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Abstract: An array is row-Latin if no symbol is repeated within any row. An array is Latin if it
and its transpose are both row-Latin. A transversal in an n × n array is a selection of n different
symbols from different rows and different columns. We prove that every n × n Latin array
containing at least (2 − √

2)n2 distinct symbols has a transversal. Also, every n × n row-Latin
array containing at least 1

4 (5 − √
5)n2 distinct symbols has a transversal. Finally, we show by

computation that every Latin array of order 7 has a transversal, and we describe all smaller
Latin arrays that have no transversal. © 2017 Wiley Periodicals, Inc. J. Combin. Designs 26:
84–96, 2018
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1. INTRODUCTION

This paper deals with square arrays of symbols. By an entry of such an array A, we mean
a triple (i, j, Aij ) where Aij is the symbol in cell (i, j ) of A. A partial transversal of
length k in an array is a selection of k entries no pair of which agree in any of their three
coordinates. A transversal of an n × n array is a partial transversal of length n and a
near transversal is a partial transversal of length n − 1. An array is Latin if no symbol
appears more than once in any row or column. Thus, an n × n Latin array may contain
anywhere from n to n2 distinct symbols. If it has just n distinct symbols, then it is a Latin
square. Transversals of Latin squares were first studied to construct mutually orthogonal
Latin squares. Since then they have garnered a lot of interest in their own right and led to
several famous long-standing conjectures (see [14] for a survey).

For even orders n, there are at least nn3/2(1/2−o(1)) Latin squares that do not have transver-
sals [5]. However, for n × n Latin arrays, as the number of distinct symbols increases,
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there must come a point beyond which it becomes impossible to avoid transversals. This
paper is motivated by the question of when this threshold occurs. Let �(n) be the least pos-
itive integer such that �(n) � n and every Latin array of order n with at least �(n) distinct
symbols contains a transversal. This function was introduced by Akbari and Alipour [1]
who calculated �(n) for n � 4 and showed that �(5) � 7 and �(2k − 2) > 2k for every
integer k > 2. Counterintuitively, every Latin square of order 5 contains a transversal,
but there is a Latin array of order 5 with six symbols and no transversal. Hence, it is not
always true that increasing the number of symbols increases the number of transversals.
Nevertheless, �(n) is well defined since an n × n Latin array with n2 different symbols
certainly has a transversal. Akbari and Alipour put forward the following conjectures:

Conjecture 1. For every integer n � 3, we have �(n) � n2/2.

Conjecture 2. For every integer c, there exists a positive integer n such that �(n) >

n + c.

Up until this point, it was unknown whether there is some constant c < 1 such that
�(n) � cn2 for every integer n > 1. In Sections 2 and 3, we provide two independent
proofs of such a result. The proof in Section 3 gives a better bound, but the other is of
independent interest since it demonstrates an entirely different (probabilistic) approach.
In Section 4, we determine �(n) exactly for n � 7.

On first glance, Conjecture 1 seems very generous and that maybe �(n) even has a linear
upper bound. However, the problem is deceptively hard, and the following observation
gives some hint as to why.

Proposition 1. Let k be a nonnegative integer. If �(n) � 2kn + n − k2 − k for all n,
then every Latin square of order n has a partial transversal of length n − k.

Proof. Let L be any Latin square of order n. Let M be a Latin array of order n + k,
which has L as the top-left n × n subarray and all remaining entries are new distinct
symbols. The number of symbols in M is n + 2nk + k2 � �(n + k), so there must be a
transversal in M . This transversal hits at most 2k cells in the last k rows or columns of
M , so it must intersect the copy of L in at least n − k cells, each of which contains a
different symbol. �

Putting k = 1, we see that if �(n) � 3n − 2 for all n, then every Latin square has a
near transversal. This would prove a famous conjecture attributed to Brualdi (see [14]).
Indeed, any linear upper bound on �(n) would imply the existence of a constant c such
that every Latin square of order n has a partial transversal of length n − c. The best result
to date [11] is that every Latin square has a partial transversal of length n − O(log2 n).

