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Abstract: In this article, we define and study a new family of graphs
that generalizes the notions of line graphs and path graphs. Let G be a
graph with no loops but possibly with parallel edges. An £-link of G is a
walk of G of length £ > 0 in which consecutive edges are different. The
L-link graph 1L, (G) of G is the graph with vertices the ¢-links of G, such
that two vertices are joined by © > 0 edges in L, (G) if they correspond to
two subsequences of each of i (¢ 4+ 1)-links of G. By revealing a recursive
structure, we bound from above the chromatic number of £-link graphs. As
a corollary, for a given graph G and large enough £, L,(G) is 3-colorable.
By investigating the shunting of £-links in G, we show that the Hadwiger
number of a nonempty LL,(G) is greater or equal to that of G. Hadwiger's
conjecture states that the Hadwiger number of a graph is at least the chro-
matic number of that graph. The conjecture has been proved by Reed and
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Seymour (Eur J Combin 25(6) (2004), 873-876) for line graphs, and hence
1-link graphs. We prove the conjecture for a wide class of £-link graphs.
© 2016 Wiley Periodicals, Inc. J. Graph Theory 84: 460476, 2017
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1. INTRODUCTION AND MAIN RESULTS

We introduce a new family of graphs, called £-link graphs, which generalizes the notions
of line graphs and path graphs. Such a graph is constructed from a certain kind of walk
of length £ > 0 in a given graph G. To ensure that the constructed graph is undirected,
G is undirected. To avoid loops, G is loopless, and the consecutive edges in each walk
are different. Such a walk is called an £-link. For example, a 0-link is a vertex, a 1-link
is an edge, and a 2-link consists of two distinct edges with an end vertex in common. An
£-path is an £-link without repeated vertices. We use .%; (G) and &, (G) to denote the sets
of £-links and £-paths of G, respectively. There have been a number of families of graphs
constructed from £-links. For example, the line graph 1L(G), introduced by Whitney
[23], is the simple graph with vertex set £ (G), in which two vertices are adjacent if their
corresponding edges are incident to a common vertex. More generally, the £-path graph
Py (G) is the simple graph with vertex set &7, (G), where two vertices are adjacent if the
union of their corresponding ¢-paths forms a path or a cycle of length £ + 1. Note that an
£-path contains ¢ distinct edges and ¢ + 1 distinct vertices. So P, (G) is the P, ;-graph
of G introduced by Broersma and Hoede [4]. Inspired by these graphs, we define the
L-link graph 1Ly (G) of G to be the graph with vertex set .Z;(G), in which two vertices
are joined by u > 0 edges in I, (G) if they correspond to two subsequences of each of
(£ + 1)-links of G. More strict definitions can be found in Section 2, together with some
other related graphs.

This article studies the structure, coloring, and minors of £-link graphs including a
proof of Hadwiger’s conjecture for a wide class of ¢-link graphs. By default £ > 0 is an
integer. And all graphs are finite, undirected, and loopless. Parallel edges are admitted
unless we specify the graph to be simple.

1.1. Graph Coloring

Let? > 0 be an integer. A t-coloring of Gisamap A : V(G) — [t] :=={1,2,...,t} such
that A (u) # A(v) whenever u, v € V(G) are adjacent in G. A graph with a ¢-coloring is
t-colorable. The chromatic number x (G) is the minimum ¢ such that G is ¢-colorable. Sim-
ilarly, a t-edge-coloring of G is amap X : E(G) — [t] such that A(e) # A(f) whenever
e, f € E(G) are incident to a common vertex in G. The edge-chromatic number x'(G)
of G is the minimum 7 such that G admits a ¢-edge-coloring. Let x,(G) := x (L, (G)),
and A (G) be the maximum degree of G. Brooks’ theorem [5] states that, the chromatic
number of a connected graph G equals A(G) + 1 if G is an odd cycle or a complete
graph with at least one vertex, and is at most A(G) otherwise. Shannon [18] proved that
x1(G) = x'(G) < %A (G). We prove a recursive structure for £-link graphs, which leads
to the following upper bounds for x,(G).

Theorem 1.1.  Let G be a graph, x := x(G), x' := x'(G), and A := A(G).
(1) If € > O is even, then x,(G) < min{x, [ ($)"*(x —3)] +3}.

Journal of Graph Theory DOI 10.1002/jgt



462 JOURNAL OF GRAPH THEORY

() If € > 1 is odd, then x,(G) < min{x’, [(})T (x' — 3)] +3}.
B) IfL # 1, then o (G) < A+ 1.
4) If € = 2, then x,(G) < x¢—2(G).

Theorem 1.1 implies that L, (G) is 3-colorable for large enough £.
Corollary 1.2.  For each graph G, Ly (G) is 3-colorable in the following cases:

(1) € > 0 is even, and either x (G) < 3 or £ > 2log, s(x(G) — 3).
(2) £ > 1is odd, and either x'(G) < 3 orf > 2log, s(x'(G) —3) + 1.

As explained in Section 2, this corollary is related to and implies a result by Kawai
and Shibata [15].

1.2. Graph Minors

A connected graph with two or more vertices is biconnected if it cannot be disconnected
by removing a vertex. By contracting an edge we mean identifying its end vertices and
deleting possible resulting loops. A graph H is a minor of a graph G if H can be obtained
from a subgraph of G by contracting edges. An H-minor is aminor of G that is isomorphic
to H. The Hadwiger number n(G) of G is the maximum integer # such that G contains a
K;-minor. Denote by §(G) the minimum degree of G. The degeneracy d(G) of G is the
maximum & (H) over the subgraphs H of G. We prove the following.

Theorem 1.3. Let ¢ > 1, and G be a graph such that L, (G) contains at least one edge.
Then n(L¢(G)) = max{n(G), d(G)}.

By definition IL(G) is the underlying simple graph of L; (G). And L, (G) = P, (G) if
girth(G) > {¢, 2}. Thus Theorem 1.3 can be applied to path graphs.

Corollary 1.4. Let € > 1, and G be a graph of girth at least £ + 1 such that P, (G)
contains at least one edge. Then n(Py(G)) > max{n(G), d(G)}.

As a far-reaching generalization of the four-color theorem, in 1943, Hugo Hadwiger
[10] conjectured the following.

Hadwiger’s conjecture: n(G) > x (G) for every graph G.

Hadwiger’s conjecture was proved by Robertson, Seymour, and Thomas [17] for
x (G) < 6. The conjecture for line graphs, or equivalently for 1-link graphs, was proved
by Reed and Seymour [16]. We prove the following.

