC ∩ BC) − S. Note that each vertex 
v ∈ V (AC′ ∩BC′) − S′ belongs to V (AC ∩BC) − V (Ax), so NG(v) ∩ V (AC′) − V (BC′) =
NG(v) ∩V (AC) −V (BC). Furthermore, S′−V (AC′ ∩BC′) ⊆ S−V (AC∩BC). Hence every 
(C′, S′, T ′)-heavy vertex is (C, S, T )-heavy. Since x is (C, S, T )-heavy but not (C′, S′, T ′)-
heavy, the set of (C′, S′, T ′)-heavy vertices is strictly contained in the set of (C, S, T )-
heavy vertices.

Let v be a (C′, S′, T ′)-dangerous vertex and let v′ be a vertex in NG(v) ∩ V (AC′) −
(V (BC′) ∩ S′) witnessing the definition of being dangerous. Since v /∈ S′, v ∈ V (AC ∩
BC) − V (Ax), so v′ ∈ NG[V (AC ∩BC)] ∩ V (AC) ∩ V (Bx). So v′ ∈ V (Bx) − (V (BC) ∪S′). 
Since v ∈ V (AC′ ∩ BC′), v′ ∈ NG(v) ∩ NG[V (AC′ ∩ BC′)]. Since v′ /∈ S′ and v′ /∈
V (AC∩BC) −V (AC′∩BC′) and v′ ∈ V (Bx) and NG(v′) ∩V (AC∩BC) −V (Ax) �= ∅, we know 
v′ /∈ S by the procedure of modifying S. So v′ ∈ (NG(v) ∩V (AC) −(V (BC) ∪S)) ∩V (Bx). 
Note that T − T ′ ⊆ V (Ax) − V (Bx). So if v′ ∈ Y1 − T ′, then v′ ∈ Y1 − T and v is 
(C, S, T )-dangerous. Furthermore, Y1 ∩ V (AC) ∩ NG(v′) = Y1 ∩ V (AC′) ∩ NG(v′) and 
S′ − V (AC′ ∩ BC′) ⊆ S − V (AC ∩ BC), so v is (C, S, T )-dangerous. Therefore, the set of 
(C′, S′, T ′)-dangerous vertices is a subset of the set of (C, S, T )-dangerous vertices. This 
proves the claim. �
Claim 16.8. Let (C, S, T ) be a useful triple. Then there exists a set S′ with S ∪ (Y1 ∩
V (AC ∩BC)) ⊆ S′ ⊆ NG[V (AC ∩BC)] ∩V (AC) such that (C, S′, T ) is a useful triple and:

• If ι′ is the bijection witnessing that (C, S′, T ) satisfies (U3), then for every y ∈
Y1 ∩ V (AC ∩BC), the unique element of the domain of ι′ mapped to y by ι′ is y.

• The set of (C, S′, T )-dangerous vertices is contained in the set of (C, S, T )-dangerous 
vertices.
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• The set of (C, S′, T )-heavy vertices is contained in the set of (C, S, T )-heavy vertices.

Proof. Let ι be a function mentioned in (U3) witnessing that (C, S, T ) is a useful triple. 
We may assume that Y1∩V (AC∩BC) ⊆ S, since if some vertex y ∈ Y1∩V (AC∩BC) does 
not belong to S, then y is not in the domain of ι, and we can define ι(y) = y without 
violating (U3) and (U4) such that the set of dangerous vertices and the set of heavy 
vertices remain the same.

Since ι is a bijection, we write the element mapped to y by ι as ι(−1)(y). Modify ι and 
S by applying the following operations to some vertex y ∈ Y1 ∩ S ∩ V (AC ∩ BC) with 
ι(−1)(y) �= y, and repeat until no such y exists:

• remove ι(−1)(y) from the domain of ι,
• define ι(y) := y.

Then define S′ and ι′ to be the modified S and ι, respectively. Clearly, (C, S′, T )
satisfies (U3), S ⊆ S′ ⊆ NG[V (AC ∩BC)] ∩ V (AC), and ι′(y) = y for every y ∈ Y1 ∩ S′ ∩
V (AC∩BC). Since we assume that Y1∩V (AC∩BC) ⊆ S, we have S∪(Y1∩V (AC∩BC)) ⊆
S′ ⊆ NG[V (AC ∩ BC)] ∩ V (AC) and ι′(y) = y for every y ∈ Y1 ∩ V (AC ∩ BC). Since 
T ⊆ V (AC) − V (BC), (C, S′, T ) satisfies (U4). Since S′ − S ⊆ V (AC ∩ BC), the set of 
(C, S′, T )-dangerous vertices is contained in the set of (C, S, T )-dangerous vertices, and 
the set of (C, S′, T )-heavy vertices is contained in the set of (C, S, T )-heavy vertices. �
Claim 16.9. Let (C, S, T ) be a useful triple, and let x be a (C, S, T )-dangerous vertex. 
If there exists no (C, S, T )-heavy vertex, then there exists a useful triple (C′, S′, T ′) with 
C′ = C∪{(Ax, Bx)} such that the set of (C′, S′, T ′)-dangerous vertices is strictly contained 
in the set of (C, S, T )-dangerous vertices.

Proof. By Claim 16.8, we may assume that Y1 ∩ V (AC ∩ BC) ⊆ S and the function ι
mentioned in (U3) witnessing that (C, S, T ) is useful satisfies ι(y) = y for every y ∈
Y1 ∩ V (AC ∩BC). Let C′ := C ∪ {(Ax, Bx)}.

We first assume that |Y1 ∩ V (Ax ∩ BC)| � d − 2. So |Y1 ∩ V (Ax ∩ BC)| � |V (Ax ∩
Bx) ∩ V (BC)| by Claim 16.5. Hence there exists a function ι′ whose domain is a subset 
of Y1 ∩ V (AC ∪Ax) such that:

• ι′(y) = ι(y) for every y ∈ Y1 ∩ V (AC) − V (Ax ∩ BC) belonging to the domain of ι
with ι(y) ∈ V (AC) ∩NG[V (AC′ ∩BC′)] − V (Ax), and

• for each vertex v in V (Ax ∩ Bx) ∩ V (BC), there exists exactly one element y ∈
Y1 ∩ V (Ax ∩BC) such that ι′(y) = v and if v ∈ Y1, then y = v.