There is a broader setting in which quadratically many symbols is known to be best
possible, namely row-Latin arrays. An array is row-Latin if no symbol appears more than
once in any row. For every positive integer n, let �r (n) be the least positive integer such that
�r (n) � n and every n × n row-Latin array with at least �r (n) distinct symbols contains
a transversal. Barát and Wanless [4] showed that �r (n) > 1

2n2 − O(n). In Section 3, we

prove that �r (n) � � 1
4 (5 − √

5)n2� for every integer n > 1.
A related problem is when repeats are allowed within a row or column, but a restriction

is placed on how many times a symbol can occur in the entire square. It has been shown
in [9, 10] that a transversal must exist if no symbol occurs more than cn times in a square
of order n, where c is a small constant. This means that if each symbol occurs roughly
the same number of times then linearly many symbols are enough to ensure a transversal.
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2. PROBABILISTIC APPROACH

In this section, we use probabilistic methods to prove a bound on �(n). Similar prob-
abilistic methods have been used in a number of other studies of transversals of ar-
rays [2, 3, 9, 10].

Let B = {B1, . . . , Bt } be a set of events in a probability space. Usually the events B
are called the bad events because the aim is for them to not occur. Define Bi to be the
complement of the event Bi . A graph G with vertex set B is a lopsidependency graph if
for all Bi ∈ B and for every subset S of the complement of the closed neighborhood of
Bi in G,

P

(
Bi

∣∣∣⋂
j∈S

Bj

)
� P(Bi). (1)

Lopsidependency graphs were introduced by Erdős and Spencer [9] and are useful
because they have fewer edges than a naively defined dependency graph. Intuitively,
a lopsidependency graph says that the probability of an event does not increase when
conditioned on an arbitrary set of nonadjacent events not occurring.

The clique Lovász local lemma by Kolipaka et al. [12] gives a condition under which
none of the bad events occur. Specializing their formulation, we get:

Lemma 1. Let B = {B1, . . . , Bt } be a set of events with lopsidependency graph G. Let
{K1, . . . , Ks} be a set of cliques in G covering all the edges, and assume κ � maxi |Ki |.
Suppose that no event Bi is in more than μ of the cliques K1, . . . , Ks . If there exists
x ∈ (0, 1/κ) such that P(Bi) � x(1 − κx)μ−1 for all 1 � i � t , then

P

(
t⋂

i=1

Bi

)
> 0.

We use this lemma to prove:

Theorem 1. Let L be a Latin array of order n. If L has at least (229n2 + 27n)/256 ≈
0.8945n2 distinct symbols, then L has a transversal.

Proof. Suppose L has at least n2 − cn2 − dn distinct symbols. Let σ be a permutation
picked uniformly at random from the symmetric group on {1, 2, . . . , n}. Think of σ

as choosing the cells (i, σ (i)) for 1 � i � n, which might correspond to a transversal.
Define the bad events,

B = {
(i, j, i ′, j ′) : 1 � i < i ′ � n, σ (i) = j, σ (i ′) = j ′, Lij = Li ′j ′

}
.

These events correspond to σ choosing a pairs of cells in L that contain the same symbol.
To prove that a transversal exists we just need to prove that, with positive probability,
none of the bad events occur.

The next task is to define the lopsidependency graph that will be used in applying
Lemma 1. Let G be a graph with vertex set B. An edge {(a, b, x, y), (a′, b′, x ′, y ′)} is in
G if and only if at least two of the cells (a, b), (x, y), (a′, b′) and (x ′, y ′) share a row or
column. This occurs only if at least one of x = x ′, x = a′, a = x ′, a = a′, y = y ′, y = b′,
b = y ′ or b = b′. Erdős and Spencer [9] showed that G is a lopsidependency graph.
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Let K = {K1, K2, . . . , K2n} be a set of cliques of G defined as follows. Each clique
corresponds to a row or column of L. An event (a, b, x, y) is in a clique Ki if (a, b) or
(x, y) is in the row or column corresponding to Ki . Note that Ki ∈ K is a clique because
the events in Ki share a row or column (the one corresponding to Ki) and so they are
adjacent in G. These cliques cover every edge of G because two events are adjacent only
if they share a row or column.

Each event in B corresponds to two cells in distinct rows and columns, so each event is
within exactly four cliques. Thus, we take μ = 4. To find the bound κ , consider a clique
K ∈ K which, without loss of generality, corresponds to the first row. Each event in K

corresponds to two cells of L, one in the first row and one not in that row. Let D be the set
of cells outside the first row that are included in some event in K . Each cell in D shares
a symbol with exactly one cell in the first row. Hence, |K| = |D| and the cells not in D

contain as many distinct symbols as L does. Hence n2 − |K| � n2 − cn2 − dn, which
means that we may take κ = cn2 + dn.

