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Abstract: In this article, we define and study a new family of graphs
that generalizes the notions of line graphs and path graphs. Let G be a
graph with no loops but possibly with parallel edges. An �-link of G is a
walk of G of length � � 0 in which consecutive edges are different. The
�-link graph L�(G) of G is the graph with vertices the �-links of G, such
that two vertices are joined by μ � 0 edges in L�(G) if they correspond to
two subsequences of each of μ (� + 1)-links of G. By revealing a recursive
structure, we bound from above the chromatic number of �-link graphs. As
a corollary, for a given graph G and large enough �, L�(G) is 3-colorable.
By investigating the shunting of �-links in G, we show that the Hadwiger
number of a nonempty L�(G) is greater or equal to that of G. Hadwiger’s
conjecture states that the Hadwiger number of a graph is at least the chro-
matic number of that graph. The conjecture has been proved by Reed and
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Seymour (Eur J Combin 25(6) (2004), 873–876) for line graphs, and hence
1-link graphs. We prove the conjecture for a wide class of �-link graphs.
C© 2016 Wiley Periodicals, Inc. J. Graph Theory 84: 460–476, 2017
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1. INTRODUCTION AND MAIN RESULTS

We introduce a new family of graphs, called �-link graphs, which generalizes the notions
of line graphs and path graphs. Such a graph is constructed from a certain kind of walk
of length � � 0 in a given graph G. To ensure that the constructed graph is undirected,
G is undirected. To avoid loops, G is loopless, and the consecutive edges in each walk
are different. Such a walk is called an �-link. For example, a 0-link is a vertex, a 1-link
is an edge, and a 2-link consists of two distinct edges with an end vertex in common. An
�-path is an �-link without repeated vertices. We use L�(G) and P�(G) to denote the sets
of �-links and �-paths of G, respectively. There have been a number of families of graphs
constructed from �-links. For example, the line graph L(G), introduced by Whitney
[23], is the simple graph with vertex set E(G), in which two vertices are adjacent if their
corresponding edges are incident to a common vertex. More generally, the �-path graph
P�(G) is the simple graph with vertex set P�(G), where two vertices are adjacent if the
union of their corresponding �-paths forms a path or a cycle of length � + 1. Note that an
�-path contains � distinct edges and � + 1 distinct vertices. So P�(G) is the P�+1-graph
of G introduced by Broersma and Hoede [4]. Inspired by these graphs, we define the
�-link graph L�(G) of G to be the graph with vertex set L�(G), in which two vertices
are joined by μ � 0 edges in L�(G) if they correspond to two subsequences of each of μ

(� + 1)-links of G. More strict definitions can be found in Section 2, together with some
other related graphs.

This article studies the structure, coloring, and minors of �-link graphs including a
proof of Hadwiger’s conjecture for a wide class of �-link graphs. By default � � 0 is an
integer. And all graphs are finite, undirected, and loopless. Parallel edges are admitted
unless we specify the graph to be simple.

1.1. Graph Coloring

Let t � 0 be an integer. A t-coloring of G is a map λ : V (G) → [t] := {1, 2, . . . , t} such
that λ(u) �= λ(v) whenever u, v ∈ V (G) are adjacent in G. A graph with a t-coloring is
t-colorable. The chromatic number χ(G) is the minimum t such that G is t-colorable. Sim-
ilarly, a t-edge-coloring of G is a map λ : E(G) → [t] such that λ(e) �= λ( f ) whenever
e, f ∈ E(G) are incident to a common vertex in G. The edge-chromatic number χ ′(G)

of G is the minimum t such that G admits a t-edge-coloring. Let χ�(G) := χ(L�(G)),
and �(G) be the maximum degree of G. Brooks’ theorem [5] states that, the chromatic
number of a connected graph G equals �(G) + 1 if G is an odd cycle or a complete
graph with at least one vertex, and is at most �(G) otherwise. Shannon [18] proved that
χ1(G) = χ ′(G) � 3

2�(G). We prove a recursive structure for �-link graphs, which leads
to the following upper bounds for χ�(G).

Theorem 1.1. Let G be a graph, χ := χ(G), χ ′ := χ ′(G), and � := �(G).

(1) If � � 0 is even, then χ�(G) � min{χ, �( 2
3 )�/2(χ − 3)	 + 3}.
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(2) If � � 1 is odd, then χ�(G) � min{χ ′, �( 2
3 )

�−1
2 (χ ′ − 3)	 + 3}.

(3) If � �= 1, then χ�(G) � � + 1.
(4) If � � 2, then χ�(G) � χ�−2(G).

Theorem 1.1 implies that L�(G) is 3-colorable for large enough �.

Corollary 1.2. For each graph G, L�(G) is 3-colorable in the following cases:

(1) � � 0 is even, and either χ(G) � 3 or � > 2 log1.5(χ(G) − 3).
(2) � � 1 is odd, and either χ ′(G) � 3 or � > 2 log1.5(χ

′(G) − 3) + 1.

As explained in Section 2, this corollary is related to and implies a result by Kawai
and Shibata [15].

1.2. Graph Minors

A connected graph with two or more vertices is biconnected if it cannot be disconnected
by removing a vertex. By contracting an edge we mean identifying its end vertices and
deleting possible resulting loops. A graph H is a minor of a graph G if H can be obtained
from a subgraph of G by contracting edges. An H-minor is a minor of G that is isomorphic
to H. The Hadwiger number η(G) of G is the maximum integer t such that G contains a
Kt-minor. Denote by δ(G) the minimum degree of G. The degeneracy d(G) of G is the
maximum δ(H) over the subgraphs H of G. We prove the following.

Theorem 1.3. Let � � 1, and G be a graph such that L�(G) contains at least one edge.
Then η(L�(G)) � max{η(G), d(G)}.

By definition L(G) is the underlying simple graph of L1(G). And L�(G) = P�(G) if
girth(G) > {�, 2}. Thus Theorem 1.3 can be applied to path graphs.

Corollary 1.4. Let � � 1, and G be a graph of girth at least � + 1 such that P�(G)

contains at least one edge. Then η(P�(G)) � max{η(G), d(G)}.
As a far-reaching generalization of the four-color theorem, in 1943, Hugo Hadwiger

[10] conjectured the following.
Hadwiger’s conjecture: η(G) � χ(G) for every graph G.
Hadwiger’s conjecture was proved by Robertson, Seymour, and Thomas [17] for

χ(G) � 6. The conjecture for line graphs, or equivalently for 1-link graphs, was proved
by Reed and Seymour [16]. We prove the following.

Theorem 1.5. Hadwiger’s conjecture is true for L�(G) in the following cases:

(1) � � 1 and G is biconnected.
(2) � � 2 is an even integer.
(3) d(G) � 3 and � > 2 log1.5

�(G)−2
d(G)−2 + 3.