Let S′ := (S ∩NG[V (AC′ ∩BC′)] −V (Ax)) ∪V (Ax ∩Bx ∩BC). So ι′ is a bijection from a 
subset of Y1∩V (AC ∪Ax) to S′. Note that every vertex in S′−V (AC′ ∩BC′) is contained 
in S − (V (Ax) ∪ V (AC′ ∩BC′)), so it is adjacent to some vertex in V (AC′ ∩BC′).
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Let T ′ := T . Since ι satisfies (U3) and ι(y) = y for every y ∈ Y1 ∩S ∩V (AC ∩BC), we 
know that ι′ satisfies (U3). Since T ′ = T ⊆ V (AC) − V (BC), (C′, S′, T ′) satisfies (U4). 
So (C′, S′, T ′) is a useful triple.

Let v be a (C′, S′, T ′)-dangerous vertex. So v ∈ V (AC′ ∩ BC′) − S′ ⊆ V (AC ∩ BC) −
V (Ax). Let v′ be a vertex witnessing that v is (C′, S′, T ′)-dangerous. So v′ ∈ V (Bx) −
(V (BC) ∪ S′) and NG(v′) ⊆ V (AC). Since v ∈ V (AC′ ∩ BC′) − V (Ax), v′ ∈ NG[V (AC′ ∩
BC′)], so v′ /∈ S. Since S′ − V (AC′ ∩ BC′) ⊆ S − V (AC ∩ BC), if v′ /∈ Y1 and |((Y1 ∩
V (AC′)) ∪(S′−V (AC′ ∩BC′))) ∩NG(v′)| � 2d −4, then v′ /∈ Y1 and |((Y1∩V (AC)) ∪(S−
V (AC∩BC))) ∩NG(v′)| � 2d −4, so v is (C, S, T )-dangerous. Since T ′ = T , if v′ ∈ Y1−T ′, 
then v′ ∈ Y1 − T and v is (C, S, T )-dangerous. So every (C′, S′, T ′)-dangerous vertex is 
(C, S, T )-dangerous. Since x is (C, S, T )-dangerous but not (C′, S′, T ′)-dangerous, the set 
of (C′, S′, T ′)-dangerous vertices is strictly contained in the set of (C, S, T )-dangerous 
vertices. So the claim holds.

Hence we may assume that |Y1 ∩ V (Ax ∩BC)| � d − 3.
Modify S and define ι′ to be the function obtained from ι by applying the following 

operations to a vertex y in the domain of ι with ι(y) /∈ NG[V (AC′ ∩BC′)] ∩ V (AC′), and 
repeating until no such y exists:

• if y ∈ V (AC ∩BC) −V (Bx) or V (Ax ∩Bx) ∩V (BC) −S = ∅, then remove y from the 
domain of ι and remove ι(y) from S,

• if y /∈ V (AC ∩ BC) − V (Bx) and NG(y) ∩ V (AC′ ∩ BC′) − S = ∅ and V (Ax ∩ Bx) ∩
V (BC) − S �= ∅, then redefine ι(y) to be an element in V (Ax ∩Bx) ∩ V (BC) − S and 
add this element into S,

• otherwise remove ι(y) from S, redefine ι(y) to be an element in NG(y) ∩ V (AC′ ∩
BC′) − S and add this element into S.

Let S′ be the modified S, and let

T ′ := T ∪ (Y1∩V (BC)−V (AC ∪Bx))∪ (Y1∩V (AC ∩BC)− (V (Bx)∪NG[V (AC′ ∩BC′)])).

Clearly, T ′ is disjoint from the domain of ι′. By (U2), Z ′∩V (BC) = ∅. So T ′ is disjoint 
from Z ′ as T is disjoint from Z ′. So (C′, S′, T ′) satisfies (U4).

Since Y1∩V (AC∩BC) ⊆ S, we know Y1∩V (AC∩BC) −(V (Bx) ∪NG[V (AC′∩BC′)]) ⊆ S. 
For every y ∈ Y1∩V (AC∩BC) −(V (Bx) ∪NG[V (AC′∩BC′)]), since ι(y) = y /∈ NG[V (AC′∩
BC′)] ∩ V (AC′) and y ∈ V (AC ∩BC) − V (Bx), y ∈ S − S′.

So |S| � |S′| + |Y1 ∩ V (AC ∩BC) − (V (Bx) ∪NG[V (AC′ ∩BC′)])|. Hence |S′| + |T ′| �
|S| + |T | + |Y1 ∩V (BC) −V (AC ∪Bx)|. Since Y1 ∩V (BC) −V (AC ∪Bx) ⊆ Y1 ∩ (V (AC′) −
V (BC′)) − V (AC) and (C, S, T ) satisfies (U3), we know

|S′| + |T ′| + |Z| + 1

� |S| + |T | + |Y1 ∩ V (BC) − V (AC ∪Bx)| + |Z| + 1

� |Y1 ∩ V (AC) − V (BC)| + |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) : ι(y) = y}|
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+ |Y1 ∩ (V (AC′) − V (BC′)) − V (AC)|
� |Y1 ∩ V (AC′) − V (BC′)| − |Y1 ∩ V (AC ∩BC) − V (Bx)|

+ |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) : ι(y) = y}|
� |Y1 ∩ V (AC′) − V (BC′)| + |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) ∩ V (Bx) : ι(y) = y}|
� |Y1 ∩ V (AC′) − V (BC′)| + |{y ∈ Y1 ∩ S′ ∩ V (AC′ ∩BC′) : ι′(y) = y}|.