Theorem 1.5. Hadwiger’s conjecture is true for 1L, (G) in the following cases:

(1) £ > 1 and G is biconnected.

(2) € > 2 is an even integer.

(3) d(G) > 3and t > 2log, s 503 +3.

@ A(G) 23 andt > 2log, s(A(G) —2) — 3.83.

(5 AG) <5

The corresponding results for path graphs are listed below.

Corollary 1.6.  Let G be a graph of girth at least £ + 1. Then Hadwiger’s conjecture
holds for P;(G) in the cases of Theorem 1.5 (1)—(5).
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FIGURE 1. (a) D3,  (b) A1(D3),  (c) Li(D3).

2. DEFINITIONS AND TERMINOLOGY

We now give some formal definitions. A graph G is null if V(G) = @, and non-null
otherwise. A non-null graph G is empty if E(G) = @, and nonempty otherwise. A unit is
a vertex or an edge. The subgraph of G induced by V C V(G) is the maximal subgraph
of G with vertex set V. And in this case, the subgraph is called an induced subgraph
of G. We may not distinguish between V and its induced subgraph. For § # E C E(G),
the subgraph of G induced by E UV is the minimal subgraph of G with edge set E, and
vertex set including V. The diameter diam(G) of G is 400 if G is disconnected, and the
maximum distance between two vertices of G otherwise.

Let G be a graph, and H be a subgraph of G. Let V be a partition of V (H) such that
every V € Vinduces a connected subgraph of H. Let M be the graph obtained from H by
contracting each V € V into a vertex. Then M is a minor of G. And V is called a branch
set of M.

For more accurate analysis, we need to define £-arcs. An €-arc (or x-arc if we ignore

the length) of G is an alternating sequence L= (vo, €1, ..., eq, ve) of units of G such that
the end vertices of ¢; € E(G) are v;_; and v; fori € [¢], and that e¢; # e;,| fori € [¢ — 1].
The direction of L is its vertex sequence (v, vy, ..., V). In algebraic graph theory, £-arcs

in simple graphs have been widely studied [3, 19, 20, 22]. Note that L and its reverse
—L:= (v, e, ..., eq,vo) are different unless £ = 0. The ¢-link (or *-link if the length

is ignored) L := [vy, ey, ..., e, v¢] is obtained by taking Land —L as a single object.
For 0 <i < j<¢, the (j—1i)-arc L(i, j) := (vi, €1, ...,€j,v;) and the (j — i)-link
E[i, J1:=1vi, eix1, ..., e}, v;] are called segments of L and L, respectively. We may write

Z( J, i) = —E(i, j), and E[ j, il = f[i, Jj]. These segments are called middle segments if
i+ j=4¢. L is called an £-cycle if £ > 2, vg = v, and f[O, ¢ — 1] is an (£ — 1)-path.
Denote by Z (G) and %, (G) the sets of £-arcs and £-cycles of G, respectively. Usually,
¢; := (vi_1, e;, v;) is called an arc for short. In particular, vy, v, €1, e, €], and &; are called
the tail vertex, head vertex, tail edge, head edge, tail arc, and head arc of Z, respectively.

Godsil and Royle [9] defined the £-arc graph Ay (G) to be the digraph with vertex set
_Z,(G), such that there is an arc, labeled by 0, from (0, £) to O(1, £ + 1) in A,(G)
for every Q € ZJr 1(G). The t-dipole graph D; is the graph consists of two vertices and
t > 1 edges between them. (See Figure 1 a for D3, and Figure 1 b the 1-arc graph of D3.)
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FIGURE 2. (a) G, (b) H:=Ly(G), (¢ Hy.e. (d) P2(G).

The ¢th iterated line digraph A*(G) is A;(G) if £ = 1, and A;(A*1(G)) if £ > 2 (see
[2]). Examples of undirected graphs constructed from £-arcs can be found in [12, 13].

Shunting of £-arcs was introduced by Tutte [21]. We extend this notion to £-links. For
0,5 >0,and 0 € .Z,s(G),let L; := Qli, £ + i]fori € [s]U{0},and Q; := O[i — 1, £ +
i] fori € [s]. Let Q') := [Ly, Q1, Ly, ..., Ls_1, Qs, L]. We say Ly can be shunted to L
through Q or Q. 0" :={Ly, L, ..., L} is the set of images during this shunting. For
L, R € %,(G), we say L can be shunted to R if there are £-links L = Ly, Ly, ...,L; =R
such that L;,_; can be shunted to L; through some x-arc Q,- for i € [s]. In Figure 2,
[uo, fo, vo, €0, v1] can be shunted to [vy, eg, Vo, €1, V1] thI‘OU.gh (uo, fo,vo, €o, v1, f1,u1)
and (uy, f1,v1, eo, Vo, €1, V).

For L,R € Z;(G) and 2 C Z;+1(G), denote by 2(L, R) the set of Q € 2 such that
L can be shunted to R through Q. We show in Section 3 that | 2(L,R)| is Qor 1 if G
is simple, and can be up to 2 if £ > 1 and G contains parallel edges. A more formal
definition of ¢-link graphs is given below.

Definition 2.1. Let £ C %4(G), and 2 C %,11(G). The partial €-link graph
L(G, %, 2) of G, with respect to £ and 2, is the graph with vertex set £,
such that L,R € £ are joined by exactly |2(L,R)| edges. In particular, L,(G) =
L(G, £ (G), Z11(G)) is the L-link graph of G.

Remark. We assign exclusively to each edge of L,(G) between L,R € £ (G) a
Q € Z+1(G) such that L can be shunted to R through Q, and refer to this edge simply
as Q. In this sense, Q! := [L, Q, R] is a 1-link of L, (G).

For example, the 1-link graph of D3 can be seen in Figure 1 c. A 2-link graph is given
in Figure 2 b, and a 2-path graph is depicted in Figure 2 d.

Reed and Seymour [16] pointed out that proving Hadwiger’s conjecture for line graphs
of multigraphs is more difficult than for that of simple graphs. This motivates us to work
on the ¢-link graphs of multigraphs. Diestel [7, page 28] explained that, in some situations,
it is more natural to develop graph theory for multigraphs. We allow parallel edges in
£-link graphs in order to investigate the structure of L, (G) by studying the shunting of
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£-links in G regardless of whether G is simple. The observation below follows from the
definitions.