(4) �(G) � 3 and � > 2 log1.5(�(G) − 2) − 3.83.
(5) �(G) � 5.

The corresponding results for path graphs are listed below.

Corollary 1.6. Let G be a graph of girth at least � + 1. Then Hadwiger’s conjecture
holds for P�(G) in the cases of Theorem 1.5 (1)–(5).
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FIGURE 1. (a) D3, (b) A1(D3), (c) L1(D3).

2. DEFINITIONS AND TERMINOLOGY

We now give some formal definitions. A graph G is null if V (G) = ∅, and non-null
otherwise. A non-null graph G is empty if E(G) = ∅, and nonempty otherwise. A unit is
a vertex or an edge. The subgraph of G induced by V ⊆ V (G) is the maximal subgraph
of G with vertex set V . And in this case, the subgraph is called an induced subgraph
of G. We may not distinguish between V and its induced subgraph. For ∅ �= E ⊆ E(G),
the subgraph of G induced by E ∪ V is the minimal subgraph of G with edge set E, and
vertex set including V . The diameter diam(G) of G is +∞ if G is disconnected, and the
maximum distance between two vertices of G otherwise.

Let G be a graph, and H be a subgraph of G. Let V be a partition of V (H) such that
every V ∈ V induces a connected subgraph of H. Let M be the graph obtained from H by
contracting each V ∈ V into a vertex. Then M is a minor of G. And V is called a branch
set of M.

For more accurate analysis, we need to define �-arcs. An �-arc (or ∗-arc if we ignore
the length) of G is an alternating sequence �L := (v0, e1, . . . , e�, v�) of units of G such that
the end vertices of ei ∈ E(G) are vi−1 and vi for i ∈ [�], and that ei �= ei+1 for i ∈ [� − 1].
The direction of �L is its vertex sequence (v0, v1, . . . , v�). In algebraic graph theory, �-arcs
in simple graphs have been widely studied [3, 19, 20, 22]. Note that �L and its reverse
−�L := (v�, e�, . . . , e1, v0) are different unless � = 0. The �-link (or ∗-link if the length
is ignored) L := [v0, e1, . . . , e�, v�] is obtained by taking �L and −�L as a single object.
For 0 � i � j � �, the ( j − i)-arc �L(i, j) := (vi, ei+1, . . . , e j, v j) and the ( j − i)-link
�L[i, j] := [vi, ei+1, . . . , e j, v j] are called segments of �L and L, respectively. We may write
�L( j, i) := −�L(i, j), and �L[ j, i] := �L[i, j]. These segments are called middle segments if
i + j = �. L is called an �-cycle if � � 2, v0 = v� and �L[0, � − 1] is an (� − 1)-path.
Denote by �L�(G) and C�(G) the sets of �-arcs and �-cycles of G, respectively. Usually,
�ei := (vi−1, ei, vi) is called an arc for short. In particular, v0, v�, e1, e�, �e1, and �e� are called
the tail vertex, head vertex, tail edge, head edge, tail arc, and head arc of �L, respectively.

Godsil and Royle [9] defined the �-arc graph A�(G) to be the digraph with vertex set
�L�(G), such that there is an arc, labeled by �Q, from �Q(0, �) to �Q(1, � + 1) in A�(G)

for every �Q ∈ �L�+1(G). The t-dipole graph Dt is the graph consists of two vertices and
t � 1 edges between them. (See Figure 1 a for D3, and Figure 1 b the 1-arc graph of D3.)
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FIGURE 2. (a) G, (b) H := L2(G), (c) H(V,E ), (d) P2(G).

The �th iterated line digraph A
�(G) is A1(G) if � = 1, and A1(A

�−1(G)) if � � 2 (see
[2]). Examples of undirected graphs constructed from �-arcs can be found in [12, 13].

Shunting of �-arcs was introduced by Tutte [21]. We extend this notion to �-links. For
�, s � 0, and �Q ∈ �L�+s(G), let Li := �Q[i, � + i] for i ∈ [s] ∪ {0}, and Qi := �Q[i − 1, � +
i] for i ∈ [s]. Let Q[�] := [L0, Q1, L1, . . . , Ls−1, Qs, Ls]. We say L0 can be shunted to Ls

through �Q or Q. Q{�} := {L0, L1, . . . , Ls} is the set of images during this shunting. For
L, R ∈ L�(G), we say L can be shunted to R if there are �-links L = L0, L1, . . . , Ls = R
such that Li−1 can be shunted to Li through some ∗-arc �Qi for i ∈ [s]. In Figure 2,
[u0, f0, v0, e0, v1] can be shunted to [v1, e0, v0, e1, v1] through (u0, f0, v0, e0, v1, f1, u1)

and (u1, f1, v1, e0, v0, e1, v1).
For L, R ∈ L�(G) and Q ⊆ L�+1(G), denote by Q(L, R) the set of Q ∈ Q such that

L can be shunted to R through Q. We show in Section 3 that |Q(L, R)| is 0 or 1 if G
is simple, and can be up to 2 if � � 1 and G contains parallel edges. A more formal
definition of �-link graphs is given below.

Definition 2.1. Let L ⊆ L�(G), and Q ⊆ L�+1(G). The partial �-link graph
L(G, L , Q) of G, with respect to L and Q, is the graph with vertex set L ,
such that L, R ∈ L are joined by exactly |Q(L, R)| edges. In particular, L�(G) =
L(G, L�(G), L�+1(G)) is the �-link graph of G.

Remark. We assign exclusively to each edge of L�(G) between L, R ∈ L�(G) a
Q ∈ L�+1(G) such that L can be shunted to R through Q, and refer to this edge simply
as Q. In this sense, Q[�] := [L, Q, R] is a 1-link of L�(G).

For example, the 1-link graph of D3 can be seen in Figure 1 c. A 2-link graph is given
in Figure 2 b, and a 2-path graph is depicted in Figure 2 d.

Reed and Seymour [16] pointed out that proving Hadwiger’s conjecture for line graphs
of multigraphs is more difficult than for that of simple graphs. This motivates us to work
on the �-link graphs of multigraphs. Diestel [7, page 28] explained that, in some situations,
it is more natural to develop graph theory for multigraphs. We allow parallel edges in
�-link graphs in order to investigate the structure of L�(G) by studying the shunting of
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�-links in G regardless of whether G is simple. The observation below follows from the
definitions.

Observation 2.2. L0(G) = G, P1(G) = L(G), and P�(G) is the underlying simple
graph of L�(G) for � ∈ {0, 1}. For � � 2, P�(G) = L(G, P�(G), P�+1(G) ∪ C�+1(G))

is an induced subgraph of L�(G). If G is simple, then P�(G) = L�(G) for � ∈ {0, 1, 2}.
Further, P�(G) = L�(G) if girth(G) > max{�, 2}.