Taking x = 1/(4κ), we find that to apply Lemma 1 we need

1

n(n − 1)
= P(Bi) � x(1 − κx)3 = 27

256κ
,

which is satisfied when c = 27/256 and d = −27/256. �

3. A BETTER BOUND

In this section, we prove a better bound on �(n) using nonprobabilistic methods. We start
by proving results about general square arrays, then later use these results to give bounds
on the number of symbols in transversal-free row-Latin arrays and transversal-free Latin
arrays.

We call a symbol in an array A a singleton if it occurs exactly once in A and a clone
otherwise. We define Ri(A) and Cj (A) to be the set of symbols occurring in row i and
column j of A, respectively. Let A(i | j ) denote the array formed from A by deleting row
i and column j and let �ij (A) be the set of symbols that appear in A and not in A(i | j ).

Lemma 2. Let A be a transversal-free array of order n. If A(n | n) has a transversal
and if |Rn(A) ∪ Cn(A)| � (k + 1)n − 1, then A has at most

1

2
(k2 − 2k + 2)n2 + 1

2
(3k − 2)n

distinct symbols.

Proof. Assume that T is a near transversal of A that does not meet the last row or
column and minimizes the number of symbols that it has from Rn(A) ∪ Cn(A).

We call a symbol large if it appears in both T and Rn(A) ∪ Cn(A) and small otherwise.
Let λ be the number of large symbols. Permute the first n − 1 rows and columns of A so
that T is located along the main diagonal and all of the large symbols of T appear in the
top λ rows. For 1 � i < n, note that Ain and Ani cannot be two different small symbols.
Otherwise, (T \ {(i, i, Aii)}) ∪ {(i, n, Ain), (n, i, Ani)} would be a transversal of A. So
there are at most n − 1 distinct small symbols in the last row and column. Thus,

λ � |Rn(A) ∪ Cn(A)| − (n − 1) � (k + 1)n − 1 − (n − 1) = kn. (2)
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We now define a subset � of the entries of A in which each symbol in A is represented
exactly once. We populate � in three steps. First, T ⊆ �. Second, for every small symbol
s that occurs in the last row or column, select one such entry containing s and add it to
�. Note that s cannot appear in T , by the definition of “small.” Finally, for every symbol
s ′ in A that does not appear in T or in the last row or column, select one entry with the
symbol s ′ and add it to �.

We claim that if (i, j ) is in the top λ rows of A with i < j < n, then at most one of
(i, j, Aij ) and (j, i, Aj,i) can be in �. Suppose otherwise, and consider(

T \ {(i, i, Aii), (j, j, Ajj )
}) ∪ {(i, j, Aij ), (j, i, Aji)

}
. (3)

Note that the symbol Aii is contained in the last row or column of A. By the definition
of �, we know that (i, j ) and (j, i) do not have the same symbol and neither one shares a
symbol with any entry in T or in the last row or column. So (3) is a near transversal that
contains fewer symbols in Rn(A) ∪ Cn(A) than T , contradicting the choice of T . This
implies that within the first λ rows and columns of A(n | n), there are at least

(n − 2) + (n − 3) + · · · + (n − λ − 1) = λn − λ(λ + 3)

2

entries not contained in �. Within the last row and column of A, there are at most n − 1
entries in � (all containing small symbols), so at least n entries are not in �. Thus, the
number of distinct symbols in A is

|�| � n2 −
(

λn − λ(λ + 3)

2

)
− n = 1

2
λ2 −

(
n − 3

2

)
λ + n(n − 1). (4)

This quadratic in λ decreases weakly on the integer points in the interval kn � λ � n − 1.
Given (2), we may substitute λ = kn into (4) to get the desired result. �
Lemma 3. Let A be an n × n array with βn2 distinct symbols. If there are d � 1
clones in row i, then there is some clone Aij such that

|Ri(A) ∪ Cj (A)| � |Ri(A)| + βn2 − (n − d)(n − 1) − |Ri(A)|
d

.