Observation 2.2. Ly (G) = G, P(G) = L(G), and P;(G) is the underlying simple
graph of Ly (G) for £ € {0, 1}. For £ > 2, Py(G) = L(G, Z¢(G), Z11(G) U €14+1(G))
is an induced subgraph of Ly (G). If G is simple, then P, (G) = L,(G) for £ € {0, 1, 2}.
Further, Py (G) = L, (G) if girth(G) > max{{, 2}.

Let 0 € %.(G), and [Ly, Oy, L, ..., L1, 0Oy L] :== 0. From the remark
above, for i € [s], Q; is an edge of H :=IL,(G) between L,_,L; € V(H). So Q!
is an s-link of H. In Figure 2 b, [u(), fo, Vo, €0, V1, €1, Vo, €0, Vl][zl = [[u(), f(), Vo,
eo, vil, [uo, fo, vo, €0, vi, e1, vol, [vo, e, vi, e, vol, [vo, o, vi, €1, vo, €o, vil, [v1, e1, vo,
ep, vi]] is a 2-path of H.

We say H is homomorphic to G, written H — G, if there is an injection o : V(H) U
E(H) — V(G) UE(G) such that forw € V(H), f € E(H) and [u, e, v] € £ (H), their
images w* € V(G), f* € E(G) and [u®, ¢*,v*] € Z1(G). In this case, « is called a
homomorphism from H to G. The definition here is a generalisation of the one for simple
graphs by Godsil and Royle [9, page 6]. A bijective homomorphism is an isomorphism. By
Hell and NeSetiil [11], x (H) < x (G) if H — G. For instance, L +> L for L € .%,(G) U
ZH (G) can be seen as a homomorphism from A, (G) to L;(G). By Bang-Jensen and
Gutin [1], A/ (G) is isomorphic to A“(G). So x (A*(G)) = x (Av(G)) < x(L¢(G)) =
x¢(G). We emphasize that x (A*(G)) might be much less than yx,(G). For example,
as depicted in Figure 1, whent > 3, x (A“(D;)) =2 <t = x,(D;). Kawai and Shibata
proved that A“(G) is 3-colorable for large enough £. By the analysis above, Corollary
1.2 implies this result.

A graph homomorphism from H is usually represented by a vertex partition V and an
edge partition £ of H such that (a) each part of V is an independent set of H, and (b) each
part of £ is incident to exactly two parts of V. In this situation, for different U,V € V),
define (U, V) to be the number of parts of £ incident to both U and V. The quotient
graph Hy ¢y of H is defined to be the graph with vertex set V, and for every pair of
different U, V € V), there are exactly u (U, V') edges between them. To avoid ambiguity,
forVeVand E € &, we use V) and E¢ to denote the corresponding vertex and edge
of Hey ¢), which defines a graph homomorphism from H to Hy ¢). Sometimes, we only
need the underlying simple graph Hy of Hy ¢).

For ¢ > 2, there is a natural partition in an £¢-link graph. For each R € %, ,(G),
let %, (G,R), or Z;(R) for short, be the set of £-links of G with middle segment
R. Clearly, V;(G) := {Z(R) # 0|R € £,_»(G)} is a vertex partition of L,(G). And
E(G) = {Z+1(R) # VIR € £;—1(G)} is an edge partition of L, (G). Consider the 2-
link graph H in Figure 2 b. The vertex and edge partitions of H are indicated by the
dotted rectangles and ellipses, respectively. The corresponding quotient graph is given in
Figure 2 c.

Special partitions are required to describe the structure of ¢-link graphs. Let H be a
graph admitting partitions ) of V (H) and £ of E (H) that satisfy (a) and (b) above. (V, &)
is called an almost standard partition of H if further:

(c) each part of £ induces a complete bipartite subgraph of H,

(d) each vertex of H is incident to at most two parts of &,

(e) foreach V € V, and different E, F € £, V contains at most one vertex incident to
both E and F.
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If £ > 2 is an even integer, and G is a simple graph, then IL, (G) is isomorphic to the
(2, €/2)-double star graph of G introduced by Jia [12]. While this article focuses on
the combinatorial properties including connectedness, coloring, and minors of L,(G),
a series of companion papers have been composed to contribute to the recognition and
determination problems and algorithms. For example, a joint work by Ellingham and Jia
[8] shows that, for a given graph H, there is at most one pair (G, £), where £ > 2, and
G is a simple graph of minimum degree at least 3, such that L, (G) is isomorphic to H.
Moreover, such a pair can be determined from H in linear time.

3. GENERAL STRUCTURE OF ¢-LINK GRAPHS

We begin by determining some basic properties of £-link graphs, including their multi-
plicity and connectedness. The work in this section forms the basis for our main results
on coloring and minors of £-link graphs.

Let us first fix some concepts by two observations.

Observation 3.1.  The number of edges of L, (G) is equal to the number of vertices of
L¢+1(G). In particular, if G is r-regular for some r = 2, then this number is |E(G)|(r —
D)E. If further € > 1, then L, (G) is 2(r — 1)-regular.

Proof. LetGber-regular,n := |V (G)|andm := |E(G)|. We prove that |.%; 11 (G)| =
m(r —1)* by induction on £. It is trivial for £ = 0. For £ = 1, [%([v])| = (), and
hence |2 (G)| = (§) n = m(r — 1). Inductively assume |.%,_1(G)| = m(r — 1)~ for
some £ > 2. For each R € .%,_;(G), we have |.Z,,1(R)| = (r — 1)? since r > 2. Thus
|.%1(G)| = |.Z—1(G)|(r — 1)> = m(r — 1)¢ as desired. The other assertions follow

from the definitions. |

Observation 3.2. Letn,m > 2. If £ > 1 is odd, then Ly (K, ) is (n +m — 2)-regular
with order nm[(n — 1)(m — 1)]%. If £ > 2 is even, then Ly (K, ») has average degree

%, and order %nm(n +m—2)[(n—1)(m—1D]:""

Proof. Let £ > 1 be odd, and L be an ¢-link of K, ,, with middle edge incident
to a vertex u of degree n in K, ,,. It is not difficult to see that L can be shunted in
one step to n — 1 £-links whose middle edge is incident to u. By symmetry, each
vertex of L,(K, ) is incident to (n — 1)+ (m —1) =n+m — 2 edges. Now we
prove | £ (K,m)| = nm[(n — 1)(m — 1)]% by induction on {. Clearly, |2 (Kym)| =
|E (Ky.m)| = nm. Inductively assume |.Z;_»(K, )| = nm[(n — 1)(m — 1)]% for some
£ > 3.Foreach R € £ (K, n), we have | Z;(R)| = (n — 1)(m — 1). So |-} (Kym)| =
| L2 (Kym)|(n —1)(m — 1) = nm[(n — 1)(m — 1)]% as desired. The even £ case is
similar. |

3.1. Loops and Multiplicity

Our next observation is a prerequisite for the study of the chromatic number since it
indicates that £-link graphs are loopless.