Let �Q ∈ �L�+s(G), and [L0, Q1, L1, . . . , Ls−1, Qs, Ls] := Q[�]. From the remark
above, for i ∈ [s], Qi is an edge of H := L�(G) between Li−1, Li ∈ V (H). So Q[�]

is an s-link of H. In Figure 2 b, [u0, f0, v0, e0, v1, e1, v0, e0, v1][2] = [[u0, f0, v0,

e0, v1], [u0, f0, v0, e0, v1, e1, v0], [v0, e0, v1, e1, v0], [v0, e0, v1, e1, v0, e0, v1], [v1, e1, v0,

e0, v1]] is a 2-path of H.
We say H is homomorphic to G, written H → G, if there is an injection α : V (H) ∪

E(H) → V (G) ∪ E(G) such that for w ∈ V (H), f ∈ E(H) and [u, e, v] ∈ L1(H), their
images wα ∈ V (G), f α ∈ E(G) and [uα, eα, vα] ∈ L1(G). In this case, α is called a
homomorphism from H to G. The definition here is a generalisation of the one for simple
graphs by Godsil and Royle [9, page 6]. A bijective homomorphism is an isomorphism. By
Hell and Nešetřil [11], χ(H) � χ(G) if H → G. For instance, �L �→ L for �L ∈ �L�(G) ∪
�L�+1(G) can be seen as a homomorphism from A�(G) to L�(G). By Bang-Jensen and

Gutin [1], A�(G) is isomorphic to A
�(G). So χ(A�(G)) = χ(A�(G)) � χ(L�(G)) =

χ�(G). We emphasize that χ(A�(G)) might be much less than χ�(G). For example,
as depicted in Figure 1, when t � 3, χ(A�(Dt )) = 2 < t = χ�(Dt ). Kawai and Shibata
proved that A

�(G) is 3-colorable for large enough �. By the analysis above, Corollary
1.2 implies this result.

A graph homomorphism from H is usually represented by a vertex partition V and an
edge partition E of H such that (a) each part of V is an independent set of H, and (b) each
part of E is incident to exactly two parts of V . In this situation, for different U,V ∈ V ,
define μ(U,V ) to be the number of parts of E incident to both U and V . The quotient
graph H(V,E ) of H is defined to be the graph with vertex set V , and for every pair of
different U,V ∈ V , there are exactly μ(U,V ) edges between them. To avoid ambiguity,
for V ∈ V and E ∈ E , we use VV and EE to denote the corresponding vertex and edge
of H(V,E ), which defines a graph homomorphism from H to H(V,E ). Sometimes, we only
need the underlying simple graph HV of H(V,E ).

For � � 2, there is a natural partition in an �-link graph. For each R ∈ L�−2(G),
let L�(G, R), or L�(R) for short, be the set of �-links of G with middle segment
R. Clearly, V�(G) := {L�(R) �= ∅|R ∈ L�−2(G)} is a vertex partition of L�(G). And
E�(G) := {L�+1(R) �= ∅|R ∈ L�−1(G)} is an edge partition of L�(G). Consider the 2-
link graph H in Figure 2 b. The vertex and edge partitions of H are indicated by the
dotted rectangles and ellipses, respectively. The corresponding quotient graph is given in
Figure 2 c.

Special partitions are required to describe the structure of �-link graphs. Let H be a
graph admitting partitions V of V (H) and E of E(H) that satisfy (a) and (b) above. (V, E )

is called an almost standard partition of H if further:

(c) each part of E induces a complete bipartite subgraph of H,
(d) each vertex of H is incident to at most two parts of E ,
(e) for each V ∈ V , and different E, F ∈ E , V contains at most one vertex incident to

both E and F .
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If � � 2 is an even integer, and G is a simple graph, then L�(G) is isomorphic to the
(2, �/2)-double star graph of G introduced by Jia [12]. While this article focuses on
the combinatorial properties including connectedness, coloring, and minors of L�(G),
a series of companion papers have been composed to contribute to the recognition and
determination problems and algorithms. For example, a joint work by Ellingham and Jia
[8] shows that, for a given graph H, there is at most one pair (G, �), where � � 2, and
G is a simple graph of minimum degree at least 3, such that L�(G) is isomorphic to H.
Moreover, such a pair can be determined from H in linear time.

3. GENERAL STRUCTURE OF �-LINK GRAPHS

We begin by determining some basic properties of �-link graphs, including their multi-
plicity and connectedness. The work in this section forms the basis for our main results
on coloring and minors of �-link graphs.

Let us first fix some concepts by two observations.

Observation 3.1. The number of edges of L�(G) is equal to the number of vertices of
L�+1(G). In particular, if G is r-regular for some r � 2, then this number is |E(G)|(r −
1)�. If further � � 1, then L�(G) is 2(r − 1)-regular.

Proof. Let G be r-regular, n := |V (G)| and m := |E(G)|. We prove that |L�+1(G)| =
m(r − 1)� by induction on �. It is trivial for � = 0. For � = 1, |L2([v])| = (r

2

)
, and

hence |L2(G)| = (
r
2

)
n = m(r − 1). Inductively assume |L�−1(G)| = m(r − 1)�−2 for

some � � 2. For each R ∈ L�−1(G), we have |L�+1(R)| = (r − 1)2 since r � 2. Thus
|L�+1(G)| = |L�−1(G)|(r − 1)2 = m(r − 1)� as desired. The other assertions follow
from the definitions. �

Observation 3.2. Let n, m � 2. If � � 1 is odd, then L�(Kn,m) is (n + m − 2)-regular
with order nm[(n − 1)(m − 1)]

�−1
2 . If � � 2 is even, then L�(Kn,m) has average degree

4(n−1)(m−1)

n+m−2 , and order 1
2 nm(n + m − 2)[(n − 1)(m − 1)]

�
2 −1.

Proof. Let � � 1 be odd, and L be an �-link of Kn,m with middle edge incident
to a vertex u of degree n in Kn,m. It is not difficult to see that L can be shunted in
one step to n − 1 �-links whose middle edge is incident to u. By symmetry, each
vertex of L�(Kn,m) is incident to (n − 1) + (m − 1) = n + m − 2 edges. Now we
prove |L�(Kn,m)| = nm[(n − 1)(m − 1)]

�−1
2 by induction on �. Clearly, |L1(Kn,m)| =

|E(Kn,m)| = nm. Inductively assume |L�−2(Kn,m)| = nm[(n − 1)(m − 1)]
�−3

2 for some
� � 3. For each R ∈ L�−2(Kn,m), we have |L�(R)| = (n − 1)(m − 1). So |L�(Kn,m)| =
|L�−2(Kn,m)|(n − 1)(m − 1) = nm[(n − 1)(m − 1)]

�−1
2 as desired. The even � case is

similar. �

3.1. Loops and Multiplicity

Our next observation is a prerequisite for the study of the chromatic number since it
indicates that �-link graphs are loopless.

