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Abstract. We consider the problem of finding a balanced ordering of the
vertices of a graph. More precisely, we want to minimise the sum, taken
over all vertices v, of the difference between the number of neighbours
to the left and right of v. This problem, which has applications in graph
drawing, was recently introduced by Biedl et al. [1]. They proved that the
problem is solvable in polynomial time for graphs with maximum degree
three, but NP-hard for graphs with maximum degree six. One of our
main results is closing the gap in these results, by proving NP-hardness
for graphs with maximum degree four. Furthermore, we prove that the
problem remains NP-hard for planar graphs with maximum degree six
and for 5-regular graphs. On the other hand we present a polynomial
time algorithm that determines whether there is a vertex ordering with
total imbalance smaller than a fixed constant, and a polynomial time
algorithm that determines whether a given multigraph with even degrees
has an ‘almost balanced’ ordering.

1 Introduction

A number of algorithms for graph drawing use a ‘balanced’ ordering of the
vertices of the graph as a starting point [2–4, 6, 7]. Here balanced means that
neighbours of each vertex v are as evenly distributed to the left and right of v
as possible (see below for more precise definition). The problem of determining
such an ordering was recently studied by Biedl et al. [1]. We solve a number of
open problems from [1] and study a few other related problems.

Let G = (V,E) be a multigraph without loops. An ordering of G is a bijection
σ : V → {1, . . . , |V |}. For u, v ∈ V with σ(u) < σ(v), we say that u is to the left
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of v and that v is to the right of u. The imbalance of v ∈ V in σ, denoted by
Bσ(v), is

∣
∣|{e ∈ E : e = {u, v}, σ(u) < σ(v)}| − |{e ∈ E : e = {u, v}, σ(u) > σ(v)}|∣∣.
When the ordering σ is clear from the context we simply write B(v) instead

of Bσ(v). The imbalance of ordering σ, denoted by Bσ(G), is
∑

v∈V Bσ(v). The
minimum value of Bσ(G), taken over all orderings σ of G, is denoted by M(G).
An ordering with imbalance M(G) is called minimum. Clearly the following two
facts hold for any ordering:

– Every vertex of odd degree has imbalance at least one.
– The two vertices at the beginning and at the end of any ordering have im-

balance equal to their degrees.

These two facts imply the following lower bound on the imbalance of an ordering.
Let odd(A) denote the number of odd degree vertices among the vertices of
A ⊆ V . Let (d1, . . . , dn) be the sequence of vertex degrees of G, where di ≤ di+1

for all 1 ≤ i ≤ n− 1. Then

Bσ(G) ≥ odd(V ) − (d1 mod 2) − (d2 mod 2) + d1 + d2.

An ordering σ is perfect if the above inequality holds with equality. perfect
ordering is the decision problem whether a given multigraph G has a perfect
ordering. This problem is clearly in NP .

Biedl et al. [1] gave a polynomial time algorithm to compute a minimum
ordering of graphs with maximum degree at most three. On the other hand,
they proved that it is NP-hard to compute a minimum ordering of a (bipartite)
graph with maximum degree six.

One of the main results of this paper is to close the above gap in the com-
plexity of the balanced ordering problem with respect to the maximum degree
of the graph. In particular, we prove that the perfect ordering problem is
NP-complete for simple graphs with maximum degree four.

Whether the balanced ordering problem is efficiently solvable for planar
graphs is of particular interest since planar graphs are often used in graph draw-
ing applications. We answer this question in the negative by proving that the
perfect ordering problem is NP-complete for planar simple graphs with
maximum degree six.

Our third NP-hardness result states that finding a minimum ordering is NP-
hard for 5-regular simple graphs. All of these NP-hardness results are presented
in Section 3. The proofs are based on reductions from various satisfiability prob-
lems. Section 2 contains several NP-completeness results for the satisfiability
problems that we use.