Hence (C′, S′, T ′) satisfies (U3). Therefore (C′, S′, T ′) is useful.
Suppose that the set of (C′, S′, T ′)-dangerous vertices is not strictly contained in the 

set of (C, S, T )-dangerous vertices. Since x is (C, S, T )-dangerous but not (C′, S′, T ′)-
dangerous, there exists a vertex v that is (C′, S′, T ′)-dangerous but not (C, S, T )-
dangerous. So there exists a vertex v′ ∈ NG(v) ∩V (AC′) − (V (BC′) ∪S′) such that either 
v′ ∈ Y1−T ′, or v′ /∈ Y1 and |((Y1∩V (AC′)) ∪(S′−V (AC′ ∩BC′)) ∩NG(v′)| � 2d −4. Since 
v′ ∈ NG[V (AC′ ∩BC′)] ∩ V (AC′), if v′ belongs to S at beginning, then v′ is not removed 
from S during the process of modifying S, so v′ ∈ S′, a contradiction. So v′ /∈ S.

Suppose that v′ ∈ V (AC) − V (BC). So v ∈ V (AC ∩ BC) ∩ V (AC′ ∩ BC′) ⊆ V (AC ∩
BC) ∩V (Bx). Hence if v belongs to S at beginning, then v is not removed from S during 
the process of modifying S, so v ∈ S′. Since v is (C′, S′, T ′)-dangerous, v /∈ S′, so v /∈ S. 
Since v is not (C, S, T )-dangerous, v′ /∈ Y1 − T , and either v′ ∈ Y1 or |((Y1 ∩ V (AC)) ∪
(S−V (AC ∩BC))) ∩NG(v′)| < 2d − 4. Since T ′∩V (AC) −V (BC) = T ∩V (AC) −V (BC), 
v′ /∈ Y1−T ′. Since v is (C′, S′, T ′)-dangerous, v′ /∈ Y1 and |((Y1∩V (AC′)) ∪ (S′−V (AC′ ∩
BC′))) ∩NG(v′)| � 2d −4. Since NG(v′) ⊆ V (AC) and S′−V (AC′∩BC′) ⊆ S−V (AC∩BC),

2d− 4 � |((Y1 ∩ V (AC′)) ∪ (S′ − V (AC′ ∩BC′))) ∩NG(v′)|
= |((Y1 ∩ V (AC)) ∪ (S′ − V (AC′ ∩BC′))) ∩NG(v′)|
� |((Y1 ∩ V (AC)) ∪ (S − V (AC ∩BC))) ∩NG(v′)|
< 2d− 4,

a contradiction.
Therefore, v′ ∈ V (BC). So v′ ∈ (V (Ax) −V (Bx)) ∩V (BC) and hence NG(v′) ⊆ V (Ax). 

Since Y1 ∩ V (AC ∩ BC) ⊆ S, if v′ ∈ Y1 ∩ V (AC ∩ BC), then v′ ∈ S, a contradiction. So 
v′ /∈ Y1 ∩ V (AC ∩ BC). Since Y1 ∩ V (BC) − V (AC ∪ Bx) ⊆ T ′, if v′ ∈ Y1 − T ′, then 
v′ ∈ Y1 ∩ V (AC ∩BC), a contradiction. So v′ /∈ Y1 − T ′. Since v is (C′, S′, T ′)-dangerous, 
|((Y1∩V (AC′)) ∪ (S′−V (AC′ ∩BC′))) ∩NG(v′)| � 2d −4. Since |Y1∩V (Ax∩BC)| � d −3
and (S′ − V (AC′ ∩BC′)) − (V (AC) ∪ V (Bx)) = ∅ and NG(v′) ⊆ V (Ax),

|NG(v′) ∩ ((Y1 ∩ V (AC) − V (BC)) ∪ (S − V (AC ∩BC))|
� |NG(v′) ∩ ((Y1 ∩ V (Ax) − V (BC)) ∪ (S′ − V (AC′ ∩BC′))|
� |NG(v′) ∩ ((Y1 ∩ V (Ax)) ∪ (S′ − (V (AC′ ∩BC′))))| − (d− 3)

= |NG(v′) ∩ (Y1 ∪ (S′ − (V (AC′ ∩BC′))))| − (d− 3)
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� (2d− 4) − (d− 3)

= d− 1.

In particular, v′ ∈ V (AC ∩BC) − V (Bx). Since there exists no (C, S, T )-heavy vertex, v′
is not a (C, S, T )-heavy vertex. So v′ ∈ S, a contradiction. This proves the claim. �
Claim 16.10. If (C, S, T ) is a useful triple such that there exists a (C, S, T )-dangerous 
vertex, then there exists a useful triple (C′, S′, T ′) with C ⊆ C′ and |C′| � |C| + |V (AC ∩
BC)| +1 such that the set of (C′, S′, T ′)-dangerous vertices is strictly contained in the set 
of (C, S, T )-dangerous vertices.

Proof. Note that there are at most |V (AC ∩BC)| (C, S, T )-heavy vertices. By repeatedly 
applying Claim 16.7 at most |V (AC ∩BC)| times, there exists a useful triple (C1, S1, T1)
with C ⊆ C1 and |C1| � |C| + |V (AC ∩ BC)| such that there exists no (C1, S1, T1)-heavy 
vertices, and the set of (C1, S1, T1)-dangerous vertices is contained in the set of (C, S, T )-
dangerous vertices. By Claim 16.9 applied to C1, there exists a useful triple (C′, S′, T ′)
with C1 ⊆ C′ and |C′| = |C1| + 1 � |C| + |V (AC ∩BC)| + 1 such that the set of (C′, S′, T ′)-
dangerous vertices is strictly contained in the set of (C1, S1, T1)-dangerous vertices and 
hence is strictly contained in the set of (C, S, T )-dangerous vertices. This proves the 
claim. �
Claim 16.11. There exists a useful triple (C∗, S∗, T ∗) with |C∗| � a(d−1)a0 such that there 
exists no (C∗, S∗, T ∗)-dangerous vertex.