Observation 3.3. For each (� + 1)-arc �Q, we have �Q[0, �] �= �Q[1, � + 1].
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Proof. Let G be a graph, and �Q := (v0, e1, . . . , e�+1, v�+1) ∈ �L�+1(G). Since G
is loopless, v0 �= v1 and hence �Q[0, 0] �= �Q[1, 1]. So the statement holds for � = 0.
Moreover, �Q(0, �) �= �Q(1, � + 1). Now let � � 1. Suppose for a contradiction that
�Q(0, �) = −�Q(1, � + 1). Then vi = v�+1−i and ei+1 = e�+1−i for i ∈ {0, 1, . . . , �}. If
� = 2s for some integer s � 1, then vs = vs+1, contradicting that G is loopless. If
� = 2s + 1 for some integer s � 0, then es+1 = es+2, contradicting the definition of a
∗-arc. �

The following statement indicates that, for each � � 1, L�(G) is simple if G is simple,
and has multiplicity exactly 2 otherwise.

Observation 3.4. Let G be a graph, � � 1, and L0, L1 ∈ L�(G). Then L0 can be
shunted to L1 through two (� + 1)-links of G if and only if G contains a 2-cycle O :=
[v0, e0, v1, e1, v0], such that one of the following cases holds:

(1) � � 1 is odd, and Li = [vi, ei, v1−i, e1−i, . . . , vi, ei, v1−i] ∈ L�(O) for i ∈ {0, 1}.
In this case, [vi, ei, v1−i, e1−i, . . . , v1−i, e1−i, vi] ∈ L�+1(O), for i ∈ {0, 1}, are the
only two (� + 1)-links available for the shunting.

(2) � � 2 is even, and Li = [vi, ei, v1−i, e1−i, . . . , v1−i, e1−i, vi] ∈ L�(O) for i ∈
{0, 1}. In this case, [vi, ei, v1−i, e1−i, . . . , vi, ei, v1−i] ∈ L�+1(O), for i ∈ {0, 1},
are the only two (� + 1)-links available for the shunting.

Proof. (⇐) is trivial. For (⇒), since L0 can be shunted to L1, there exists �L :=
(v0, e0, v1, . . . , v�, e�, v�+1) ∈ �L�+1(G) such that Li = �L[i, � + i] for i ∈ {0, 1}. Let �R ∈
�L�+1(G) \ {�L} such that Li = �R[i, � + i]. Then �L(i, � + i) equals �R(i, � + i) or �R(� +

i, i). Suppose for a contradiction that �L(0, �) = �R(0, �). Then �L(1, �) = �R(1, �). Since
�L �= �R, we have �L(1, � + 1) �= �R(1, � + 1). Thus �L(1, � + 1) = �R(� + 1, 1), and hence
�L(2, � + 1) = �R(�, 1) = �L(�, 1), contradicting Observation 3.3. So �L(0, �) = �R(�, 0).
Similarly, �L(1, � + 1) = �R(� + 1, 1). Consequently, �L(0, � − 1) = �R(�, 1) = �L(2, � +
1); that is, v j = v0 and e j = e0 if j ∈ [0, �] is even, while v j = v1 and e j = e1 if j ∈
[0, � + 1] is odd. �

3.2. Connectedness

This subsection characterizes when L�(G) is connected. Let L := [v0, e1, . . . , e�, v�] be
an �-link of G, and m := � �

2�. The middle unit cL of L is defined to be vm if � is even, and
em if � is odd. Denote by G(�) the subgraph of G induced by the middle units of �-links
of G.

The lemma below is important in dealing with the connectedness of �-link graphs.
Before stating it, we define a conjunction operation, which is an extension of an
operation by Biggs [3, Chapter 17]. Let �L := (v0, e1, v1, . . . , e�, v�) ∈ �L�(G) and
�R := (u0, f1, u1, . . . , fs, us) ∈ �Ls(G) such that v� = u0 and e� �= f1. The conjunction
of �L and �R is (�L.�R) := (v0, e1, . . . , e�, v� = u0, f1, . . . , fs, us) ∈ �L�+s(G) or [�L.�R] :=
[v0, e1, . . . , e�, v� = u0, f1, . . . , fs, us] ∈ L�+s(G).

Lemma 3.5. Let �, s � 0, and G be a connected graph. Then G(�) is connected. And
each s-link of G(�) is a middle segment of a (2� �

2	 + s)-link of G. Moreover, for �-links
L and R of G, there is an �-link L′ with middle unit cL, and an �-link R′ with middle unit
cR, such that L′ can be shunted to R′.
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Proof. For � ∈ {0, 1}, since G is connected, G(�) = G and the lemma holds. Let
� := 2m � 2 be even. Then u, v ∈ V (G(�)) if and only if they are middle vertices
of some �L, �R ∈ �L�(G), respectively. Since G is connected, there exists some �P :=
(u = v0, e1, . . . , es, vs = v) ∈ �Ls(G). By Observation 3.3, �L[m − 1, m] �= �L[m, m + 1].
For such an s-arc �P, without loss of generality, e1 �= �L[m − 1, m], and similarly, es �=
�R[m, m + 1]. Then �P is a middle segment of �Q := (�L(0, m).�P.�R(m, 2m)) ∈ �L�+s(G).
So L′ := �Q[0, �] can be shunted to R′ := �Q[s, � + s] through �Q. Moreover, for each
i ∈ {0, . . . , s}, vi is the middle vertex of �Q[i, � + i] ∈ L�(G). Hence �P is an s-arc of G(�)

from u to v. So G(�) is connected. The odd � case is similar. �
Sufficient conditions for A�(G) to be strongly connected can be found in [9, page 76].

The following corollary of Lemma 3.5 reveals a strong relationship between the shunting
of �-links and the connectedness of �-link graphs.

Corollary 3.6. For a connected graph G, L�(G) is connected if and only if every pair
of �-links of G with the same middle unit can be shunted to each other.

Proof. On the one hand, if L�(G) is connected, then every pair of �-links of G can
be shunted to each other. On the other hand, let L and R be two �-links of G. Since G
is connected, by Lemma 3.5, there are �-links L′ and R′ with cL′ = cL and cR′ = cR such
that L′ can be shunted to R′. Hence if L can be shunted to L′ and R can be shunted to R′,
then L can be shunted to R. So if every pair of �-links of G with the same middle unit can
be shunted to each other, then L�(G) is connected. �

We now present our main result of this section, which plays a key role in dealing with
the graph minors of �-link graphs in Section 5.

Lemma 3.7. Let G be a graph, and X be a connected subgraph of G(�). Then for every
pair of �-links L and R of X, L can be shunted to R under the restriction that in each step,
the middle unit of the image of L belongs to X.