In Section 4 we present our positive complexity results. In particular, we
describe a polynomial time algorithm that determines whether a given graph
has an ordering with at most k imbalanced vertices for any constant k. This
algorithm has several interesting corollaries. For example, the perfect order-
ing problem can be solved in polynomial time for a multigraph in which all the
vertices have even degrees (in particular, for 4-regular multigraphs).
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2 NP-Hardness of Satisfiability Problems

In this section we state several NP-hardness results about various satisfiability
problems. The results in this section can be achieved by verifying conditions of
a general theorem of Schaefer [5]. First we introduce several basic definitions
about satisfiability. Throughout this paper, formulae are considered to be in a
conjunctive normal form. We allow a variable to occur several times in one clause
but note that the graphs created in this way are simple (unless stated otherwise).
Suppose ϕ is a formula with variables x1, . . . , xn. The incidence graph of ϕ is
the bipartite graph with vertices c1, . . . , cm and x1, . . . , xn, where {ci, xj} is an
edge if and only if the variable xj occurs in the clause ci (positive or negated). A
truth assignment of a formula ϕ with variables x1, . . . , xn is an arbitrary function
t : {1, . . . , n} → {0, 1}. The values 0 and 1 are also sometimes called false and
true respectively. A truth assignment t is satisfying ϕ if there is at least one true
literal in every clause. The formula ϕ is satisfiable if it has at least one satisfying
truth assignment.

The decision problem asking whether a given formula ϕ is satisfiable is called
sat. If we assume that every clause in the given formula ϕ has size exactly
three, then the decision problem asking whether ϕ is satisfiable is called 3sat.
Two common variants of 3sat are Not–All–Equal 3-Satisfiability (nae–3sat for
short) and 1–in–3 Satisfiability (1–in–3sat). Both these problems are defined on
formulae in which each clause has size exactly three. A truth assignment t is NAE
satisfying if each clause has at least one true and at least one false literal, and t is
called 1–in–3 satisfying if each clause has exactly one true literal. The notions of
NAE satisfiable and 1–in–3 satisfiable formulae, and the corresponding decision
problems are defined in the obvious way. sat is one of the basic NP-complete
problems, and it is well known that nae–3sat and 1–in–3sat are NP-complete
even for formulae without negations [5].

We say that a formula ϕ for which all clauses have five literals is 2–or–3–
in–5 satisfiable if there exists a truth assignment such that in each clause either
two or three literals are true. Let 2–or–3–in–5sat denote the decision problem
asking whether a given formula without negations is 2–or–3–in–5 satisfiable. For
a formula ϕ, in which all clauses have six literals, a truth assignment t is 3–in–6
satisfying if each clause in ϕ has exactly three true literals. The formula ϕ is 3–
in–6 satisfiable if there exists a 3–in–6 satisfying truth assignment. 3–in–6sat is
the decision problem asking whether a given formula ϕ is 3–in–6 satisfiable. The
fact that 2–or–3–in–5sat is NP-complete and that 3–in–6sat is NP-complete
for formulae without negations follows from [5].

Now we strengthen the result about 3–in–6sat.

Proposition 1. Problem 3–in–6 sat is NP-complete for planar formulae with-
out negations.

Proof. Suppose we have a formula ϕ with clauses of size six without negations.
We now show that if the formula ϕ is not planar we can alter it in polynomial
time so that the resulting formula ϕ′ is planar and ϕ is 3–in–6 satisfiable if and
only if ϕ′ is 3–in–6 satisfiable. This will prove the lemma. Let d be a drawing
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of the incidence graph of ϕ in the plane, such that any two edges cross at most
once. For each pair of crossing edges e = (v, c) and e′ = (v′, c′), add four new
variables vee′

1 , . . . , vee′
4 and three clauses cee′

= v∨v∨vee′
1 ∨vee′

1 ∨v′ ∨vee′
2 , cee′

e =
vee′
1 ∨ vee′

1 ∨ vee′
1 ∨ vee′

3 ∨ vee′
3 ∨ vee′

3 , cee′
e′ = vee′

2 ∨ vee′
2 ∨ vee′

2 ∨ vee′
4 ∨ vee′

4 ∨ vee′
4 .