Proof. We will endeavor to find a column j such that |Cj (A) \ Ri(A)| is large. Without
loss of generality, assume that the rightmost d columns of row i contain clones. First,
remove all occurrences of the symbols in Ri(A) from the array. Now, arbitrarily select a
representative entry for each of the remaining symbols in the array. Note that there are no
representatives in row i and so there are at most (n − d)(n − 1) representatives in the first
n − d columns. Of the original βn2 symbols, at least βn2 − (n − d)(n − 1) − |Ri(A)|
must have their representative in the last d columns. By the pigeon-hole principle, the
desired clone Aij occurs in one of the last d columns. �

Let A be some class of square arrays of symbols, which has the following two prop-
erties: (i) if any row and column of an array in A is deleted, the resulting array is in A
and (ii) if in one entry of the array, the symbol is changed to a new symbol that appears
nowhere else in the array, then the resulting array is in A. Note that L, the set of all Latin
arrays, and R, the set of all row-Latin arrays, both satisfy the requirements listed.
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Let 1
2 � α � 1. Define MA(α) to be the set of transversal-free arrays in A whose ratio

of number of distinct symbols to cells is at least α. Suppose that MA(α) is nonempty.
Define M∗

A(α) ⊆ MA(α) by the rule that if A ∈ M∗
A(α), then no array in MA(α) has

an order smaller than A and no array in MA(α) of the same order as A contains more
distinct symbols than A. For example, both M∗

L(1/2) and M∗
R(1/2) consist solely of the

Latin squares of order 2. For the remainder of the section, we will bound the number of
symbols in arrays by examining properties of the arrays in M∗

A(α).

Lemma 4. Let A ∈ M∗
A(α) be an array of order n. If Aij is a singleton, then |�ij (A)| >

α(2n − 1) and Ri(A) (resp., Cj (A)) contains more than (2α − 1)n symbols that appear
only in row i (resp., column j ) of A.

Proof. Any array of order 1 has a transversal, so n � 2. There is no transversal T of
A(i | j ), or else T ∪ {(i, j, Aij )} would be a transversal of A. As A ∈ M∗

A(α), we have
that A(i | j ) �∈ MA(α), so the number of distinct symbols in A(i | j ) is strictly less than
α(n − 1)2. Thus,

|�ij (A)| > αn2 − α(n − 1)2 = α(2n − 1).

At most n − 1 of the symbols in �ij (A) \ {Aij } appear in Cj (A), so at least

|�ij (A)| − (n − 1) > α(2n − 1) − (n − 1) � (2α − 1)n

symbols appear in row i and nowhere else in A. A similar argument applies to Cj (A). �
Lemma 5. Let A ∈ M∗

A(α) be an array of order n. If Aij is a clone and |Ri(A) ∪
Cj (A)| � (k + 1)n − 1, then A has at most

1

2
(k2 − 2k + 2)n2 + 1

2
(3k − 2)n

distinct symbols.

Proof. Without loss of generality, i = j = n. Create A′ by changing the symbol in the
(n, n) cell of A to a symbol that did not previously appear in A. Since Aij is a clone in A,
we know that A′ contains strictly more symbols than A. Since A ∈ M∗

A(α), we conclude
that A′ has a transversal, although A does not. Hence there is a near transversal of A that
does not meet row n or column n. By applying Lemma 2, the result follows. �

In the best case, Lemma 5 falls just short of proving Conjecture 1.

Corollary 1. Let A ∈ M∗
A(α) be an array of order n. If Aij is a clone and |Ri(A) ∪

Cj (A)| = 2n − 1, then A has at most (n2 + n)/2 distinct symbols.

Lemmas 3–5 form the main framework needed to bound the number of symbols. We
will utilize Lemmas 3 and 4 in different ways to find an entry (i, j, k), where k is a clone
and row i and column j contain many different symbols. We then apply Lemma 5 to
bound the number of symbols overall. The following subsections concentrate on specific
classes for A.

A. Row-Latin Arrays

In this subsection, we consider A = R, the set of row-Latin arrays.
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Lemma 6. Let M ∈ M∗
R(α) be a row-Latin array of order n. There exists a clone Mij

for which |Ri(M) ∪ Cj (M)| � 2αn − 1.

Proof. First suppose that there is a clone Mij that appears in the same column as a
singleton. By Lemma 4, Cj (M) contains at least (2α − 1)n symbols that appear only in
Cj (M). One of these symbols may be Mij , but

|Ri(M) ∪ Cj (M)| = |Ri(M)| + |Cj (M) \ Ri(M)| � n + (2α − 1)n − 1 = 2αn − 1,

as required.
Hence, we may assume that no column contains a singleton and a clone. Let d be the

number of columns that contain clones.
If d � n/2, then we can find a transversal in the following way. Let R be the n × d

subarray of M that contains the clones of M . A result of Drisko [6] implies that M has
a partial transversal of length d that is wholly inside R. Since this partial transversal
covers all columns that contain clones, it can trivially be extended to a transversal using
singletons.