Proof. First we consider the case that cL is in R. Then there is a common segment
Q of L and R of maximum length containing cL. Without loss of generality, assign
directions to L and R such that �L = (�L0.�Q.�L1) and �R = (�R1.�Q.�R0), where �Li ∈ �L�i (X )

and �Ri ∈ �Lsi (X ) for i ∈ {0, 1} such that s1 � s0. Then � � �0 + �1 = s0 + s1 � s1. Let
x be the head vertex and e be the head edge of �L. Since cL is in Q, �0 � �/2. Since X
is a subgraph of G(�), by Lemma 3.5, there exists �L2 ∈ �L�0 (G) with tail vertex x and
tail edge different from e. Let y be the tail vertex and f be the tail edge of �R. Then there
exits �R2 ∈ �Ls0 (G) with head vertex y and head edge different from f . We can shunt L to
R first through (�L.�L2) ∈ �L�+�0 (G), then −(�R2.�R1.�Q.�L1.�L2) ∈ �L�+�0+�1 (G), and finally
(�R2.�R) ∈ �L�+s0 (G). Since �0 � �/2 and s0 � s1 � �/2, the middle unit of each image is
inside L or R.

Second, we consider the case that cL is not in R. Then there exists a segment Q of L of
maximum length that contains cL, and is edge-disjoint with R. Since X is connected, there
exists a shortest ∗-arc �P from a vertex v of R to a vertex u of L. Then P is edge-disjoint
with Q because of its minimality. Without loss of generality, assign directions to L and
R such that u separates �L into (�L0.�L1) with cL on L1, and v separates �R into (�R1.�R0),
where Li is of length �i while Ri is of length si for i ∈ {0, 1}, such that s1 � s0. Then
�0, s0 � �/2. Let x be the head vertex and e be the head edge of �L. Since �0 � �/2 and
X is a subgraph of G(�), by Lemma 3.5, there exists an �0-arc �L2 of G with tail vertex x
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and tail edge different from e. Let y be the tail vertex and f be the tail edge of �R. Then
there exits an s0-arc �R2 of G with head vertex y and head edge different from f . Now we
can shunt L to R through (�L.�L2), −(�R2.�R1.�P.�L1.�L2) and (�R2.�R) consecutively. One can
check that in this process the middle unit of each image belongs to L, P, or R. �

From Lemma 3.7, the set of �-links of a connected G(�) serves as a “hub” in the shunting
of �-links of G. More explicitly, for L, R ∈ L�(G), if we can shunt L to L′ ∈ L�(G(�)),
and R to R′ ∈ L�(G(�)), then L can be shunted to R since L′ can be shunted to R′. Thus we
have the following corollary that provides a more efficient way to test the connectedness
of �-link graphs.

Corollary 3.8. Let G be a graph such that G(�) contains at least one �-link. Then
L�(G) is connected if and only if G(�) is connected, and each �-link of G can be shunted
to an �-link of G(�).

4. CHROMATIC NUMBER OF �-LINK GRAPHS

In this section, we reveal a recursive structure of an �-link graph H, which leads to an
upper bound for the chromatic number of H. To achieve this, we need to show that when
� � 2, H admits an almost standard partition defined in Section 2.

Lemma 4.1. Let G be a graph and � � 2 be an integer. Then (V, E ) := (V�(G), E�(G))

is an almost standard partition of H := L�(G). Further, H(V,E ) is isomorphic to an
induced subgraph of L�−2(G).

Proof. First we verify that (V, E ) satisfies conditions (a)–(e) in the definition of an
almost standard partition in Section 2.

(a) We prove that, for each R ∈ L�−2(G), V := L�(R) ∈ V is an independent set of
H. Suppose not. Then there are �L,�L′ ∈ �L�(G) such that L, L′ ∈ V , and L can be
shunted to L′ in one step. Then R = �L[1, � − 1] can be shunted to R = �L′[1, � − 1]
in one step, contradicting Observation 3.3.

(b) Here we show that each E ∈ E is incident to exactly two parts of V . By definition
there exists P ∈ L�−1(G) with L�+1(P) = E. Let {L, R} := P{�−2}. Then L�(L)

and L�(R) are the only two parts of V incident to E.
(c) We explain that each E ∈ E is the edge set of a complete bipartite subgraph of H. By

definition there exists �P ∈ �L�−1(G) with L�+1(P) = E. Let A := {[�e.�P] ∈ L�(G)}
and B := {[�P.�f ] ∈ L�(G)}. One can check that E induces a complete bipartite
subgraph of H with bipartition A ∪ B.

(d) We prove that each v ∈ V (H) is incident to at most two parts of E . By definition
there exists Q ∈ L�(G) with Q = v. Then the set of edge parts of E incident to v
is {L�+1(L) �= ∅|L ∈ Q{�−1}} with cardinality at most 2.

(e) Let v be a vertex of V ∈ V incident to different E, F ∈ E . We explain that v is
uniquely determined by V , E, and F .

By the analysis above, (V, E ) is an almost standard partition of H.
By definition there exists �P ∈ �L�−2(G) such that V = L�(P). There also exists Q :=

[�e1.�P.�e�] ∈ L�(P) such that v = Q. Besides, there are L, R ∈ L�−1(G) such that E =
L�+1(L) and F = L�+1(R). Then {L, R} = Q{�−1} since L �= R. Note that Q is uniquely
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determined by Q{�−1} and cQ = cP. Thus it is uniquely determined by E = L�+1(L), F =
L�+1(R), and V = L�(P).

Now we show that H(V,E ) is isomorphic to an induced subgraph of L�−2(G). Let X
be the subgraph of L�−2(G) of vertices L ∈ L�−2(G) such that L�(L) �= ∅, and edges
Q ∈ L�−1(G) such that L�+1(Q) �= ∅. One can check that X is an induced subgraph
of L�−2(G). An isomorphism from H(V,E ) to X can be defined as the injection sending
L�(L) �= ∅ to L, and L�+1(Q) �= ∅ to Q. �

Below we give an interesting algorithm for coloring a class of graphs.

Lemma 4.2. Let H be a graph with a t-coloring such that each vertex of H is adjacent
to at most r � 0 differently colored vertices. Then χ(H) � � tr

r+1	 + 1.

Proof. The result is trivial for t = 0 since, in this case, χ(H) = 0. If r + 1 � t � 1,
then � tr

r+1	 = �t − t
r+1	 = t − 1, and the lemma holds since t � χ(H).

Now assume t � r + 2 � 2. Let U1,U2, . . . ,Ut be the color classes of the given col-
oring. For i ∈ [t], denote by i the color assigned to vertices in Ui. Run the following
algorithm: For j = 1, . . . , t, and for each u ∈ Ut− j+1, let s ∈ [t] be the minimum integer
that is not the color of a neighbor of u in H; if s < t − j + 1, then recolor u by s.