Observation 3.3.  For each (£ + 1)-arc O, we have 0[0, €] # O[1, £ + 1].
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Proof. Let G be a graph, and Q = (Vo, €1, ..., €041, Vit+1) € ZH(G). Since G
is loopless, Yo # v and hence Q[O 0] # Q[l 1]. So the statement holds for ¢ = 0.
Moreover, Q(O l) # Q(l £+1). Now let £ > 1. Suppose for a contradiction that
Q(O ) = —Q(l £+ 1). Then v; = vyy;_; and e, = epp—; for i € {0, 1,...,¢}. If
¢ =2s for some integer s > 1, then vy = vy, contradicting that G is loopless. If
£ =25+ 1 for some integer s > 0, then e, = es1, contradicting the definition of a
*-arc. |

The following statement indicates that, for each £ > 1, 1L, (G) is simple if G is simple,
and has multiplicity exactly 2 otherwise.

Observation 3.4. Let G be a graph, £ > 1, and Ly, Ly € £, (G). Then Ly can be
shunted to L, through two (£ + 1)-links of G if and only if G contains a 2-cycle O :=
[vo, €o, Vi, e1, vol, such that one of the following cases holds:

(1) £>1isodd, and L; = [v;, e;, vi_i, €1—iy ..., Vi, €;, Vi—i] € £ (0) for i e {0, 1}.
In this case, [v;, €;, Vi_i, €1—iy ..., Vi—i, €1-i, Vil € ZLp4+1(0), fori € {0, 1}, are the
only two (£ 4 1)-links available for the shunting.

) £>=2 is even, and L; = [v;, ej,vi_i, €1_iy ..., Vi_i,€1_i, Vi] € Z(0) for i€
{0, 1}. In this case, [v;, e;, Vi—i, €1—i, ..., Vi, €i, Vi_i] € ZL11(0), for i € {0, 1},
are the only two (£ + 1)-links available for the shunting.

Proof. (<) is trivial. For (=), since Ly can be shunted to L,, there exists L :=
(vo, €0, Vis ..., Vi, €0, Vor1) € .,%H(G) such thatL = L[z £+ 1] forz e {0, 1}. LetR €
OZQH G)\ {L} such that L; = R[l {+ 1] Then L(z {41) equals R(z l + i) or R(Z +
i, i). Suppose for a contradiction that L(O, £) = R(O, £). Then L(l, l) = R(l, £). Since
L+#R wehave L(1,¢£+1) #R(1,€£+1). Thus L(1, £ + 1) = R(¢ + 1, 1), and hence
L2, ¢+1) =R, 1)=L(¢, 1), contradicting Observation 3.3. So L(0, £) = R(¢, 0).
Similarly, L(1, € + 1) = R(¢ + 1, 1). Consequently, L(0, £ — 1) = R(¢, 1) = L(2, £ +
1); that is, v; = v and e; = ey if j € [0, £] is even, while v; =v; and e; = ¢ if j €
[0, € + 1] is odd. [ |

3.2. Connectedness

This subsection characterizes when L, (G) is connected. Let L := [vg, e1, ..., ez, v¢] be
an £-link of G, and m := (%1. The middle unit c¢; of L is defined to be v,, if £ is even, and
ey if £ is odd. Denote by G(£) the subgraph of G induced by the middle units of £-links
of G.

The lemma below is important in dealing with the connectedness of ¢-link graphs.
Before stating it, we define a conjunction operation, which is an extension of an

operation by Biggs [3, Chapter 17]. Let L:= (vo, e1, Vi, ..., €0, Vy) € .fz(G) and
R:= (ug, fl, ui, .. , feous) € .Z(G) such that v; = up and e; # f1 The conjunctlon
of L and R is (LR) = (Vo, €1, ...,€¢, Ve = Uy, fl1,---, fs, Us) € .ZHV(G) or [LR] =

[V07elv <oy €0, Ve = U, flv -'~7f§7 us] € ﬂJrY(G)

Lemma 3.5. Let{,s > 0, and G be a connected graph. Then G(£) is connected. And
each s-link of G(£) is a middle segment of a (2|_§J + 5)-link of G. Moreover, for £-links
L and R of G, there is an L-link L' with middle unit c;, and an £-link R' with middle unit
Cg, such that L' can be shunted to R'.
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Proof. For ¢ € {0, 1}, since G is connected, G(£) = G and the lemma holds. Let
£:=2m > 2 be even. Then u,v € V(G(£)) if and only if they are middle vertices
of some L,R € .Z((G) respectlvely Since G is connected, there exists some Pi=
(u=vo,er,....e5V;=V) € Z(G). By Observation 3 3,Lim—1,m] #+ Lim, m+1].
For such an s-arc P, without loss of generahty, e # L[m —1 m] and s1m11ar1y, e #*
R[m m—+ 1] Then P is a middle segment of Q (L(O ). PR(m 2m)) € .ZKJM(G)
So L := Q[O £] can be shunted to R := Q[s ¢ + s] through Q Moreover, for each
ie€{0,...,s},v;isthe middle vertex of Q[z, L+ i] € Z(G).Hence Pis an s-arc of G)
from u to v. So G(£) is connected. The odd £ case is similar. |

Sufficient conditions for A, (G) to be strongly connected can be found in [9, page 76].
The following corollary of Lemma 3.5 reveals a strong relationship between the shunting
of £-links and the connectedness of £-link graphs.

Corollary 3.6.  For a connected graph G, 1L, (G) is connected if and only if every pair
of €-links of G with the same middle unit can be shunted to each other.

Proof. On the one hand, if I, (G) is connected, then every pair of £-links of G can
be shunted to each other. On the other hand, let L and R be two £-links of G. Since G
is connected, by Lemma 3.5, there are ¢-links L' and R" with ¢;; = ¢ and cg = cg such
that L’ can be shunted to R’. Hence if L can be shunted to L’ and R can be shunted to R’,
then L can be shunted to R. So if every pair of £-links of G with the same middle unit can
be shunted to each other, then L, (G) is connected. |

We now present our main result of this section, which plays a key role in dealing with
the graph minors of £-link graphs in Section 5.