Proof. By Claim 16.6, there exists a useful triple (C0, ∅, ∅) with |C0| � |Z ′|d2 + |Z| + 1. 
Let S0 = ∅ and T0 = ∅. So (C0, S0, T0) is a useful triple with |C0| � f(ξ)d2 + ξ + 1 = a0. 
For i � 1, if there exists a (Ci−1, Si−1, Ti−1)-dangerous vertex, then by Claim 16.10, there 
exists a useful triple (Ci, Si, Ti) such that |Ci| � |Ci−1| + |V (ACi−1 ∩BCi−1)| + 1 and the 
set of (Ci, Si, Ti)-dangerous vertices is strictly contained in the set of (Ci−1, Si−1, Ti−1)-
dangerous vertices. So |Ci| � ai−1 + (d − 1)ai−1 + 1 � ai for each i � 1 by induction on 
i. Since there are at most |V (AC0 ∩BC0)| � |C0|(d −1) � (d −1)a0 (C0, S0, T0)-dangerous 
vertices. Hence there exists i∗ with 0 � i∗ � (d − 1)a0 such that (Ci∗ , Si∗ , Ti∗) is a useful 
triple with no (Ci∗ , Si∗ , Ti∗)-dangerous vertex. Note that |Ci∗ | � ai∗ � a(d−1)a0 . �

Let ι∗ be the function mentioned in (U3) witnessing that (C∗, S∗, T ∗) is useful. By 
Claim 16.8, we may assume that Y1 ∩ V (AC∗ ∩BC∗) ⊆ S∗ such that ι∗(y) = y for every 
y ∈ Y1 ∩ V (AC∗ ∩BC∗).

Define the following:

GB := G[(
⋂

(A,B)∈C∗

V (B)) ∪ (Z ∪ S∗ ∪ T ∗)]

YB := (Y1 ∩ V (BC∗)) ∪ (Z ∪ S∗ ∪ T ∗).
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Claim 16.12. For every vertex v ∈ V (GB) − YB, NG(v) ∩ Y1 ⊆ NGB
(v) ∩ YB.

Proof. Suppose to the contrary that there exist v ∈ V (GB) − YB and y ∈ NG(v) ∩ Y1 −
(NGB

(v) ∩YB). Since y ∈ Y1−YB , y ∈ V (AC∗) −V (BC∗). So v ∈ V (AC∗∩BC∗) −S∗. Since 
there exists no (C∗, S∗, T ∗)-dangerous vertex, v is not a (C∗, S∗, T ∗)-dangerous vertex. 
Since y ∈ NG(v) ∩ V (AC∗) − (V (BC∗) ∪ S∗), y /∈ Y1 − T ∗. Since y ∈ Y1, y ∈ T ∗. So 
y ∈ YB , a contradiction. �

Define the following:

• For every y ∈ YB , let LB(y) be a 1-element subset of L(y).
• For every v ∈ V (GB) − YB with |NGB

(v) ∩ YB | ∈ [s′ − 1], let LB(v) be a subset 
of L(v) with size s′ + 2 − |NGB

(v) ∩ YB | such that LB(v) ∩ LB(u) = ∅ for every 
u ∈ NG(v) ∩ YB . (Note that such a subset of L(v) exists by Claim 16.12.)

• For every other vertex v of GB , let LB(v) := L(v).

Hence LB is a restricted (s′, 2, YB)-list-assignment by Claim 16.12. Since (C∗, S∗, T ∗) is 
useful and ι∗(y) = y for every y ∈ Y1 ∩ V (AC∗ ∩BC∗),

|YB | � |Y1 ∩ V (BC∗)| + |S∗| − |Y1 ∩ V (AC∗ ∩BC∗)| + |Z| + |T ∗|
� (|Y1| − |Y1 ∩ V (AC∗) − V (BC∗)|) + |S∗| − |Y1 ∩ V (AC∗ ∩BC∗)| + |Z| + |T ∗|
� |Y1| − 1

by (U3).
Since |YB| < |Y1|, we know |V (GB)| < |V (G)|. By the minimality of |V (G)|, there 

exists an (η, g)-bounded LB-coloring cB of GB . Define the following:

• Let GA := G[V (AC∗) ∪ Z].
• Let YA := (Y1 ∩ V (AC∗)) ∪ Z ∪ S∗ ∪ T ∗ ∪ V (AC∗ ∩BC∗).
• For every y ∈ YA, let LA(y) be a 1-element subset of L(y) such that if y ∈ V (GB), 

then LA(y) = {cB(y)}.
• For every v ∈ V (GA) − YA with 1 � |NGA

(v) ∩ YA| � s′ − 1, let LA(v) be a subset 
of L(v) with size s′ + 2 − |NGA

(v) ∩ YA| such that LA(v) ∩ LA(u) = ∅ for every 
u ∈ YA ∩NGA

(v).
• For every other vertex v of GA, let LA(v) := L(v).

Then LA is a restricted (s′, 2, YA)-list-assignment of GA. Since |C∗| � a(d−1)a0 , |V (AC∗ ∩
BC∗)| � (d −1)a(d−1)a0 < θ−ξ. So (AC∗ , BC∗) ∈ T −Z and hence |Y1∩V (AC∗)| � 3θ. By 
(U3), |S∗| +|T ∗| +|Z| � |Y1∩V (AC∗) −V (BC∗)| +|Y1∩V (AC∗∩BC∗)| � |Y1∩V (AC∗)| � 3θ. 
Hence |YA| � |Y1 ∩ V (AC∗)| + |S∗| + |T ∗| + |Z| + |V (AC∗ ∩BC∗)| � 3θ + 3θ + θ � 7θ.

In particular, |V (GA)| < |V (G)|. By minimality, there exists an (η, g)-bounded LA-
coloring cA of GA.
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Claim 16.13. For every v ∈ V (GA) − (V (GB) ∪Y1) with NG(v) ∩V (AC∗ ∩BC∗) −S∗ �= ∅, 
cB(u) /∈ LA(v) for every u ∈ NG(v) ∩ V (GB).