In the algorithm above, denote by Ci the set of colors used by the vertices in Ui for
i ∈ [t]. Let k := � t−1

r+1	. Then t − 1 � k(r + 1) � k � 1. We claim that after j ∈ [0, k]
steps, Ct−i+1 ⊆ [ir + 1] for i ∈ [ j], and Ci = {i} for i ∈ [t − j]. This is trivial for j = 0.
Inductively assume it holds for some j ∈ [0, k − 1]. In the ( j + 1)th step, we change
the color of each u ∈ Ut− j from t − j to the minimum s ∈ [t] that is not used by the
neighborhood of u. It is enough to show that s � ( j + 1)r + 1.

First suppose that all neighbors of u are in
⋃

i∈[t− j−1] Ui. By the analysis above,
t − j − 1 � t − k � kr + 1 � r + 1. So at least one part of S := {Ui|i ∈ [t − j − 1]}
contains no neighbor of u. From the induction hypothesis, Ci = {i} for i ∈ [t − j − 1].
Hence at least one color in [r + 1] is not used by the neighborhood of u; that is, s �
r + 1 � ( j + 1)r + 1.

Now suppose that u has at least one neighbor in
⋃

i∈[t− j+1,t] Ui. By the induction
hypothesis,

⋃
i∈[t− j+1,t] Ci ⊆ [ jr + 1]. At the same time, u has neighbors in at most

r − 1 parts of S. So the colors possessed by the neighborhood of u are contained in
[ jr + 1 + r − 1] = [( j + 1)r]. Thus s � ( j + 1)r + 1. This proves our claim.

The claim above indicates that, after the kth step, Ct−i+1 ⊆ [ir + 1] for i ∈ [k], and
Ci = {i} for i ∈ [t − k]. Hence we have a (t − k)-coloring of H since t − k � kr + 1.
Therefore, χ(H) � t − k = � tr+1

r+1 � = � tr
r+1	 + 1. �

Lemma 4.1 indicates that L�(G) is homomorphic to L�−2(G) for � � 2. So by [6,
Proposition 1.1], χ�(G) � χ�−2(G). By Lemma 4.1, every vertex of L�(G) has neighbors
in at most two parts of V�(G), which enables us to improve the upper bound on χ�(G).

Lemma 4.3. Let G be a graph, and � � 2. Then χ�(G) � � 2
3χ�−2(G)	 + 1.

Proof. By Lemma 4.1, (V, E ) := (V�(G), E�(G)) is an almost standard partition of
H := L�(G). So each vertex of H has neighbors in atmost two parts of V . Further, HV is
a subgraph of L�−2(G). So χ�(G) � χ := χ(HV ) � χ�−2(G).

We now construct a χ-coloring of H such that each vertex of H is adjacent to at most
two differently colored vertices. By definition HV admits a χ-coloring with color classes
K1, . . . , Kχ . For i ∈ [χ], assign the color i to each vertex of H in Ui := ⋃

VV∈Ki
V . One
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can check that this is a desired coloring. In Lemma 4.3, letting t = χ and r = 2 yields
that χ�(G) � � 2

3χ	 + 1. Recall that χ � χ�−2(G). Thus the lemma follows. �
As shown below, Lemma 4.3 can be applied recursively to produce an upper bound

for χ�(G) in terms of χ(G) or χ ′(G).

Proof of Theorem 1.1. When � ∈ {0, 1}, it is trivial for (1)(2) and (4). By [7,
Proposition 5.2.2], χ0 = χ � � + 1. So (3) holds. Now let � � 2. By Lemma 4.1, H :=
L�(G) admits an almost standard partition (V, E ) := (V�(G), E�(G)), such that H(V,E )

is an induced subgraph of L�−2(G). By definition each part of V is an independent
set of H. So H → L�−2(G), and χ� � χ�−2. This proves (4). Moreover, each vertex of
H has neighbors in at most two parts of V . By Lemma 4.3, χ� := χ�(G) � 2χ�−2

3 + 1.
Continue the analysis, we have χ� � χ�−2i, and χ� − 3 � ( 2

3 )i(χ�−2i − 3) for 1 � i �
��/2	. Therefore, if � is even, then χ� � χ0 = χ � � + 1, and χ� − 3 � ( 2

3 )�/2(χ − 3).

Thus (1) holds. Now let � � 3 be odd. Then χ� � χ1 = χ ′, and χ� − 3 � ( 2
3 )

�−1
2 (χ ′ − 3).

This verifies (2). As a consequence, χ� � χ3 � 2
3 (χ ′ − 3) + 3 = 2

3χ ′ + 1. By Shannon
[18], χ ′ � 3

2�. So χ� � � + 1, and hence (3) holds. �
The following corollary of Theorem 1.1 implies that Hadwiger’s conjecture is true for

L�(G) if G is regular and � � 4.

Corollary 4.4. Let G be a graph with � := �(G) � 3. Then χ�(G) � 3 for all � >

2 log1.5(� − 2) + 3. Further, Hadwiger’s conjecture holds for L�(G) if � > 2 log1.5(� −
2) − 3.83, or d := d(G) � 3 and � > 2 log1.5

�−2
d−2 + 3.

Proof. By Theorem 1.1, for each t � 3, χ� := χ�(G) � t if ( 2
3 )�/2(� − 2) < t − 2

and ( 2
3 )

�−1
2 ( 3

2� − 3) < t − 2. Solving these inequalities gives � > 2 log1.5(� − 2) −
2 log1.5(t − 2) + 3. Thus χ� � 3 if � > 2 log1.5(� − 2) + 3. So the first statement holds.
By Robertson et al. [17] and Theorem 1.3, Hadwiger’s conjecture holds for L�(G) if � � 1
and χ� � max{6, d}. Letting t = 6 gives that � > 2 log1.5(� − 2) − 4 log1.5 2 + 3. Let-
ting t = d � 3 gives that � > 2 log1.5

�−2
d−2 + 3. So the corollary holds since 4 log1.5 2 −

3 > 3.83. �
Proof of Theorem 1.5(3)(4)(5). (3) and (4) follow from Corollary 4.4. Now consider

(5). By Reed and Seymour [16], Hadwiger’s conjecture holds for L1(G). If � � 2 and
� � 5, by Theorem 1.1(3), χ�(G) � 6. In this case, Hadwiger’s conjecture holds for
L�(G) by Robertson et al. [17]. �

5. COMPLETE MINORS OF �-LINK GRAPHS

It has been proved in the last section that Hadwiger’s conjecture is true for L�(G) if � is
large enough. In this section, we further investigate the minors, especially the complete
minors, of �-link graphs. To see the intuition of our method, let v be a vertex of degree t
in a graph G. Then L1(G) contains a Kt-subgraph whose vertices correspond to the edges
of G incident to v. For � � 2, roughly speaking, we extend v to a subgraph X of diameter
less than �, and extend each edge incident to v to an �-link of G starting from a vertex of
X . By studying the shunting of these �-links, we find a Kt-minor in L�(G).