So we may assume that d > n/2. Since each row contains d clones, we may use
Lemma 3 with β � α to find some clone Mij such that

|Ri(M) ∪ Cj (M)| � α − 1

d
n2 + 2n − 1 > 2(α − 1)n + 2n − 1 = 2αn − 1. �

We now show one of our main results, that row-Latin arrays with many symbols must
have a transversal.

Theorem 2. Let L be a row-Latin array of order n. If L has at least 1
4 (5 − √

5)n2 ≈
0.6910n2 distinct symbols, then L has a transversal.

Proof. Aiming for a contradiction, suppose that L ∈ MR(α) for α = (5 − √
5)/4.

Then there exists M ∈ M∗
R(α). Let M have order m. By Lemma 6, there is a clone Mij

such that |Ri(M) ∪ Cj (M)| � 2αm − 1. By Lemma 5, the number of distinct symbols
in M is at most

1

2

(
(2α − 1)2 − 2(2α − 1) + 2

)
m2 + 1

2
(3(2α − 1) − 2) m = αm2 − 1

4
(3

√
5 − 5)m.

This contradicts the fact that M has at least αm2 distinct symbols, and we are done. �

B. Latin Arrays

In this subsection, we consider A = L, the set of Latin arrays.
We call a Latin array L of order n focused if every singleton in L occurs in a row or

a column that contains only singletons and |�ij (L)| = 2n − 1 for some (i, j ) (i.e., row
i and column j contain only singletons). We deal with focused and unfocused arrays
separately.

For focused arrays we use the following simple adaptation of a result of Wool-
bright [15]. The original proof was for Latin squares, but it works without change
for Latin arrays (in fact for row-Latin arrays, but we do not need that).
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Theorem 3. Let L be an n × n Latin array and 0 � t < n. If (n − t)2 > t , then L has
a partial transversal of length t + 1.

In the following result, recall that we assume α � 1/2.

Lemma 7. Let M ∈ M∗
L(α) be a Latin array of order n. If M is focused, then M

contains at most 1
8 (6 − √

2)n2 ≈ 0.5732n2 distinct symbols.

Proof. Let δ = �(2α − 1)n�. Suppose that M has r rows and c columns that contain
singletons. Permute the rows and columns of M so that these singletons occur in the top
r rows and leftmost c columns. Since M is focused, min(r, c) � 1 and the bottom-right
(n − r) × (n − c) subarray does not contain any singletons. Thus, if we consider any
singleton in the last row or last column, we get min(r, c) � δ by Lemma 4.

If α � 3/4, then min(r, c) � n/2 and so {(i, n − i + 1) : 1 � i � n} is a set of cells
containing only singletons, contradicting the fact that M has no transversal. So α < 3/4.

Let M ′ be the subarray formed by the last n − δ rows and columns of M . Suppose
that M has a partial transversal of length n − 2δ wholly inside M ′. Then this partial
transversal can easily be extended to a transversal by selecting singletons in the first δ

rows and δ columns of M . By assumption M has no transversal, so applying Theorem 3
to M ′ we find that (δ + 1)2 � n − 2δ − 1. Hence

0 � δ2 + 4δ + 2 − n � (2α − 1)2n2 + (8α − 5)n + 2. (5)

From the discriminant of this quadratic we learn that 32α2 − 48α + 17 � 0. Since α <

3/4 we have α � (6 − √
2)/8. �

For any α > 1/2, it is noteworthy that (5) fails for all large n. So we get an asymptotic
version of Conjecture 1 holding for focused Latin arrays. We are not able to reach such
a strong conclusion for the unfocused case.

Lemma 8. Let M ∈ M∗
L(α) be a Latin array of order n. If M is unfocused, then there

exists some clone Mij such that |Ri(M) ∪ Cj (M)| � (α + 1)n − 1.

Proof. First, we consider the case that M has some row or column that contains only
clones. Without loss of generality, row i contains only clones. By Lemma 3, there is some
clone Mij such that |Ri(M) ∪ Cj (M)| � n + (αn2 − n)/n = (α + 1)n − 1.