Proof. Since v ∈ V (GA) − (V (GB) ∪ Y1), v ∈ V (G) − (Z ∪ V (BC∗)). So there exists 
(A, B) ∈ C∗ such that v ∈ V (A) − V (B). Hence NG(v) ⊆ V (A) and |NG(v) ∩ V (AC∗ ∩
BC∗)| � |NG(v) ∩ V (A ∩B)| � d − 1.

Since v ∈ NG(AC∗ ∩BC∗) and C∗ satisfies (U2), v /∈ Z ′. So |NG(v) ∩ Z| � s − 1.
Since NG(v) ∩ V (AC∗ ∩BC∗) − S∗ �= ∅, there exists w ∈ NG(v) ∩ V (AC∗ ∩BC∗) − S∗. 

Since there exists no (C∗, S∗, T ∗)-dangerous vertex, w is not a (C∗, S∗, T ∗)-dangerous 
vertex. Since S∗ ⊆ V (GB), v /∈ S∗. Since v /∈ Y1, v /∈ Y1 − T ∗. So |NG(v) ∩ ((Y1 ∩
V (AC∗)) ∪ (S∗ − V (AC∗ ∩BC∗)))| � 2d − 5.

Since T ∗ ⊆ Y1 ∩ V (AC∗),

|NG(v) ∩ YA|
� |NG(v) ∩ V (AC∗ ∩BC∗)| + |NG(v) ∩ Z|

+ |NG(v) ∩ ((Y1 ∩ V (AC∗)) ∪ (S∗ − V (AC∗ ∩BC∗)))|
� (d− 1) + (s− 1) + (2d− 5)

= 3d + s− 7 = s′ − 1.

So by the definition of LA, LA(v) ∩ {cB(u)} = LA(v) ∩ LA(u) = ∅ for every u ∈ YA ∩
V (GB) ∩ NG(v). Since NG(v) ∩ V (GB) ⊆ YA, cB(u) /∈ LA(v) for every u ∈ NG(v) ∩
V (GB). �

Let c be the L-coloring of G defined by c(v) := cA(v) if v ∈ V (GA), and c(v) := cB(v)
if v ∈ V (G) − V (GA).

Claim 16.14. Let M be a monochromatic c-component intersecting both V (GA) −V (GB)
and V (GB) − V (GA). Then every component of M ∩GA intersects YA, and every com-
ponent of M ∩GB intersects YB.

Proof. Since M intersects both V (GA) −V (GB) and V (GB) −V (GA), every component 
of M ∩GA intersects V (AC∗ ∩BC∗) ∪ Z ∪ S∗ ∪ T ∗ ⊆ YA.

Let MB be a component of M ∩ GB . Suppose that MB is disjoint from YB = (Y1 ∩
V (BC∗)) ∪Z ∪ S∗ ∪ T ∗. Since M intersects both V (GA) − V (GB) and V (GB) − V (GA), 
there exist u ∈ V (MB) ∩V (AC∗∩BC∗) −S∗ and v ∈ NMB

(v) ∩V (AC∗) −(V (BC∗) ∪S∗∪T ∗). 
Since u is not a (C∗, S∗, T ∗)-dangerous vertex, v /∈ Y1 − T ∗. Since v /∈ T ∗, v /∈ Y1. So 
v ∈ V (GA) − (V (GB) ∪Y1) and NG(v) ∩V (AC∗ ∩BC∗) −S∗ ⊇ {u} �= ∅. By Claim 16.13, 
c(v) = cA(v) �= cB(u) = c(u). But M is a monochromatic c-component, a contradiction. 
Hence every component of M ∩GB intersects YB . �

Let UA be the union of the monochromatic cA-components of GA intersecting YA. Let 
UB be the union of the monochromatic cB-components of GB intersecting YB. Since cA
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and cB are (η, g)-bounded, |V (UA) ∪V (UB)| � |YA|2g(|YA|) +|YB |2g(|YB |) � (7θ)2g(7θ) +
(|Y1| − 1)2g(|Y1| − 1) � g(|Y1|).

Since V (G) ⊆ V (GA) ∪ V (GB), by Claim 16.14, every monochromatic c-component 
intersecting both V (GA) −V (GB) and V (GB) −V (GA) is contained in UA∪UB and hence 
contains at most g(|Y1|) � η2g(η) vertices. Let M be a monochromatic c-component. If 
V (M) ⊆ V (GA), then M is a monochromatic cA-component with at most η2g(η) vertices 
since cA is (η, g)-bounded. If V (M) ⊆ V (GB), then M is a monochromatic cB-component 
with at most η2g(η) vertices since cB is (η, g)-bounded. Hence every monochromatic c-
component contains at most η2g(η) vertices.

Since Y1 ⊆ YA ∪ YB , by Claim 16.14, the union of the monochromatic c-components 
intersecting Y1 is contained in UA ∪ UB , so it contains at most g(|Y1|) � |Y1|2g(|Y1|)
vertices. Therefore, c is an (η, g)-bounded L-coloring of G, a contradiction. This proves 
the theorem. �
4. Excluding almost (� 1)-subdivisions

Recall that an almost (� 1)-subdivision of a graph H is a graph obtained from H
by subdividing edges such that at most one edge is subdivided more than once. The 
following simple observation is useful.

Lemma 17. For s ∈ N, let G be a graph and let H be a subgraph of G isomorphic to 
Ks−1,t for some t �

(
s−1
2
)
+ 2. Let (X, Z) be the bipartition of H with |X| = s − 1. If G

does not contain an almost (� 1)-subdivision of Ks+1, then each component of G −X

contains at most one vertex in Z, and G −X has at least two components.

Proof. Let C1, C2, . . . , Ck be the components of G −X. For each i ∈ [k], |V (Ci) ∩Z| � 1, 
as otherwise G[X ∪ Z] together with a path in Ci connecting two vertices in V (Ci) ∩ Z

is an almost (� 1)-subdivision of Ks+1, a contradiction. Hence k � |Z| � t � 2. �
The following lemma shows that a result for graphs excluding a Ks,t subgraph can be 

extended for graphs excluding an almost (� 1)-subdivision of Ks+1. Let s, r ∈ N. Let G
be a graph and Y1 ⊆ V (G). An (s, r, Y1)-list-assignment of G is said to be faithful if for 
every v ∈ V (G) − Y1 with |NG(v) ∩ Y1| = s, we have L(v) −

⋃
y∈Y1∩NG(v) L(y) �= ∅.

