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1. Introduction

Irreducible triangulations are the building blocks of graphs embedded in surfaces, in the sense
that every triangulation can be constructed from an irreducible triangulation by vertex splitting. Yet
there are only finitely many irreducible triangulations of each surface, as proved by Barnette and Edel-
son [4,5]. Applications of irreducible triangulations include geometric representations [2,6], generating
triangulations [16,17,20,24], diagonal flips [9,13,22], flexible triangulations [7], and an extremal prob-
lem regarding cliques in graphs on surfaces [11]. In this paper, we prove the best known upper bound
on the order of an irreducible triangulation of a surface.

For background on graph theory see [10]. We consider simple, finite, undirected graphs. To contract
an edge v w in a graph means to delete v w , identify v and w , and replace any parallel edges by
a single edge. The inverse operation is called vertex splitting. Let G be a graph. For a vertex v ∈ V (G),
let NG(v) := {w ∈ V (G): v w ∈ E(G)} and let G v be the subgraph of G induced by {v} ∪ NG(v). For
A ⊆ V (G), let NG(A) := ⋃{NG(v): v ∈ A}. Let e(A) be the number of edges in G with both endpoints
in A. For A, B ⊆ V (G), let e(A, B) be the number of edges in G with one endpoint in A and one
endpoint in B . For v ∈ V (G), let e(v, B) := e({v}, B).
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For background on graphs embedded in surfaces see [19]. Every surface is homeomorphic to Sg ,
the orientable surface with g handles, or to Nh , the non-orientable surface with h crosscaps. The
Euler genus of Sg is 2g . The Euler genus of Nh is h. The Euler genus of a graph G , denoted by eg(G),
is the minimum Euler genus of a surface in which G embeds. A triangulation of a surface Σ is a
2-cell embedding of a graph in Σ , such that each face is bounded by three edges, and each pair of
faces shares at most one edge. A triangulation G of Σ is irreducible if there is no edge in G whose
contraction produces another triangulation of Σ . Equivalently, for Σ �= S0, a triangulation G of Σ is
irreducible if and only if every edge of G is in a triangle that forms a non-contractible cycle in Σ [19].

Recall that there are finitely many irreducible triangulations of each surface. For example, K4 is the
only irreducible triangulation of the sphere S0 [23], while K6 and K7 − E(K3) are the only irreducible
triangulations of the projective plane N1 [3]. The complete list of irreducible triangulations has also
been computed for the torus S1 [14], the double torus S2 [24], the Klein bottle N2 [15,26], as well
as N3 and N4 [24]. Gao, Richmond and Thomassen [12] proved the first explicit upper bound on the
order of an irreducible triangulation of an arbitrary surface. In particular, every irreducible triangu-
lation of a surface with Euler genus g � 1 has at most (12g + 18)4 vertices. Nakamoto and Ota [21]
improved this bound to 171g − 72, which prior to this paper was the best known upper bound on
the order of an irreducible triangulation of an arbitrary surface. In the case of orientable surfaces,
Cheng et al. [8] improved this bound to 120g . We prove:

Theorem 1. Every irreducible triangulation of a surface with Euler genus g � 1 has at most 13g − 4 vertices.

The largest known irreducible triangulations of Sg and of Nh respectively have � 17
2 g� and � 11

2 h�
vertices [25]. Thus the upper bound in Theorem 1 is within a factor of 26

11 of optimal.

2. Background lemmas

At the heart of our proof, and that of Nakamoto and Ota [21], is the following lemma indepen-
dently due to Archdeacon [1] and Miler [18]. Two graphs are compatible if they have at most two
vertices in common.

Lemma 2. (See [1,18].) If G and H are compatible graphs, then

eg(G ∪ H) � eg(G) + eg(H).

Nakamoto and Ota [21] proved:

Lemma 3. (See [21].) Let G be an irreducible triangulation of a surface with positive Euler genus. Then G has
minimum degree at least 4. Moreover, for every vertex v of G, the subgraph G v has minimum degree at least 4
and eg(G v ) � 1.