Second, we consider the case that every row and column of M contains a singleton.
Since M is unfocused, there is some singleton Mik such that there is a clone in both
row i and column k. By Lemma 4, we have |�ik(M)| > α(2n − 1). Each symbol in
�ik(M) appears in either Ri(M) or Ck(M). Also, Mik appears in both Ri(M) and Ck(M),
so without loss of generality, Ri(M) contains at least (|�ik(M)| + 1)/2 > α(n − 1/2) +
1/2 � αn symbols that are in �ik(M). Let Mij be a clone in the same row as Mik . Except
possibly for Mij , none of the n symbols in Cj (M) are in �ik(M). Hence, |Ri(M) ∪
Cj (M)| � αn + n − 1 as required. �

We now show a stronger result than Theorem 2 holds for Latin arrays.

Theorem 4. Let L be a Latin array of order n. If L has at least (2 − √
2)n2 ≈ 0.5858n2

distinct symbols, then L has a transversal.

Proof. Aiming for a contradiction, suppose that L ∈ ML(α) for α = 2 − √
2. Then

there exists M ∈ M∗
R(α). Let M have order m. Note that M cannot be focused, by
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Lemma 7. So, there is a clone Mij such that |Ri(M) ∪ Cj (M)| � (α + 1)m − 1, by
Lemma 8. By Lemma 5, the number of distinct symbols in M is at most

1

2

(
α2 − 2α + 2

)
m2 + 1

2
(3α − 2) m = αm2 − 1

2
(3

√
2 − 4)m.

This contradicts the fact that M has at least αm2 distinct symbols, and we are done. �

4. SMALL VALUES

We now shift our attention to small values of n where we can compute �(n) exactly.
Akbari and Alipour [1] determined �(n) for n � 4. We extend this search to n � 7 and
catalog all Latin arrays of small orders with no transversals. For n � 8, computing �(n)
seems challenging. We will mention a couple of unsuccessful attempts to find examples
that would provide some insight.

Following [8], we say that two Latin arrays are trisotopic if one can be changed into the
other by permuting rows, permuting columns, permuting symbols, and/or transposing.
The set of all Latin arrays trisotopic to a given array is a trisotopy class. The number of
transversals is a trisotopy class invariant, so to find all transversal-free Latin arrays of
a given order it suffices to consider trisotopy class representatives. However, for orders
n > 5 it becomes difficult to construct a representative of every trisotopy class. The
following method allows us to push our results a couple of orders further.

Let L be a transversal-free Latin array. In the first two rows of L, select two entries
that do not share a column or symbol (this can always be done for n � 3). Without loss
of generality, we may assume that these two entries are (1, 1, x) and (2, 2, y). Let L′ be
the bottom-right (n − 2) × (n − 2) subarray of L where all occurrences of x and y are
replaced with a hole (i.e., a cell with no symbol; we forbid holes from being chosen in a
transversal or partial transversal). There cannot be a partial transversal of length n − 2 in
L′, otherwise the corresponding entries in L, together with (1, 1, x) and (2, 2, y), would
form a transversal of L.

Thus, to search for transversal-free Latin arrays of order n, we first build a catalog
Cn−2 of trisotopy class representatives of transversal-free partial Latin arrays of order
n − 2 with at most two holes in each row and each column. Starting with this catalog,
we can reverse the argument above. At least one representative of each trisotopy class
of transversal-free Latin array of order n can be obtained by taking an element of Cn−2,
filling its holes with x and y, then extending it to a Latin array of order n.

By the above technique, we are able to give a complete catalog of the transversal-free
trisotopy classes for orders n � 7. Table I gives the value of �(n) and the number of
trisotopy classes with a specific number of symbols.

Representatives of the trisotopy classes of transversal-free Latin arrays of orders 4 and
5 are:

⎛
⎜⎜⎜⎝
a b c d

b c d a

c d a b

d a b c

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
a b c d

b c a e

c a d b

e d b a

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

a b c d e

b c a e f

c a b f d

e d f c a

d f e a b

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

f b c d e

b c a e f

c a b f d

e d f c a

d f e a b

⎞
⎟⎟⎟⎟⎟⎠ .
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TABLE I. Values of �(n) and the number of trisotopy classes of transversal-free Latin
arrays.