Lemma 3.7. Let G be a graph, and X be a connected subgraph of G(£). Then for every
pair of £-links L and R of X, L can be shunted to R under the restriction that in each step,
the middle unit of the image of L belongs to X.

Proof. First we consider the case that ¢y is in R. Then there is a common segment
Q of L and R of maximum length containing c¢;. Without loss of generality, assign
directions to L and R such that L = (EO.Q.EI) and R = (ﬁl.Q.ﬁo), where L; € Zi X)
and Ié: € j;,(X) for i € {0, 1} such that s; > so. Then £ > £y + £; = so + 51 > s;. Let
x be the head vertex and e be the head edge of L. Since cpisin Q, £y < £/2. Since X
is a subgraph of G(¢£), by Lemma 3.5, there exists L € .,S,’ZO(G) with tail vertex x and
tail edge different from e. Let y be the tail vertex and f be the tail edge of R. Then there
exits R, € .;2’20 (G) with head vertex y and head edge different from f. We can shunt L to
R first through (L.Ly) € %14, (G), then —(R>.R,.0.L,.Ly) € Zis4,10,(G), and finally
(R.R) € Z+S()(G). Since ¢y < £/2 and 59 < 51 < £/2, the middle unit of each image is
inside L or R.

Second, we consider the case that ¢; is not in R. Then there exists a segment Q of L of
maximum length that contains ¢z, and is edge-disjoint with R. Since X is connected, there
exists a shortest %-arc P from a vertex v of R to a vertex u of L. Then P is edge-disjoint
with Q because of its minimality. Without loss of generality, assign directions to L and
R such that u separates L into (LO Ll) with ¢, on L, and v separates R into (R1 Ro)
where L; is of length ¢; while R; is of length s; for i € {0, 1}, such that s; > 5. Then
£y, so < £/2. Let x be the head vertex and e be the head edge of L. Since £y < /2 and
X is a subgraph of G(£), by Lemma 3.5, there exists an £y-arc L, of G with tail vertex x
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and tail edge different from e. Let y be the tail vertex and f be the tail edge of R. Then
there exits an so-arc R, of G with head vertex y and head edge different from f. Now we
can shunt L to R through (E.Zz), —(1?2.1?1 P.L .Ez) and (1?2.1?) consecutively. One can
check that in this process the middle unit of each image belongs to L, P, or R. u

From Lemma 3.7, the set of £-links of a connected G (£) serves as a “hub’ in the shunting
of £-links of G. More explicitly, for L, R € .£;(G), if we can shunt Lto L’ € .Z,(G(¢)),
and Rto R’ € Z,(G(£)), then L can be shunted to R since L’ can be shunted to R'. Thus we
have the following corollary that provides a more efficient way to test the connectedness
of £-link graphs.

Corollary 3.8. Let G be a graph such that G(£) contains at least one £-link. Then
L¢(G) is connected if and only if G(£) is connected, and each £-link of G can be shunted
to an L-link of G(£).

4. CHROMATIC NUMBER OF ¢-LINK GRAPHS

In this section, we reveal a recursive structure of an ¢-link graph H, which leads to an
upper bound for the chromatic number of H. To achieve this, we need to show that when
¢ > 2, H admits an almost standard partition defined in Section 2.

Lemmad.1. LetGbeagraphand? > 2 be aninteger. Then (V, £) := (Vi (G), E(G))
is an almost standard partition of H 1= 1Ly(G). Further, Hy gy is isomorphic to an
induced subgraph of Ly_»(G).

Proof.  First we verify that (V, £) satisfies conditions (a)—(e) in the definition of an
almost standard partition in Section 2.

(a) We prove that, for each R € %, _»(G), V := £ (R) € V is an independent set of
H. Suppose not. Then there are E, I e .i%}(G) such that L, ' € V, and L can be
shunted to L’ in one step. Then R = L[1,¢ — 1]canbe shuntedto R = L'[1, £ — 1]
in one step, contradicting Observation 3.3.

(b) Here we show that each E € £ is incident to exactly two parts of V. By definition
there exists P € .%,_;(G) with %, (P) = E. Let {L, R} := P*~%_ Then .%,(L)
and % (R) are the only two parts of V incident to E.

(c) Weexplainthateach E € £ is the edge set of a complete bipartite subgraph of H. By
definition there exists P € .%,_| (G) with %, (P) = E.LetA := {[¢.P] € % (G)}
and B := {[ﬁ. f] € £, (G)}. One can check that E induces a complete bipartite
subgraph of H with bipartition A U B.

(d) We prove that each v € V (H) is incident to at most two parts of £. By definition
there exists Q € .Z;(G) with Q = v. Then the set of edge parts of £ incident to v
is {Z41(L) # WL € Q1) with cardinality at most 2.

(e) Let v be a vertex of V € V incident to different E, F € £. We explain that v is
uniquely determined by V, E, and F.

By the analysis above, (V, £) is an almost standard partition of H.

By definition there exists Pe Z,Z(G) such that V = %, (P). There also exists Q :=
[¢,.P.¢)] € %, (P) such that v = Q. Besides, there are L, R € .%,_1(G) such that E =
Li(L) and F = %, (R). Then {L, R} = Q'“"" since L # R. Note that Q is uniquely
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determined by Q“~! and ¢y = cp. Thus it is uniquely determined by E = % (L), F =
L1 (R), and V = Z,(P).

Now we show that H(y ¢ is isomorphic to an induced subgraph of L,_»(G). Let X
be the subgraph of L, ,(G) of vertices L € .£;_,(G) such that %, (L) # @, and edges
Q € Z-1(G) such that £, 11(Q) # ¥. One can check that X is an induced subgraph
of L,_»(G). An isomorphism from Hy ¢y to X can be defined as the injection sending
ZL(L) #£Wto L, and Z11(Q) # ¥ to Q. |

Below we give an interesting algorithm for coloring a class of graphs.

Lemma 4.2. Let H be a graph with a t-coloring such that each vertex of H is adjacent
to at most r = 0 differently colored vertices. Then x (H) < L 1J + L

Proof. The result is trivial for t = O since, in this case, x (H) = 0. If r+1>1¢ > 1,
then |25 ] = |1 — }J’FIJ =t — 1, and the lemma holds since t > x (H).