Lemma 18. Let G be a subgraph-closed family of graphs. Let β, r be functions with domain 
N such that β(x) � x and r(x) ∈ N for every x ∈ N.

Assume that for every s ∈ N, there exist η ∈ N and a nondecreasing function g such 
that for every G ∈ G with no Ks,ts subgraph, where ts := max{

(
s
2
)

+ 2, s + 2}, for every 
Y1 ⊆ V (G) with |Y1| � η, and for every (β(s), r(s), Y1)-list-assignment L of G, there 
exists an (η, g)-bounded L-coloring of G.

Then for every s ∈ N with s � 2, there exist η∗ ∈ N and a nondecreasing function 
g∗ such that for every graph G ∈ G with no almost (� 1)-subdivision of Ks+1, for every 
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Y1 ⊆ V (G) with |Y1| � η∗, and for every faithful (β(s − 1), r(s − 1), Y1)-list-assignment 
L of G, there exists an (η∗, g∗)-bounded L-coloring of G.

Proof. For every s ∈ N, let ηs be the number and gs be the function such that for every 
G ∈ G with no Ks,ts subgraph, every Y1 ⊆ V (G) with |Y1| � ηs and every (β(s), r(s), Y1)-
list-assignment of G, there exists an (ηs, gs)-bounded L-coloring of G. For every s ∈ N

with s � 2, let η∗s := ηs−1 and let g∗s be the function defined by g∗s(0) := gs−1(0) and 
g∗s (x) := gs−1(x) + η∗s · g∗s (x − 1) for every x ∈ N.

Fix s ∈ N − {1}. Let β′ := β(s − 1) and r′ := r(s − 1). We shall prove that for 
every graph G in G with no almost (� 1)-subdivision of Ks+1, for every Y1 ⊆ V (G)
with |Y1| � η∗s , and for every faithful (β′, r′, Y1)-list-assignment L of G, there exists an 
(η∗s , g∗s )-bounded L-coloring of G.

Suppose to the contrary that G is a graph in G with no almost (� 1)-subdivision of 
Ks+1, Y1 is a subset of V (G) with |Y1| � η∗s , and L is a faithful (β′, r′, Y1)-list-assignment 
of G such that there exists no (η∗s , g∗s )-bounded L-coloring of G. We further assume that 
|V (G)| is as small as possible.

Since η∗s = ηs−1 and g∗s � gs−1, there exists no (ηs−1, gs−1)-bounded L-coloring of G. 
Since η∗s = ηs−1, by the definition of ηs−1 and gs−1, G contains a Ks−1,ts−1 subgraph. 
Let t′ be the maximum integer such that G contains a Ks−1,t′ subgraph. So t′ � ts−1. 
Let H be a subgraph of G isomorphic to Ks−1,t′ . Let {P, Q} be the bipartition of H
such that |P | = s − 1 and |Q| = t′. By the maximality of t′, Q is the set of all vertices 
of V (G) − P adjacent in G to all vertices in P .

Claim 18.1. Every component of G − P contains some vertex in Y1.

Proof. Suppose to the contrary that there exists a component C of G −P disjoint from 
Y1. By Lemma 17, G −P contains at least two components and there exists at most one 
vertex in C adjacent in G to all vertices in P . By the minimality of G, there exists an 
(η∗s , g∗s )-bounded L|V (G)−V (C)-coloring c of G − V (C).

Since β′ � s − 1 and L is an (β′, r′, Y1)-list-assignment and V (C) ∩ Y1 = ∅, for every 
v ∈ V (C) with |NG(v) ∩ Y1| � β′ − 1, we have L(v) ∩

⋃
y∈NG(v)∩Y1

L(y) = ∅ and

|L(v) − {c(y) : y ∈ NG(v) ∩ P}|

� |L(v)| − |{c(y) : y ∈ NG(v) ∩ P − Y1}|

= β′ + r′ − |NG(v) ∩ Y1| − |{c(y) : y ∈ NG(v) ∩ P − Y1}|

= β′ + r′ − |NG(v) ∩ Y1 ∩ P | − |{c(y) : y ∈ NG(v) ∩ P − Y1}|

� β′ + r′ − |NG(v) ∩ P |

� β′ + r′ − (s− 1)

� 1.
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For every v ∈ V (C) with |NG(v) ∩ Y1| � β′,

|NG(v) ∩ P | � |NG(v) ∩ Y1| � β′ = β(s− 1) � s− 1,

implying P ⊆ Y1 and |NG(v) ∩ Y1| = β′, so L(v) − {c(y) : y ∈ NG(v) ∩ P} = L(v) −⋃
y∈NG(v)∩Y1

L(y) �= ∅ since L is faithful. So for every v ∈ V (C), L(v) − {c(y) : y ∈
NG(v) ∩ P} �= ∅.

Let L′ be the following list-assignment of G[V (C) ∪ P ]:

• For every v ∈ P , let L′(v) := {c(v)}.
• For every v ∈ V (C) with |NG(v) ∩ P | � β′, let L′(v) be a 1-element subset of 

L(v) −
⋃

u∈P L′(u).
• Let Y ′

1 := P ∪ {v ∈ V (C) : |NG(v) ∩ P | � β′}.
• For every v ∈ V (C) ∩N<β′(Y ′

1), let L′(v) be a subset of L(v) −
⋃

y∈NG(v)∩Y ′
1
L′(y)

of size |L(v)| − |NG(v) ∩ Y ′
1 − Y1| = β′ + r′ − |NG(v) ∩ Y ′

1 | � r′ + 1.
• For every v ∈ V (C) ∩ N<β′(P ) − N<β′(Y ′

1), let L′(v) be a subset of L(v) −⋃
y∈NG(v)∩P L′(y) of size |L(v)| − |NG(v) ∩P − Y1| = β′ + r′ − |NG(v) ∩P | � r′ + 1.