Let [u, e, v] be a 1-link of G. Since G is undirected, e has no direction. But we can
choose a direction, say u to v, for e to get an arc �e := (u, e, v) of G. For subgraphs X,Y
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FIGURE 3. (a) G, (b) L2(G).

of G, let E(X,Y ) be the set of edges of G between V (X ) and V (Y ), and �E(X,Y ) be the
set of arcs of G from V (X ) to V (Y ). Figure 3 illustrates the proofs of Lemmas 5.1 and
5.2.

Lemma 5.1. Let � � 1 be an integer, G be a graph, and X be a subgraph of G with
diam(X ) < � such that Y := G − V (X ) is connected. If t := |E(X,Y )| � 2, then L�(G)

contains a Kt-minor.

Proof. Let �e1, . . . ,�et be distinct arcs in �E(Y, X ). Say �ei = (yi, ei, xi) for i ∈ [t].
Since diam(X ) < �, there is a dipath �Pi j of X from xi to x j of length �i j � � − 1 such
that Pi j = Pji. Since Y is connected, it contains a dipath �Qi j from yi to y j. Since t � 2,
Oi := [�Pi i′ . − �ei′ .�Qi′ i.�ei] is a cycle of G, where i′ := (i mod t) + 1. Thus H := L�(G)

contains a cycle L�(O1), and hence a K2-minor. Now let t � 3, and �Li ∈ �L�(Oi) with
head arc �ei. Then [�Li.�Pi j][�] ∈ L�i j (H). And the union of the units of [�Li.�Pi j][�] over j ∈ [t]
is a connected subgraph Xi of H. In the remainder of the proof, for distinct i, j ∈ [t],
we show that Xi and Xj are disjoint. Further, we construct a path in H between Xi and
Xj that is internally disjoint with its counterparts, and has no inner vertex in any of
V (X1), . . . ,V (Xt ). Then by contracting each Xi into a vertex, and each path into an edge,
we obtain a Kt-minor of H.

First of all, assume for a contradiction that there are different i, j ∈ [t] such that Xi and
Xj share a common vertex that corresponds to an �-link R of G. Then by definition, there
exists some p ∈ [t] such that R can be obtained by shunting Li along (�Li.�Pip) by some
si � �ip steps. So R = [�Li(si, �).�Pip(0, si)]. Similarly, there are q ∈ [t] and s j � � jq such
that R = [�Lj(s j, �).�Pjq(0, s j)]. Recall that E(X ) ∩ E(X,Y ) = E(Y ) ∩ E(X,Y ) = ∅. So
ei = �Li[� − 1, �] and e j = �Lj[� − 1, �] belong to both Li and Lj. By the definition of Oi,
this happens if and only if i = j′ and j = i′, which is impossible since t � 3.
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Second, for distinct i, j ∈ [t], we define a path of H between Xi and Xj. Clearly, Li can
be shunted to Lj through �R′

i j := (�Li.�Pi j. − �Lj) in G. In this shunting, L′
i := [�Li(�i j, �).�Pi j]

is the last image corresponding to a vertex of Xi, while L′
j := [�Pi j.�Lj(�, �i j)] is the

first image corresponding to a vertex of Xj. Further, L′
i can be shunted to L′

j through
�Ri j := (�Li(�i j, �).�Pi j.�Lj(�, �i j)) ∈ �L2�−�i j (G), which is a subsequence of �R′

i j. Then R[�]
i j

is an (� − �i j)-path of H between Xi and Xj. We show that for each p ∈ [t], Xp contains
no inner vertex of R[�]

i j . When � − �i j = 1, R[�]
i j contains no inner vertex. Now assume

� − �i j � 2. Each inner vertex of R[�]
i j corresponds to some Qi j := [�Li(si, �).�Pi j.�Lj(�, � +

�i j − si)] ∈ L�(G), where �i j + 1 � si � � − 1. Assume for a contradiction that for
some p ∈ [t], Xp contains a vertex corresponding to Qi j. By definition there exists q ∈ [t]
such that Qi j = [�Lp(sp, �).�Ppq(0, sp)], where 0 � sp � �pq. Without loss of generality,
(�Li(si, �).�Pi j.�Lj(�, � + �i j − si)) = (�Lp(sp, �).�Ppq(0, sp)). Since e j and ep are not in Ppq,
hence �e j belongs to −�Lp and �ep belongs to −�Lj. By the definition of �Li, this happens only
when j = p′ and p = j′, contradicting t � 3.

We now show that R[�]
i j and R[�]

pq are internally disjoint, where i �= j, p �= q and {i, j} �=
{p, q}. Suppose not. Then by the analysis above, there are si and sp with �i j + 1 �
si � � − 1 and �pq + 1 � sp � � − 1 such that Qi j = Qpq. Without loss of generality,
(�Li(si, �).�Pi j.�Lj(�, � + �i j − si)) = (�Lp(sp, �).�Ppq.�Lq(�, � + �pq − sp)). If si = sp, then
�ei = �ep and �e j = �eq since E(X ) ∩ E(X,Y ) = ∅; that is, i = p and j = q, contradicting
{i, j} �= {p, q}. Otherwise, with no loss of generality, si > sp. Then �eq and �ei belong to
�Lj and �Lp, respectively; that is, i = p and j = q, again contradicting {i, j} �= {p, q}.

In summary, X1, . . . , Xt are vertex-disjoint connected subgraphs, which are pairwise
connected by internally disjoint ∗-links R[�]

i j of H, such that no inner vertex of R[�]
i j is in

V (X1) ∪ · · · ∪ V (Xt ). So by contracting each Xi to a vertex, and R[�]
i j to an edge, we obtain

a Kt-minor of H. �

Lemma 5.2. Let � � 1, G be a graph, and X be a subgraph of G with diam(X ) < �

such that Y := G − V (X ) is connected and contains a cycle. Let t := |E(X,Y )|. Then
L�(G) contains a Kt+1-minor.

Proof. Let O be a cycle of Y . Then H := L�(G) contains a cycle L�(O) and hence
a K2-minor. Now assume t � 2. Let �e1, . . . ,�et be distinct arcs in �E(Y, X ). Say �ei =
(yi, ei, xi) for i ∈ [t]. Since Y is connected, there is a dipath �Pi of Y of minimum length
si � 0 from some vertex zi of O to yi. Let �Qi be an �-arc of O with head vertex zi. Then
�Li := (�Qi.�Pi.�ei)(si + 1, � + si + 1) ∈ �L�(G). Since diam(X ) � � − 1, there is a dipath
�Pi j of X of length �i j � � − 1 from xi to x j such that Pi j = Pji.