Trisotopy classes

n �(n) n Symbols n + 1 Symbols n + 2 Symbols Total

2 3 1 − − 1
3 3 − − − 0
4 6 1 1 − 2
5 7 − 2 − 2
6 9 8 19 1 28
7 7 − − − 0

Note that our two representatives of order 5 differ only in their first entry. Both can be
completed to Latin squares of order 6; in the first case this Latin square has no transversals,
but in the second case it has eight transversals.

Many of the transversal-free Latin arrays for order 6 also turn out to be quite similar
to one another. There are exactly 28 trisotopy classes for n = 6. Previously, nine of
these classes were known: eight Latin squares and the array constructed by Akbari and
Alipour [1] by removing two rows and columns from the elementary abelian Cayley table
of order 8. We will now describe the 19 transversal-free trisotopy classes of order 6 with
seven symbols. We will denote their representative arrays by L1, L2, . . . , L19. Let

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c d e f
b c a f d e

c a b e f d
d e f g b c
f d e b g a
e f d c a g

⎞
⎟⎟⎟⎟⎟⎟⎠

and L′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c d e f
c f b e d a
b c e f a d

d e f a b c
e d a c f b
f a d b c e

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From L′, we define L2, . . . , L8 by changing some entries on the main diagonal to a
new symbol, g, in the following way. Let

R′ ∈ {{1, 2, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5}, {1, 3, 6}, {1, 4}, {2, 3, 5, 6}, {3, 4, 5, 6}}.
For all r ∈ R′, change the symbol on the main diagonal in row r of L′ to g. It turns out
that changing the shaded entries in L1 to g results in an array that is trisotopic to L2.
Next, L9 is obtained by changing the symbol of the shaded entries in L′ to a new symbol,
g. Let

L10 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c d e f
b c g a f e
c f d g a b
d a f e g c
e g a f c d
g e b c d a

⎞
⎟⎟⎟⎟⎟⎟⎠

and L′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c d e f
b c a e f d
c a b f d e
d e f a c b
e f d c b a
f d e b a c

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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From L10, we can either change the symbol in the (3, 3) cell to e, giving L11, or change
the symbol in the (4, 4) cell to b, giving L12.

The array L13 is obtained by changing the d in rows 2 and 3 of L′′ to g, as well as
changing the f in row 2 to d. Next, L14 is obtained by changing the e in row 3 of L13 to d.
From the Latin square L′′, any subset of entries that contain d may be changed to a new
symbol, g. This gives rise to five trisotopy classes. In particular, we define L15, . . . , L19

by changing some occurrences of d to a new symbol, g, in the following way. Let

R′′ ∈ {{1}, {1, 2}, {1, 2, 3}, {1, 3, 5}, {1, 4}}.
For all r ∈ R′′, change the d in row r of L′′ to g.

One can check that L15, . . . , L19 are transversal-free by exhaustive computation, but
next we give a reason why they have no transversals. The argument is in the style of the
highly successful �-lemma (see [14]). Let L be any Latin array obtained by replacing
any subset of the occurrences of d in L′′ by g. Define functions ρ, ν to Z3 by

ρ(1) = ρ(4) = 0, ρ(2) = ρ(5) = 1, ρ(3) = ρ(6) = 2,

ν(a) = ν(d) = ν(g) = 0, ν(b) = ν(e) = 1, ν(c) = ν(f) = 2.

Define a function � from the entries of L to Z3 by �(r, c, s) = ρ(r) + ρ(c) − ν(s). Let
D denote the bottom-right 3 × 3 subsquare of L. Suppose that T is a transversal of L

and that s̄ is the only symbol in {a, b, . . . , g} that does not appear in T . Then

∑
(r,c,s)∈T

�(r, c, s) = 2
6∑

i=1

ρ(i) −
∑

(r,c,s)∈T

ν(s) = ν(s̄). (6)

Also, if T includes x entries in D then overall it has 2x entries with symbols in {a, b, c},
which means that x = 1 and s̄ ∈ {a, b, c}. However, �(r, c, s) = 0 for all entries of L,
except those in D, where �(r, c, s) = ν(s). Hence to satisfy (6), the symbol in the only
entry of T in D has to be s̄, contradicting the fact that this symbol does not appear in T .

The argument we have just presented is specific to order n = 6 and does not seem to
easily generalize to arrays of larger orders. When performing the search for transversal-
free Latin arrays of order n = 7, we found 15,611,437 trisotopy classes of transversal-free
partial Latin arrays of order 5 with at most two holes in each row and column. Table II
provides counts of the trisotopy classes based on number of holes and number of symbols.
Since none of these arrays can extend to a Latin array of order 7 with no transversals, we
have the following result.