Then substitute occurrences of v in c by vee′
3 , and occurrences of v′ in c′ by vee′

4 .
See Figure 1 for an example of a gadget for two crossing edges.

v
v′ c′

c

cee′ cee′
e′

cee′
evee′

1 vee′
3

vee′
2 vee′

4

Fig. 1. The crossing gadget for two edges {v, c} and {v′, c′}. Empty circles represent
clauses, and full circles represent variables

After the substitutions we clearly obtain a planar formula. It remains to
prove that ϕ′ is 3–in–6 satisfiable if and only if ϕ is. To do so, we show that
3–in–6 satisfiability of the formula is unchanged by each substitution. Let t be a
3–in–6 satisfying truth assignment for ϕ and let ψ be the formula obtained from
ϕ by the substitution described above. Setting t′(x) = t(x) for all variables x of
ϕ and t′(vee′

1 ) = ¬t(v), t′(vee′
2 ) = ¬t(v′), t′(vee′

3 ) = t(v) and t′(vee′
4 ) = t(v′), we

obtain a 3–in–6 satisfying truth assignment for ψ. The other implication can be
seen as follows. Let t′ be a 3–in–6 satisfying truth assignment for ψ. Hence it
must hold that t′(vee′

1 = ¬t′(vee′
3 ) and t′(vee′

2 ) = ¬t′(vee′
4 ). It is also clear that

t′(v) = ¬t′(vee′
1 ) = t′(vee′

3 ). Thus, regardless of the truth assignment, there are
two true and two false literals in the clause cee′

. Hence t′(v′) = ¬t′(vee′
2 ) = t′(vee′

4 )
and we can conclude (because t′(v) = t(vee′

3 ) and t′(v′) = t(vee′
4 )) that if t′ is

restricted to the variables of ϕ, then a 3–in–6 satisfying truth assignment is
obtained.

3 NP-Hardness of Balanced Ordering Problems

In this section we prove several NP-hardness results about balanced ordering
problems.

Theorem 1. The perfect ordering problem is NP-complete for graphs with
maximum degree four.

Proof. The construction is a refinement of a construction by Biedl et al. [1];
the difference being that we reduce the maximum degree from six to four. NP-
hardness is proved by a reduction from nae–sat. Given a formula ϕ, create a
graph Gϕ with one vertex uc for each clause c. For each variable v that occurs
ov times in ϕ, add a path on 3ov + 1 new vertices pv

1, . . . , p
v
3ov+1 to Gϕ, add ov
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additional vertices qv
1 , . . . , q

v
ov

and connect qv
i , i ∈ {1, . . . , ov} with vertices pv

3i−2

and pv
3i of the path. The path with the additional vertices is called a variable

gadget. Finally for each i ∈ {1, . . . , ov}, connect vertex pv
3i−2 of the path to uc,

where c is the clause corresponding to the i-th occurrence of the variable v. These
edges are called clause edges. See Figure 2 for an example of this construction.

a

c

b

d

u1

u2

u3

pd
7pd

1 pd
2 . . . . . . . . . . . . . . .

qd
1 qd

2

Fig. 2. Constructed graph for formula (a ∨ b ∨ c) ∧ (c ∨ a ∨ d) ∧ (d ∨ c ∨ b). The three
clauses have numbers 1, 2, 3 in the picture

Observe that the maximum degree of Gϕ is four. In particular, deg(uc) =
3, deg(qv

i ) = 2 for all i ∈ {1, . . . , ov}, deg(pv
3i) = 3 for all i ∈ {1, . . . , ov},

deg(pv
3i−2) = 4 for all i ∈ {2, . . . , ov}, deg(pv

3i−1) = 2 for all i ∈ {1, . . . , ov},
deg(pv

1) = 3, and deg(pv
3ov+1) = 1.