• For every v ∈ V (C) − (Y ′
1 ∪N<β′(Y ′

1) ∪N<β′(P )), let L′(v) := L(v).

Note that Y ′
1 −P consists of the vertex in V (C) adjacent in G to all vertices in P . Hence 

for every v ∈ V (C) ∩NG(P ) −Y ′
1 , |NG(v) ∩P | ∈ [β′− 1]. That is, V (C) ∩NG(P ) −Y ′

1 =
V (C) ∩ N<β′(P ). So for every v ∈ V (C) ∩ NG(P ) − Y ′

1 , L′(v) ∩ L′(u) = ∅ for every 
u ∈ P ∩NG(v).

Clearly, L′ is an (β′, r′, Y ′
1)-list-assignment of G. If v ∈ V (C) −Y ′

1 with |NG(v) ∩Y ′
1 | =

β′, then since |Y ′
1 − P | = 1, we know v ∈ N<β′(P ) −N<β′(Y ′

1), so L′(v) is a set of size 
at least r′ + 1 � 2 disjoint from 

⋃
y∈NG(v)∩P L′(y). Hence if v ∈ (V (C) ∪ P ) − Y ′

1 with 
|NG(v) ∩ Y ′

1 | = β′, then L′(v) −
⋃

y∈NG(v)∩Y ′
1
L′(y) = L′(v) −

⋃
y∈NG(v)∩Y ′

1−P L′(y)
has size |L′(y)| − 1 � 1. Therefore, L′ is a faithful (β′, r′, Y ′

1)-list-assignment of 
G[V (C) ∪ P ].

Since G −P contains at least two components, |V (C) ∪P | < |V (G)|. By the minimality 
of G, there exists an (η∗s , g∗s )-bounded L′-coloring c′ of G[V (C) ∪ P ].

For every v ∈ V (C) ∩ NG(P ), if v ∈ N<β′(P ), then L′(v) is disjoint from ⋃
y∈NG(v)∩P L′(y); if v ∈ V (C) with |NG(v) ∩ P | � β′, then v ∈ Y ′

1 − P and L′(v)
is disjoint from 

⋃
y∈P L′(y). Hence every monochromatic c′-component intersecting P is 

contained in G[P ].
Let c∗ be the L-coloring defined by c∗(v) := c(v) if v ∈ V (G) −V (C), and c∗(v) := c′(v)

if v ∈ V (C). Hence every monochromatic c∗-component is either contained in G −V (C) or 
contained in C, so it contains at most η∗s2g(η∗s ) vertices. Since V (C) ∩Y1 = ∅, the union of 
the monochromatic c∗-components intersecting Y1 equals the union of the monochromatic 
c-components intersecting Y1, and contains at most |Y1|2g(|Y1|2) vertices. Therefore, c∗

is an (η∗s , g∗s )-bounded L-coloring of G, a contradiction. �
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Let C1, C2, . . . , Ck be the components of G − P . For i ∈ [k], let Gi := G[V (Ci) ∪ P ]. 
By Lemma 17, k � ts−1 � s + 1. By Claim 18.1, Y1 ∩ V (Ci) �= ∅ for each i ∈ [k], 
so |V (Gi) ∩ Y1| � |Y1| − (k − 1) � |Y1| − s for each i ∈ [k], and k � |Y1| � η∗s . So 
|(V (Gi) ∩ Y1) ∪ P | � |Y1| − s + |P | < |Y1| for each i ∈ [k].

Let L∗ be the following list-assignment of G:

• Let Y ∗
1 := Y1 ∪ P .

• For each v ∈ Y ∗
1 , let L∗(v) be a 1-element subset of L(v).

• For each v ∈ N<β′(Y ∗
1 ), let L∗(v) be a subset of L(v) −

⋃
y∈NG(v)∩Y ∗

1
L∗(y) with size 

|L(v)| − |NG(v) ∩ (Y ∗
1 − Y1)| = β′ + r′ − |NG(v) ∩ Y ∗

1 |.
• For each v ∈ V (G) − (Y ∗

1 ∪N<β′(Y ∗
1 )), let L∗(v) := L(v).

Clearly, L∗ is an (β′, r′, Y ∗
1 )-list-assignment of G. Let v ∈ V (G) −Y ∗

1 with |NG(v) ∩Y ∗
1 | =

β′. So L∗(v) = L(v). If |NG(v) ∩ Y1| = β′, then NG(v) ∩ Y ∗
1 = NG(v) ∩ Y1, so L∗(v) −⋃

y∈NG(v)∩Y ∗
1
L∗(y) = L(v) −

⋃
y∈NG(v)∩Y1

L(y) �= ∅ since L is a faithful (β′, r′, Y1)-list-
assignment of G. If |NG(v) ∩Y1| < β′, then |L∗(v)| = |L(v)| = β′ + r′−|NG(v) ∩Y1| and 
L(v) is disjoint from 

⋃
y∈NG(v)∩Y1

L(y), so

|L∗(v) −
⋃

y∈NG(v)∩Y ∗
1

L∗(y)| = |L∗(v) −
⋃

y∈NG(v)∩Y ∗
1 −Y1

L∗(y)|

� |L∗(v)| − |
⋃

y∈NG(v)∩Y ∗
1 −Y1

L∗(y)|

� β′ + r′ − |NG(v) ∩ Y1| − |NG(v) ∩ Y ∗
1 − Y1|

= β′ + r′ − |NG(v) ∩ Y ∗
1 |

= r � 1.

Therefore, L∗ is a faithful (β′, r′, Y ∗
1 )-list-assignment of G.