Theorem 5. Every Latin array of order 7 has a transversal.

The approach that we used to prove Theorem 5 is infeasible for n � 8, although we
did examine certain interesting sets of Latin arrays of order 8. There are 68 different
transversal-free Latin squares of order 8, up to trisotopy. We also considered all Latin
arrays that are obtained by removing one row and one column from a Latin square of
order 9. We could immediately eliminate any square of order 9 that contains a transversal
through every entry. Latin squares that do not contain a transversal through every entry
are called confirmed bachelor squares. The confirmed bachelor squares of order 9 were
generated for [7], providing us with a set of trisotopy class representatives. None of these
squares has an order 8 transversal-free subarray. Lastly, we searched all Latin arrays of
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TABLE II. Counts of trisotopy classes of transversal-free 5 × 5 partial Latin arrays,
categorized by number of symbols and number of holes.

Number of symbols

3 4 5 6 7 8 9 10 11 12 13

0 − − − 2 − − − − − − −
1 − − 1 17 − − − − − − −
2 − − 9 271 13 − − − − − −
3 − − 137 4,893 1,179 61 5 − − − −
4 − − 1,484 54,911 31,342 5,539 1,906 462 62 4 −
5 − 3 10,686 341,251 319,750 58,257 9,823 1,175 86 4 −
6 − 19 48,436 1,155,690 1,420,192 299,951 33,366 1,953 56 − −
7 − 151 124,275 2,045,859 2,754,143 670,137 63,480 2,676 30 − −
8 − 632 159,295 1,720,463 2,198,260 549,316 43,912 1,710 78 8 1
9 − 916 80,609 557,285 603,320 134,056 7,120 148 7 1 −

10 3 320 9,420 40,418 34,218 6,014 159 1 − − −

order 8 with exactly 9 symbols where one of the symbols appears at most 4 times. None
of these were transversal-free. The arrays that we have checked are a tiny subset of all
Latin arrays of order 8. Without theoretical insight, it seems hopeless to check them all.
So all that we can conclude at this stage is that �(8) � 9.

It is known that all Latin squares of order 9 have transversals (see, e.g., [7]). We
tried, unsuccessfully, to build a transversal-free Latin array of order 9. We did this by
removing a row and column from Latin squares of order 10. The squares that we used
were representatives of all trisotopy classes for which the autoparatopy group has order
3 or higher, as generated for [13].

The results of our investigations lead us to be skeptical that Conjecture 2 is true.
However, proving that it is false is likely to be extremely hard, for the reasons explained
after Proposition 1. Yet, it also seems hard to prove a subquadratic bound on �(n), or
even to prove Conjecture 1. For �r (n) we know more. Thanks to [4] and Theorem 2, we
know that 1

2n2 − O(n) < �r (n) � � 1
4 (5 − √

5)n2�.
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[9] P. Erdős and J. Spencer, Lopsided Lovász local lemma and Latin transversals, Discrete Appl
Math 30(2–3) (1991), 151–154.

[10] H.-L. Fu and C.-C. Lee, Transversals in m × n arrays, J Stat Theory Pract 6(1) (2012), 139–146.

[11] P. Hatami and P. W. Shor, A lower bound for the length of a partial transversal in a Latin square,
J Combin Theory Ser A 115(7) (2008), 1103–1113.

[12] K. Kolipaka, M. Szegedy, and Y. Xu, “A sharper local lemma with improved applications,” in
Approximation, Randomization, and Combinatorial Optimization, Gupta A., Jansen K., Rolim
J., Servedio R., vol. 7408, Lecture Notes in Computer Science, Springer, Heidelberg, 2012, pp.
603–614.

[13] B. D. McKay, A. Meynert, and W. Myrvold, Small Latin squares, quasigroups, and loops,
J Combin Des 15(2) (2007), 98–119.

[14] I. M. Wanless, “Transversals in Latin squares: A survey,” in Surveys in Combinatorics 2011,
Robin Chapman. vol. 392, London Mathematical Society Lecture Note Series, Cambridge
University Press, Cambridge, 2011, pp. 403–437.

[15] D. E. Woolbright, An n × n Latin square has a transversal with at least n − √
n distinct symbols,

J Combin Theory Ser A 24(2) (1978), 235–237.

Journal of Combinatorial Designs DOI 10.1002/jcd