We now prove that Gϕ has a perfect ordering if and only if ϕ is NAE-
satisfiable. Suppose Gϕ has a perfect linear ordering σ. For each variable v,
since deg(pv

3i−1) = 2 and deg(qv
i ) = 2, vertices pv

3i−1, i ∈ {1, . . . , ov}, and qv
i , i ∈

{1, . . . , ov}, must have one incident edge to the left and one to the right in σ.
Thus they must be placed between pv

3i−2 and pv
3i. As pv

3i−1 and qv
i are on one side

(e.g., to the left) of vertex pv
3i−2 (pv

3i) the other neighbours of the vertex must
be on the other side. This implies that in σ, the path in each variable gadget
is in the order given by its numbering or inverse numbering, and all the clause
edges (the edges with exactly one endpoint in the variable gadget) have a clause
vertex on the same end (for example the left end of each clause edge is a vertex
of a path). If the path in the gadget for variable v is ordered according to its
numbering, then set t(v) := 0. Otherwise set t(v) := 1. This truth assignment
is NAE-satisfying because each clause vertex has at least one neighbour on each
side.

For a given truth assignment t we can analogously construct a perfect linear
ordering. First place each variable gadget corresponding to a variable with t(v) =
0 with the path placed according to the inverse ordering, and put each vertex
qv
i immediately after vertex pv

3i−1, i ∈ {1, . . . , ov}. Then place vertices uc in an
arbitrary order and finally the variable gadgets corresponding to variables with
t(v) = 1 with the paths ordered according to the numbering and vertices qv

i

placed immediately after the vertex pv
3i−2. ��

Now we present the result about ordering of planar graphs:

Theorem 2. The perfect ordering problem is NP-complete for planar sim-
ple graphs with maximum degree six.



854 Jan Kára, Jan Kratochv́ıl, and David R. Wood

Proof. We reduce the problem of 3–in–6 sat for planar formulae to the perfect
ordering problem for planar graphs. To do so, use the graph construction
from the proof of Theorem 1. Note that multiple occurrences of a variable in
a clause do not create any parallel edges in the constructed graph. Clearly the
construction creates planar graph of maximum degree six from a planar formula
and perfect orderings of the created graph correspond to 3–in–6 satisfying truth
assignments, as in the proof of Theorem 1. ��

The following two technical lemmas will be used later for removing parallel
edges from a multigraph without changing an ordering with minimum imbalance.
Their proofs are omitted due to the space limitation.

Lemma 1. Let G be the multigraph drawn in Figure 3 with two parallel edges
added between the vertices a and b. Then there exists a minimum ordering of G
such that a is the leftmost and b the rightmost vertex. Such an ordering is called
a natural ordering of G.

a b1

2

3

6

4
5

Fig. 3. The triple edge gadget

Lemma 2. Let G be a 5-regular multigraph and let c be the number of triple-
edges in G. Let G′ be the graph obtained from G by replacing each triple-edge of
G with endpoints a and b by the triple-edge gadget in Figure 3. The vertices a
and b of the gadget are identified with the original end-vertices of the triple-edge.
Then M(G) = M(G′) − 10 · c.

For the next reduction we use the 2–or–3–in-5sat problem which we proved
to be NP-complete in Section 2.

Theorem 3. The perfect ordering problem is NP-complete for 5-regular
multigraphs.

Proof. We prove NP-hardness by a reduction from 2–or–3–in-5sat. Suppose
that we are given a formula ϕ without negations and with all clauses of size five.
Moreover we assume that each variable occurs in at least two different clauses
in the formula. We can make a formula satisfy this condition by adding satisfied
clauses of type x∨x∨x∨¬x∨¬x. Now create the following multigraph G from
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ϕ. For each clause c add a new vertex vc to G. For each variable x that occurs
ox times in ϕ, add a new path (called a variable path) with 2ox − 2 vertices
vx
1 , . . . , v

x
2ox−2 where edges vx

2i−1v
x
2i, 1 ≤ i ≤ ox − 1, are triple-edges. Connect

vertex vx
2i, 1 ≤ i ≤ ox − 1, of the path to the vertex corresponding to the clause

with i-th occurrence of x. Furthermore, connect vertex vx
2ox−2 to the vertex

corresponding to the clause with the ox-th occurrence of x (because x was in
at least two different clauses we can without loss of generality assume that no
parallel edges are created). Connect each vertex vx