Now assume t > r+2 > 2. Let Uy, Uy, .. ., U; be the color classes of the given col-
oring. For i € [t], denote by i the color assigned to vertices in U;. Run the following
algorithm: For j =1, ..., ¢, and for each u € U;_;, let s € [¢] be the minimum integer

that is not the color of a neighbor of u in H; if s <t — j + 1, then recolor u by s.

In the algorithm above, denote by C; the set of colors used by the vertices in U; for
i€[t]. Let k:= Lr+1J Then t — 1 2 k(r+ 1) > k > 1. We claim that after j € [0, k]
steps, C;_;+1 C [ir + 1] for i € [j], and C; = {i} for i € [t — j]. This is trivial for j = 0.
Inductively assume it holds for some j € [0, k — 1]. In the (j + 1)th step, we change
the color of each u € U,_; from t — j to the minimum s € [¢] that is not used by the
neighborhood of u. It is enough to show that s < (j + 1)r + 1.

First suppose that all neighbors of u are in Uieﬁf j—11Ui. By the analysis above,
t—j—12t—k>kr+1>r+1. So at least one part of S :={Ujli e [t — j — 1]}
contains no neighbor of u. From the induction hypothesis, C; = {i} fori e [t — j — 1].
Hence at least one color in [r + 1] is not used by the neighborhood of u; that is, s <
r+1<(G+Dr+1.

Now suppose that u has at least one neighbor in (J,,_; ,, Ui By the induction
hypothesis, Uie[l—j+]$1J C; C [jr+ 1]. At the same time, u has neighbors in at most
r — 1 parts of S. So the colors possessed by the neighborhood of u are contained in
[jr+14+r—1]1=[(j+ 1)r]. Thus s < (j + 1)r + 1. This proves our claim.

The claim above indicates that, after the kth step, C;_;; C [ir + 1] for i € [k], and
C; = {i} for i € [t — k]. Hence we have a (¢t — k)-coloring of H since t — k > kr + 1.

Therefore, x (H) <t —k = ft,rjrrﬂ = ,+1J + L u

Lemma 4.1 indicates that IL,(G) is homomorphic to L, ,(G) for £ > 2. So by [6,
Proposition 1.1], x¢(G) < x¢—2(G). By Lemma 4.1, every vertex of L, (G) has neighbors
in at most two parts of V,; (G), which enables us to improve the upper bound on x;(G).

Lemma 4.3. Let G be a graph, and £ > 2. Then x,(G) < L%x@,z(G)J + 1.

Proof. ByLemmad.l, (V, &) := (Vi (G), E(G)) is an almost standard partition of
H :=1L,(G). So each vertex of H has neighbors in atmost two parts of V. Further, Hy, is
a subgraph of L, »(G). So x,(G) < x = x(Hy) < x¢—2(G).

We now construct a x -coloring of H such that each vertex of H is adjacent to at most
two differently colored vertices. By definition Ay, admits a y-coloring with color classes
Ki, ..., K,.Forie [x], assign the color i to each vertex of H in U; := vae,(’_ V. One
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can check that this is a desired coloring. In Lemma 4.3, letting t = x and r = 2 yields
that x,(G) < L%XJ + 1. Recall that x < x¢—2(G). Thus the lemma follows. |

As shown below, Lemma 4.3 can be applied recursively to produce an upper bound
for x,(G) in terms of x (G) or x'(G).

Proof of Theorem 1.1. When £ € {0, 1}, it is trivial for (1)(2) and (4). By [7,
Proposition 5.2.2], xo = x < A+ 1. So (3) holds. Now let £ > 2. By Lemma 4.1, H :=
L,(G) admits an almost standard partition (V, £) := (V¢ (G), £ (G)), such that Hy ¢
is an induced subgraph of L,_,(G). By definition each part of V is an independent
set of H. So H — L;_»(G), and x; < x¢—»- This proves (4). Moreover, each vertex of
H has neighbors in at most two parts of V. By Lemma 4.3, x, := x/(G) < % + 1.
Continue the analysis, we have x; < x¢—2, and x¢ — 3 < (%)i(xg,Zi —3)for 1 <i<
1£/2]. Therefore, if € is even, then x; < xo = x < A+ L,and x, — 3 < ($)"*(x - 3).
Thus (1) holds. Now let £ > 3 be odd. Then y, < x; = x/,and x, — 3 < %)%(X/ -3).
This verifies (2). As a consequence, y; < X3 < %(X’ —-3)+3= %)(’ + 1. By Shannon
[18], x' < %A. So x¢ < A + 1, and hence (3) holds. |

The following corollary of Theorem 1.1 implies that Hadwiger’s conjecture is true for
L¢(G) if G is regular and £ > 4.

Corollary 4.4. Let G be a graph with A .= A(G) = 3. Then x,(G) < 3 forall £ >
2log, s(A — 2) + 3. Further, Hadwiger’s conjecture holds for L, (G) if £ > 2log, s(A —
2) —3.83, ord :==d(G) >3and { > 2log, s 5= + 3.

Proof. By Theorem 1.1, foreach ¢ > 3, x; := x¢(G) < tif (%)[/Z(A -2 <t=2
and (g)%(gA —3) <t —2. Solving these inequalities gives £ > 2log, s(A —2) —
2log; 5(t —2) + 3. Thus x, < 3if £ > 2log; s (A — 2) + 3. So the first statement holds.
By Robertson etal. [17] and Theorem 1.3, Hadwiger’s conjecture holds for L, (G) if £ > 1
and x, < max{6, d}. Letting t = 6 gives that £ > 2log, s(A —2) —4log, 52+ 3. Let-
tingt =d > 3 gives that £ > 2log, 5 % + 3. So the corollary holds since 4log; 52 —
3 > 3.83. |

Proof of Theorem 1.5(3)(4)(5). (3) and (4) follow from Corollary 4.4. Now consider
(5). By Reed and Seymour [16], Hadwiger’s conjecture holds for L; (G). If £ > 2 and
A <5, by Theorem 1.1(3), x;(G) < 6. In this case, Hadwiger’s conjecture holds for
LL¢(G) by Robertson et al. [17]. |

5. COMPLETE MINORS OF ¢-LINK GRAPHS

It has been proved in the last section that Hadwiger’s conjecture is true for L, (G) if £ is
large enough. In this section, we further investigate the minors, especially the complete
minors, of £-link graphs. To see the intuition of our method, let v be a vertex of degree ¢
in a graph G. Then L; (G) contains a K;-subgraph whose vertices correspond to the edges
of G incident to v. For £ > 2, roughly speaking, we extend v to a subgraph X of diameter
less than ¢, and extend each edge incident to v to an £-link of G starting from a vertex of
X. By studying the shunting of these £-links, we find a K;-minor in L, (G).