Since P ⊆ Y ∗
1 , L∗|V (Gi) is a faithful (β′, r′, Y ∗

1 ∩ V (Gi))-list-assignment of Gi. Recall 
that for each i ∈ [k], |Y ∗

1 ∩ V (Gi)| � |Y1| − 1 � η. By the minimality of G, for each 
i ∈ [k], there exists an (η∗s , g∗s )-bounded L∗|V (Gi)-coloring ci of Gi. Since P ⊆ Y ∗

1 ∩V (Gi)
for every i ∈ [k], we know for every v ∈ P , ci(v) = cj(v) for any i, j ∈ [k]. Let c∗ be the 
L∗-coloring of G defined by c(v) := c1(v) if v ∈ P , and c(v) := ci(v) if v ∈ V (Ci) for 
some i ∈ [k].

Since P ⊆ Y ∗
1 ∩ V (Gi) for all i ∈ [k], the number of vertices in the union of the 

monochromatic c∗-components intersecting Y1 ∪ P is at most

k∑

i=1
|Y ∗

1 ∩ V (Gi)|2g∗s (|Y ∗
1 ∩ V (Gi)|) �

k∑

i=1
(|Y1| − 1)2g∗s (|Y1| − 1)

� η∗s · (|Y1| − 1)2g∗s (|Y1| − 1)

� |Y1|2g∗s (|Y1|).



52 C.-H. Liu, D.R. Wood / Journal of Combinatorial Theory, Series B 152 (2022) 27–54
Furthermore, every monochromatic c∗-component disjoint from Y1 ∪ P is a monochro-
matic ci-component for some i ∈ [k], and hence contains at most η∗s2g∗s (η) vertices. 
Therefore c∗ is an (η∗s , g∗s )-bounded L-coloring of G. This proves the lemma. �

The following lemma is equivalent to Lemma 18 except it applies for restricted list 
assignments. The proof is identical, so we omit it.

Lemma 19. Let G be a subgraph-closed family of graphs. Let β, r be functions with domain 
N such that β(x) � x and r(x) ∈ N for every x ∈ N.

Assume that for every s ∈ N, there exist η ∈ N and a nondecreasing function g such 
that for every G ∈ G with no Ks,ts subgraph, where ts := max{

(
s
2
)

+ 2, s + 2}, for every 
Y1 ⊆ V (G) with |Y1| � η, and for every restricted (β(s), r(s), Y1)-list-assignment L of 
G, there exists an (η, g)-bounded L-coloring of G.

Then for every s ∈ N with s � 2, there exist η∗ ∈ N and a nondecreasing function 
g∗ such that for every graph G ∈ G with no almost (� 1)-subdivision of Ks+1, for every 
Y1 ⊆ V (G) with |Y1| � η∗, and for every restricted faithful (β(s − 1), r(s − 1), Y1)-list-
assignment L of G, there exists an (η∗, g∗)-bounded L-coloring of G.

Theorem 20. If s ∈ N with s � 2, then the following hold:

1. For every w ∈ N, there exist η ∈ N and a nondecreasing function g such that for 
every graph G of treewidth at most w with no almost (� 1)-subdivision of Ks+1, 
every subset Y1 of V (G) with |Y1| � η and every faithful (s −1, 1, Y1)-list-assignment 
of G, there exists an (η, g)-bounded L-coloring of G.

2. For every graph H, there exist η ∈ N and a nondecreasing function g such that for 
every graph G with no H-minor and no almost (� 1)-subdivision of Ks+1, every sub-
set Y1 of V (G) with |Y1| � η and every restricted faithful (s −1, 2, Y1)-list-assignment 
L of G, there exists an (η, g)-bounded L-coloring of G.

3. For every d ∈ N with d � 2 and graph H of maximum degree at most d, there 
exist η ∈ N and a nondecreasing function g such that for every graph G with no 
H-subdivision and no almost (� 1)-subdivision of Ks+1, every subset Y1 of V (G)
with |Y1| � η and every restricted faithful (s + 3d − 7, 2, Y1)-list-assignment L of G, 
there exists an (η, g)-bounded L-coloring of G.

4. There exist η ∈ N and a nondecreasing function g such that for every graph G with no 
Ks+1-subdivision, every subset Y1 of V (G) with |Y1| � η and every restricted faithful 
(4s − 7, 2, Y1)-list-assignment L of G, there exists an (η, g)-bounded L-coloring of G.

Proof. Statement 1 follows from Theorem 8 and Lemma 18 by taking G to be the set of 
graphs of treewidth at most w, β(s) = s and r(s) = 1.

Statement 2 follows from Theorem 9 and Lemma 19 by taking G to be the set of 
graphs with no H-minor, β(s) = s and r(s) = 2.
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Statement 3 follows from Lemmas 16 and 19 by taking G to be the set of graphs with 
no H-subdivision, β(s) = 3d + s − 6 and r(s) = 2. Note that β(s) � s since d � 2. And 
3d + s � 7 since d � 2 and s � 1.

Statement 4 follows from Statement 3 by taking H = Ks+1. �
When Y1 = ∅, every (s, r, Y1)-list-assignment is faithful. Thus, Theorem 20 implies 

that for all s, d, w ∈ N with s � 2 and d � 2, for every graph H, there exists η ∈ N such 
that:

1. For every graph G with treewidth at most w and with no almost (� 1)-subdivision 
of Ks+1, and for every list-assignment L of G with |L(v)| � s for every v ∈ V (G), 
there exists an L-coloring with clustering η (Theorem 1 for s � 2).

2. For every graph G with no almost (� 1)-subdivision of Ks+1 and with no H-minor, 
there exists an (s + 1)-coloring of G with clustering η (Theorem 2 for s � 2).

3. If the maximum degree of H is at most d, then for every graph G with no H-
subdivision and no almost (� 1)-subdivision of Ks+1, there exists an (s + 3d − 5)-
coloring of G with clustering η (Theorem 4 for s � 2 and d � 2).

4. For every graph G with no Ks+1-subdivision, there exists a (4s − 5)-coloring of G
with clustering η (Theorem 6 for s � 2).

Note that when s = 1, graphs with no Ks+1 subgraph have no edge, so they are 
1-colorable with clustering 1. This together with Lemma 15 completes the proof of The-
orems 1, 2, 4 and 6.
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