2i−1, 1 ≤ i ≤ ox−1, to the new
vertex px

i , and connect each vertex vx
1 to the new vertex px

0 . Now the only vertices
which have degree other that five are in the set P = {px

j : x is a variable, 0 ≤
j ≤ ox − 1} and these have degree one. By running the following procedure two
times for the set P , all the vertices will have degree five.

n := |P |
Arbitrarily number the vertices in P by 1, . . . , n.
while |P | ≥ 3 do
Take three arbitrary vertices ui, uj , uk ∈ P
P := P \ {ui, uj, uk} ∪ {un+1, un+2}
Add a complete bipartite graph on ui, uj , uk and un+1, un+2 to G.
n := n+ 2

end
Now P = {ui, uj}
Add to G a complete bipartite graph on ui, uj and new vertices s1, s2.
Add a triple-edge s1s2 to G.

Let n0 denote the value of n at the beginning of the procedure and n1 the
value of n at the end of the procedure. It is easy to check that G is 5-regular
and we show that G has a perfect ordering if and only if ϕ was 2-or-3-in-5 sat-
isfiable. Suppose we have a perfect ordering of G. In every ordering of s1, s2
and their neighbours ui, uj , B(s1) + B(s2) > 2. Thus (from the perfectness of
the ordering) the ordering begins s1, s2 without loss of generality. By a similar
argument, the ordering ends by vertices s′2, s′1, where s′1 and s′2 are the ver-
tices added in the end of the second run of the procedure on P . Because all
other vertices must be balanced we know that every variable path is either in
its natural ordering or reversed. Moreover all edges between the variable path
and clauses have clause vertices to the right (or to the left in the reversed case).
Because all clause vertices are balanced we get a 2-or-3-in-5 satisfying truth
assignment of ϕ by assigning t(x) = 0 to the variables whose path is in natu-
ral order and t(x) = 1 to the variables whose path is reversed. For the other
implication, suppose we have a 2-or-3-in-5 satisfying truth assignment t of ϕ.
We can place vertices s1, s2, un1 , . . . , un0+1 added in the first run, then vertices
px

j : x is a variable with t(x) = 0, 0 ≤ j ≤ ox − 1, then variable paths for vari-
ables x such that t(x) = 0 in their natural ordering, then the clause vertices,
and then symmetrically the rest of the paths and vertices added in the second
run. It is straightforward to check that this ordering is perfect. ��

See an example of the above construction in Figure 4.
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a
b

c
d

2

1

Fig. 4. Constructed 5-regular multigraph for formula (a∨a∨b∨c∨d)∧(a∨b∨b∨c∨d).
Clause vertices are marked 1 and 2. Clause vertices and variable paths are drawn in
black colour, vertices px

i and vertices added by the procedure are in gray colour

Corollary 1. Finding a minimum ordering for 5-regular graphs is NP-hard.

Proof. Construct the multigraphG as in the reduction in the proof of Theorem 3.
Say G has c triple edges. Construct G′ from G by substituting each triple-
edge by a triple-edge gadget. Observe that G′ remains 5-regular and is a simple
graph. From Lemma 2 we know that orderings of G′ with imbalance |V |+ 10 · c
correspond to perfect orderings of G. This proves NP-hardness of finding the
ordering with such imbalance and hence the statement of the corollary. ��

4 Algorithm

In this section we present an algorithm that determines in polynomial time
whether a given multigraph G has an ordering with an imbalance smaller than
a fixed constant. First we introduce a key lemma.