Let [u, e, v] be a 1-link of G. Since G is undirected, ¢ has no direction. But we can
choose a direction, say u to v, for e to get an arc & := (u, e, v) of G. For subgraphs X, Y
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FIGURE 3. (a) G, (b) Ly (G).

of G, let E(X, Y) be the set of edges of G between V (X) and V(Y), and E(X, Y) be the
set of arcs of G from V (X) to V(Y). Figure 3 illustrates the proofs of Lemmas 5.1 and
5.2.

Lemma 5.1. Let £ > 1 be an integer, G be a graph, and X be a subgraph of G with
diam(X) < € such thatY := G — V(X) is connected. Ift := |[E(X,Y)| = 2, then L;(G)
contains a K,-minor.

Proof. Let é,...,ée be distinct arcs in EY,X). Say e; = (y;, e;, x;) for i € [1].
Since diam(X) < £, there is a dipath 13,, of X from x; to x; of length ¢;; < £ — 1 such
that P;; = Pj;. Since Y is connected, it contains a dipath Qj-_, from y; to y;. Since t > 2,
0;:=[P,. — ar.Qi/i.Ei] is a cycle of G, where i’ := (imodt) + 1. Thus H := L, (G)
contains a cycle LL;(O,), and hence a K,-minor. Now let ¢ > 3, and E,- € Z(O;) with
head arc €. Then [L;.P;]'") € £, (H). And the union of the units of [Li.P,;1 over j € [1]
is a connected subgraph X; of H. In the remainder of the proof, for distinct i, j € [z],
we show that X; and X; are disjoint. Further, we construct a path in H between X; and
X; that is internally disjoint with its counterparts, and has no inner vertex in any of
V(X1), ...,V (X;). Then by contracting each X; into a vertex, and each path into an edge,
we obtain a K;-minor of H.

First of all, assume for a contradiction that there are different i, j € [¢] such that X; and
X share a common vertex that corresponds to an £-link R of G. Then by definition, there
exists some p € [t] such that R can be obtained by shunting L; along (Ei.};;p) by some
5; < £;p steps. SO R = [E,- (si, K).EP(O, 5;)]. Similarly, there are g € [t] and s; < £}, such
that R = [L;(s;, £).Pj,(0, 5;)]. Recall that E(X) NE(X,Y) = E(Y) NE(X,Y) = #. So
ej =Lt —1,0]and e; = L;[¢ — 1, £] belong to both L; and L,. By the definition of 0;,
this happens if and only if i = j' and j = i, which is impossible since ¢ > 3.
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Second, for distinct i, j € [t], we define a path of H between X; and X;. Clearly, L; can
be shunted to L; through RZ, = (Zi.}s;j. - Ej) in G. In this shunting, L; := [Iji(ﬂ,-j, E).P;j]
is the last image corresponding to a vertex of X;, while L} = [P;j.l_:j(ﬁ, £;;)] is the
first image corresponding to a vertex of X;. Further, L] can be shunted to L’j through
j, = (L, (ij, £). 15;, E (RS Do ¢,;,(G), which is a subsequence ofﬁ’ Then Rm
is an (£ — ¢;;)-path of H between X; and X We show that for each p € [t], X contams
no inner vertex of R[” When £ — ¢;; =1, R[eJ contains no inner vertex. Now assume

Z — Z,] > 2. Each inner vertex of Rl ‘] corresponds to some Q;; := [L (s, 2). P,] L “, L+

—sp)] € Zi(G), where ¢;; + 1 <s; <€ —1. Assume for a contradiction that for
some p € [t], X, contains a vertex correspondlng to Q;;. By definition there exists g € [¢]
such that Q;; = [Ep(s,,, Z)P;,q (0, sp)], where 0 < s, < £,,. Without loss of generality,
(Li(si, €).P.Li(6, £+ Lij — 5,)) = (Ly(sp, £).Pry (0, 5,)). Since e; and e, are not in P,
hence ¢€;; belongs to —Ep and ¢}, belongs to —L ;- By the definition of L;, this happens only
when j = p’ and p = j/, contradicting ¢ > 3.

We now show that R}jﬁj and R%J are internally disjoint, where i # j, p # q and {i, j} #
{p, q}. Suppose not. Then by the analysis above, there are s; and s, with £;; +1 <
si<f—1and £, +1<s,<{—1 such that Q;; = Q,,. Without loss of generality,
(Li(si, 0).P.Li (6, €+ £i; — 50)) = (Ly(sp, £).Poy.Ly(€, £ + £,y — 5,)). If 5, =5, then
e;=¢,and ¢; = ¢, since E(X)NE(X,Y) =@; thatis, i = pand j = g, contradicting
{z Jj} # {p, q}. Otherwise, with no loss of generality, s; > s,. Then ¢, and ¢; belong to
L and L,,, respectively; that is, i = p and j = ¢, again contradicting {i, j} # {p, q}.

In summary, X, ..., X; are vertex-disjoint connected subgraphs, which are pairwise
connected by internally disjoint *-links Rl[][.] of H, such that no inner vertex of R%] is in

V(X)) U---UV(X;).So by contracting each X; to a vertex, and RZL‘?J to an edge, we obtain
a K;-minor of H. ' [ |

Lemma 5.2. Let ¢ > 1, G be a graph, and X be a subgraph of G with diam(X) < £
such that Y := G — V(X) is connected and contains a cycle. Let t == |E(X,Y)|. Then
L¢(G) contains a K, -minor.

Proof. Let Obeacycle of Y. Then H := IL;(G) contains a cycle L., (O) and hence
a Kr-minor. Now assume ¢t > 2. Let €], ..., & be distinct arcs in E(Y,X). Say ¢; =
(i, e;, x;) for i € [t]. Since Y is connected, there is a dipath 15; of Y of minimum length
s; = 0 from some vertex z; of O to y;. Let Qi be an £-arc of O with head vertex z;. Then
L= (0.P.&)(si+ 1, € +5;+ 1) € Z(G). Since diam(X) < £ — 1, there is a dipath
ﬁi/ of X of length £;; < £ — 1 from x; to x; such that P;; = Pj;.