Clearly, [�Li.�Pi j][�] is an �i j-link of H. And the union of the units of [�Li.�Pi j][�]

over j ∈ [t] induces a connected subgraph Xi of H. For different i, j ∈ [t], let Ri j :=
[�Li(�i j, �).�Pi j.�Lj(�, �i j)] = Rji ∈ L2�−�i j (G). Then R[�]

i j is an (� − �i j)-path of H between
Xi and Xj. As in the proof of Lemma 5.1, it is easy to check that X1, . . . , Xt are vertex-
disjoint connected subgraphs of H, which are pairwise connected by internally disjoint
paths R[�]

i j . Further, no inner vertex of R[�]
i j is in V (X1) ∪ · · · ∪ V (Xt ). So a Kt-minor of H

is obtained accordingly.
Finally, let Z be the connected subgraph of H induced by the units of L�(O) and

[�Qi.�Pi][�] over i ∈ [t]. Then Z is vertex-disjoint with Xi and with the paths R[�]
i j . Moreover,

Z sends an edge (�Qi.�Pi.�ei)(si, � + si + 1)[�] to each Xi. Thus H contains a Kt+1-minor.�
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In the following, we use the “hub” (described after Lemma 3.7) to construct certain
minors in �-link graphs.

Corollary 5.3. Let � � 0, G be a graph, M be a minor of G(�) such that each branch
set contains an �-link. Then L�(G) contains an M-minor.

Proof. Let X1, . . . , Xt be the branch sets of an M-minor of G(�) such that Xi contains
an �-link for each i ∈ [t]. For any connected subgraph Y of G(�) contains at least one
�-link, let L�(G,Y ) be the subgraph of H := L�(G) induced by the �-links of G of which
the middle units are in Y . Let H(Y ) be the union of the components of L�(G,Y ), which
contains at least one vertex corresponding to an �-link of Y . By Lemma 3.7, H(Y ) is
connected.

By definition each edge of M corresponds to an edge e of G(�) between two different
branch sets, say Xi and Xj. Let Y be the graph consisting of Xi, Xj, and e. Then H(Xi)

and H(Xj) are vertex-disjoint since Xi and Xj are vertex-disjoint. By the analysis above,
H(Xi) and H(Xj) are connected subgraphs of the connected graph H(Y ). Thus there is a
path Q of H(Y ) joining H(Xi) and H(Xj) only at end vertices. Further, if � is even, then
Q is an edge; otherwise, Q is a 2-path whose middle vertex corresponds to an �-link L of
Y such that cL = e. This implies that Q is internally disjoint with its counterparts and has
no inner vertex in any branch set. Then, by contracting each H(Xi) to a vertex, and Q to
an edge, we obtain an M-minor of H. �

Now we are ready to give a lower bound for the Hadwiger number of L�(G).

Proof of Theorem 1.3. Since H := L�(G) contains an edge, t := η(H) � 2. We first
show that t � d := d(G). By definition there exists a subgraph X of G with δ(X ) = d. We
may assume that d � 3 and � � 2. Then X contains an (� − 1)-arc �P := (u, e, . . . , f , v).
Since the degree of u in X is at least d, there are d − 1 distinct arcs �e1, . . . ,�ed−1 of X
with head vertex u such that ei �= e for i ∈ [d − 1]. Similarly, there are d − 1 distinct arcs
�f1, . . . , �fd−1 of X with tail vertex v such that f j �= f for j ∈ [d − 1]. Then the �-link Li :=
[�ei.�P] can be shunted to the �-link Rj := [�P.�f j] through the (� + 1)-link Qi j := [�ei.�P.�f j].
So H contains a Kd−1,d−1-subgraph with bipartition {Li|i ∈ [d − 1]} ∪ {Rj| j ∈ [d − 1]}
and edge set {Qi j|i, j ∈ [d − 1]}. By Zelinka [25], Kd−1,d−1 contains a Kd-minor. Thus
t � d as desired.

We now show that t � η := η(G). If η = 3, then G contains a cycle O of length at
least 3, and H contains a K3-minor contracted from L�(O). Now assume that G is
connected with η � 4. Repeatedly delete vertices of degree 1 in G until δ(G) � 2. Then
G = G(�). Clearly, this process does not reduce the Hadwiger number of G. So G contains
branch sets of a Kη-minor covering V (G) (see [24]). If every branch set contains an �-link,
then the statement follows from Corollary 5.3. Otherwise, there exists some branch set
X with diam(X ) < �. Since η � 4, Y := G − V (X ) is connected and contains a cycle.
Thus by Lemma 5.2, H contains a Kη-minor since |E(X,Y )| � η − 1. �

Here we prove Hadwiger’s conjecture for L�(G) for even � � 2.

Proof of Theorem 1.5(2). Let d := d(G), � � 2 be an even integer, and H := L�(G).
By [7, Proposition 5.2.2], χ := χ(G) � d + 1. So by Theorem 1.1, χ(H) � min{d +
1, 2

3 d + 5
3 }. If d � 4, then χ(H) � 5. By Robertson et al. [17], Hadwiger’s conjecture

holds for H in this case. Otherwise, d � 5. By Theorem 1.3, η(H) � d � 2
3 d + 5

3 �
χ(H) and the statement follows. �
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We end this article by proving Hadwiger’s conjecture for �-link graphs of biconnected
graphs for � � 1.

Proof of Theorem 1.5(1). By Reed and Seymour [16], Hadwiger’s conjecture holds
for H := L�(G) for � = 1. By Theorem 1.5(2), the conjecture is true if � � 2 is even. So
we only need to consider the situation that � � 3 is odd. If G is a cycle, then H is a cycle
and the conjecture holds [10]. Now let v be a vertex of G with degree � := �(G) � 3.
By Theorem 1.1, χ(H) � � + 1. Since G is biconnected, Y := G − v is connected. By
Lemma 5.2, if Y contains a cycle, then η(H) � � + 1 � χ(H). Now assume that Y is
a tree, which implies that G is K4-minor free. By Lemma 5.1, η(H) � �. By Theorem
1.1, χ(H) � χ ′ := χ ′(G). So it is enough to show that χ ′ = �.

Let U := {u ∈ V (Y )| degY (u) � 1}. Then |U | � �(Y ). Let Ĝ be the underlying
simple graph of G, t := degĜ(v) � 1 and �̂ := �(Ĝ) � t. Since G is biconnected,
U ⊆ NG(v). So t � |U | � �(Y ). Let u ∈ U . When |U | = 1, t = degĜ(u) = 1. When

|U | � 2, degĜ(u) = 2 � |U | � t. Thus t = �̂. Juvan et al. [14] proved that the edge-
chromatic number of a K4-minor free simple graph equals the maximum degree of this
graph. So χ̂ ′ := χ ′(Ĝ) = �̂ since Ĝ is simple and K4-minor free. Note that all parallel
edges of G are incident to v. So χ ′ = χ̂ ′ + degG(v) − t = �̂ + � − �̂ = � as desired.�
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