Lemma 3. There is an O(n +m) time algorithm to test whether a multigraph
G with n vertices and m edges has an ordering σ in which a given list of vertices
imbalanced = (v1, . . . , vk) are the only imbalanced vertices, and σ(vi) < σ(vi+1)
for all 1 ≤ i ≤ k − 1.

Proof. The vertices not in the list imbalanced are called balanced. The algorithm
works as follows: First we check that all odd-degree vertices are in the imbalanced
list. If not, then we can reject since every odd-degree vertex must be imbalanced.
Now assume that all balanced vertices have even degrees. Then start building
an ordering σ from left to right. We append to σ vertices that have not been
placed yet and have half of their neighbours already placed. Such vertices are
called saturated and are stored in the set saturated. Because saturated vertices
are balanced each saturated vertex must be placed before any of its unplaced
neighbours. In particular saturated vertices must form an independent set. Hence
we cannot make a mistake when placing any saturated vertices. If there is no
saturated vertex, the vertex which is placed next will be imbalanced and hence
it must be the first unused vertex from the imbalanced list. It remains to prove
that it is not better to place some vertices from the imbalanced list while there
are still some saturated vertices. If the order of vertices of any edge does not



On the Complexity of the Balanced Vertex Ordering Problem 857

change then we have an equivalent ordering. Otherwise it does change, in which
case some balanced vertex becomes imbalanced (as the order of vertices in an
edge can change only for the edges which contain at least one balanced vertex)
and we would not get a valid ordering. ��

The following theorem is a consequence of Lemma 3.

Theorem 4. There is an algorithm that, given an n-vertex m-edge multigraph
G, computes a minimum ordering of G with at most k imbalanced vertices (or
answers that there is no such ordering) in time O(nk · (m+ n)).

Proof. The algorithm is simple: just try all the possible choices of k imbalanced
vertices and their orderings; for each choice run the procedure from Lemma 3
and select the ordering with minimum imbalance from those orderings. There are
O(nk) k-tuples of imbalanced vertices, and for each such k-tuple, by Lemma 3,
we can check in O(m + n) time whether there is an ordering with the chosen
vertices imbalanced, and compute the imbalance of the ordering in the case the
procedure produced one. ��
Corollary 2. There is a polynomial time algorithm to determine whether a
multigraph G has an ordering with imbalance less than a fixed constant c.

Proof. Apply the algorithm from Theorem 4 with k = c − 1. If the algorithm
rejects the multigraph or produces an ordering with imbalance greater than c,
then the graph does not have an ordering with imbalance less than c (because
any ordering with imbalance less than c must have at most c − 1 imbalanced
vertices). If the algorithm outputs some ordering with imbalance less than c,
then we are also done. ��
Corollary 3. The perfect ordering problem is solvable in time O(n2(n +
m)) for any n-vertex m-edge multigraph with all vertices of even degree.

Proof. Apply the algorithm from Theorem 4 with k = 2, and then check whether
the achieved imbalance is equal to that required by the perfect ordering
problem. A perfect ordering of a multigraph with even degrees must have exactly
two imbalanced vertices (if there is at least one edge). ��

5 Conclusion and Open Problems

In this paper we have considered the problems of deciding the existence of a
perfect ordering for graphs with maximum degree four, planar graphs with max-
imum degree six and 5-regular multigraphs. All these problems were shown to
be NP-complete, thus answering a number of questions raised by Biedl et al. [1].
The result for planar graphs still leaves unresolved the complexity of the per-
fect ordering problem for planar graphs with maximum degree four or five.
We have also established that it is NP-hard to find an ordering with minimum
imbalance for 5-regular simple graphs. In the positive direction, we have pre-
sented an algorithm for determining an ordering with imbalance smaller than
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k running in time O(nk(n + m)). It would be interesting to obtain a fixed-
parameter-tractable (FPT) algorithm for this problem (as one cannot hope for
a polynomial solution unless P = NP).
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