Clearly, (L;.P j][ﬂ is an {;;-link of H. And the union of the units of (L;.P j]IZ]
over j € [t] induces a connected subgraph X; of H. For different i, j € [7], let R;; :=
[Li(Lij. €).P;.Li(L, €;))] = Rj; € 5, (G). Then RV is an (£ — £;)-path of H between
X; and X;. As in the proof of Lemma 5. 1 it is easy to check that X, ..., X; are vertex-
disjoint connected subgraphs of H, which are pairwise connected by internally disjoint
paths R%J. Further, no inner vertex of R%J isinV(X;)U---UV(X;). So a K;,-minor of H
is obtained accordingly.

Finally, let Z be the connected subgraph of H induced by the units of L,(O) and
[0;.P]Y overi € [1]. Then Z is vertex-disjoint with X; and with the paths Rl[f]. Moreover,

Z sends an edge (0;.P..&) (si, £ + s; + 1)) to each X;. Thus H contains a K, ;-minor.H
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In the following, we use the “hub” (described after Lemma 3.7) to construct certain
minors in £-link graphs.

Corollary 5.3. Let £ > 0, G be a graph, M be a minor of G(£) such that each branch
set contains an L-link. Then 1L, (G) contains an M-minor.

Proof. LetXi,...,X, bethe branch sets of an M-minor of G(£) such that X; contains
an £-link for each i € [¢]. For any connected subgraph Y of G(£) contains at least one
£-link, let L, (G, Y) be the subgraph of H := LL;(G) induced by the £-links of G of which
the middle units are in Y. Let H (Y') be the union of the components of L, (G, Y), which
contains at least one vertex corresponding to an £-link of Y. By Lemma 3.7, H(Y) is
connected.

By definition each edge of M corresponds to an edge e of G(£) between two different
branch sets, say X; and X;. Let Y be the graph consisting of X;, X;, and e. Then H (X;)
and H (X;) are vertex-disjoint since X; and X; are vertex-disjoint. By the analysis above,
H (X;) and H (X;) are connected subgraphs of the connected graph H (Y'). Thus there is a
path Q of H(Y) joining H (X;) and H(X;) only at end vertices. Further, if £ is even, then
Q is an edge; otherwise, Q is a 2-path whose middle vertex corresponds to an £-link L of
Y such that ¢, = e. This implies that Q is internally disjoint with its counterparts and has
no inner vertex in any branch set. Then, by contracting each H (X;) to a vertex, and Q to
an edge, we obtain an M-minor of H. |

Now we are ready to give a lower bound for the Hadwiger number of L, (G).

Proof of Theorem 1.3.  Since H := L, (G) contains an edge,  := n(H) > 2. We first
show thatt > d := d(G). By definition there exists a subgraph X of G with 6 (X) = d. We
may assume thatd > 3 and ¢ > 2. Then X contains an (¢ — 1)-arc P = (u,e, ..., f,v).
Since the degree of u in X is at least d, there are d — 1 distinct arcs e, ..., &, of X
with head vertex u such that ¢; # e for i € [d — 1]. Similarly, there are d — 1 distinct arcs
f_i, el ﬁ},l of X with tail vertex v such that f; # ffor j € [d — 1]. Then the ¢-link L; :=
[e‘}.}_"] can be shunted to the £-link R; := [ﬁ.f/] through the (£ + 1)-link Q;; := [e‘}.ﬁ.fj].
So H contains a K;_; 4—;-subgraph with bipartition {L;|i € [d — 1]} U {R|j € [d — 1]}
and edge set {Q;;li, j € [d — 1]}. By Zelinka [25], K;— 4—1 contains a K;-minor. Thus
t > d as desired.

We now show that t > n := n(G). If n = 3, then G contains a cycle O of length at
least 3, and H contains a K3-minor contracted from IL,(O). Now assume that G is
connected with n > 4. Repeatedly delete vertices of degree 1 in G until 6(G) > 2. Then
G = G(¥). Clearly, this process does not reduce the Hadwiger number of G. So G contains
branch sets of a K,,-minor covering V (G) (see [24]). If every branch set contains an £-link,
then the statement follows from Corollary 5.3. Otherwise, there exists some branch set
X with diam(X) < £. Since n > 4, Y := G — V(X) is connected and contains a cycle.
Thus by Lemma 5.2, H contains a K,-minor since |[E(X,Y)| > n — 1. |

Here we prove Hadwiger’s conjecture for L, (G) for even £ > 2.

Proof of Theorem 1.5(2). Letd :=d(G),£¢ > 2beaneveninteger,and H := L, (G).
By [7, Proposition 5.2.2], x := x(G) < d + 1. So by Theorem 1.1, x (H) < min{d +
1,2d + %}. If d < 4, then x (H) < 5. By Robertson et al. [17], Hadwiger’s conjecture
holds for H in this case. Otherwise, d > 5. By Theorem 1.3, n(H) > d > %d + % >
x (H) and the statement follows. |
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We end this article by proving Hadwiger’s conjecture for £-link graphs of biconnected
graphs for ¢ > 1.

Proof of Theorem 1.5(1). By Reed and Seymour [16], Hadwiger’s conjecture holds
for H := L;(G) for £ = 1. By Theorem 1.5(2), the conjecture is true if £ > 2 is even. So
we only need to consider the situation that £ > 3 is odd. If G is a cycle, then H is a cycle
and the conjecture holds [10]. Now let v be a vertex of G with degree A := A(G) > 3.
By Theorem 1.1, x (H) < A + 1. Since G is biconnected, Y := G — v is connected. By
Lemma 5.2, if Y contains a cycle, then n(H) > A + 1 > x(H). Now assume that Y is
a tree, which implies that G is Ky-minor free. By Lemma 5.1, n(H) > A. By Theorem
1.1, x(H) < x' := x/(G). So it is enough to show that ' = A.

Let U :={ue V()| degy(u) < 1}. Then |U| > A(Y). Let G be the underlying
simple graph of G, 7 :=degs(v) > 1 and A :=A(G) > 1. Since G is biconnected,
UCNg(v). Sot > Ul = A(Y). Let u e U. When |U| =1, r = degs(u) = 1. When
Ul =2, degs(u) =2 < |U| <t. Thus t = A. Juvan et al. [14] proved that the edge-
chromatic number of a K;-minor free simple graph equals the maximum degree of this
graph. So ¥’ := X/(é) — A since G is simple and K,-minor free. Note that all parallel
edges of G are incident tov. So x' = x' + deg;(v) —t = A+ A — A= Aasdesired®
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