The following definition and lemma is implicit in [21]. An independent set S of a graph G is
ordered if either S = ∅, or S contains a vertex v such that S −{v} is ordered, and G v and

⋃{G w : w ∈
S − {v}} are compatible. Lemmas 2 and 3 then imply:

Lemma 4. (See [21].) Let G be an irreducible triangulation of a surface with positive Euler genus. If S is an
ordered independent set of G, then

eg(G) � eg
( ⋃

v∈S

G v

)
� |S|.
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3. A simple proof

In this section we give a simple proof that every irreducible triangulation of a surface with Euler
genus g � 1 has at most 25g − 12 vertices. The constant 25, while greater than the constant in
Theorem 1, is still less than the constant in previous results. The proof follows the approach developed
by Nakamoto and Ota [21] (using Lemma 4). This section also serves as a helpful introduction to the
more complicated proof of Theorem 1 to come.

Let G be an irreducible triangulation of a surface with Euler genus g � 1. Let S be a maximal
ordered independent set in G such that degG(v) � 6 for all v ∈ S . Define

N := NG(S),

A := {
v ∈ V (G) − (S ∪ N): e(v, N) � 3

}
,

Z := {
v ∈ V (G) − (S ∪ N): e(v, N) � 2

}
.

Thus {S, N, A, Z} is a partition of V (G).
Suppose that degG(v) � 6 for some vertex v ∈ Z . Since v /∈ NG(S), the set S ∪ {v} is independent.

Since e(v, N) � 2, the subgraphs G v and
⋃{G w : w ∈ S} are compatible. Since S is ordered, S ∪ {v} is

ordered. Hence S ∪ {v} contradicts the maximality of S . Now assume that degG(v) � 7 for all v ∈ Z .
Thus

7|Z | �
∑
v∈Z

degG(v) = e(N, Z) + e(A, Z) + 2e(Z). (1)

By Lemma 3, each vertex in A has degree at least 4, implying

4|A| �
∑
v∈A

degG(v) = e(N, A) + e(A, Z) + 2e(A). (2)

By the definition of A,

3|A| �
∑
v∈A

e(v, N) = e(N, A). (3)

By Euler’s formula applied to G ,

e(S, N) + e(N) + e(N, A) + e(N, Z) + e(A) + e(A, Z) + e(Z)

= ∣∣E(G)
∣∣ = 3

(∣∣V (G)
∣∣ + g − 2

) = 3
(|S| + |N| + |A| + |Z | + g − 2

)
. (4)

Summing (1), (2), (3) and 2 × (4) gives

|A| + |Z | + 2e(S, N) + 2e(N) + e(N, Z) � 6|S| + 6|N| + 6(g − 2).

Every vertex in N has a neighbour in S . Thus e(S, N) � |N|. By Lemma 3, G[N] has minimum degree
at least 3, and thus 2e(N) � 3|N|. Since e(N, Z) � 0,

|N| + |A| + |Z | � 6|S| + 2|N| + 6(g − 2).

Since every vertex in S has degree at most 6, we have |N| � 6|S|. Thus

∣∣V (G)
∣∣ = |S| + |N| + |A| + |Z | � 19|S| + 6(g − 2).

By Lemma 4, |S| � eg(G) � g . Therefore |V (G)| � 25g − 12.
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4. Proof of Theorem 1

The proof of Theorem 1 builds on the proof in Section 3 by:

• introducing a more powerful approach than Lemma 4 for applying Lemma 2, thus enabling
Lemma 2 to be applied to subgraphs with Euler genus possibly greater than 1 (whereas Lemma 4
applies Lemma 2 to subgraphs with Euler genus equal to 1);

• choosing an independent set S more carefully than in Section 3 so that low-degree vertices are
heavily favoured in S;

• partitioning V (G) into the similar sets S, N, A, Z as in Section 3, and further partitioning S and A
according to the vertex degrees;

• introducing multiple partitions of N , one for each value of the degree of a vertex in S .

First we introduce a key definition. Let T be a binary tree rooted at a node r; that is, every non-
leaf node of T has exactly two child nodes. Let L(T ) be the set of leaves of T . For each node x of T ,
let T [x] be the subtree of T rooted at x. Suppose that each leaf u ∈ L(T ) is associated with a given
subgraph G〈u〉 of some graph G . For each non-leaf node x of T , define

G〈x〉 :=
⋃

u∈L(T [x])
G〈u〉.

Thus G〈x〉 = G〈a〉 ∪ G〈b〉, where a and b are the children of x. The pair (T , {G〈u〉: u ∈ L(T )}) is
a tree representation in G if G〈a〉 and G〈b〉 are compatible for each pair of nodes a and b with a
common parent x. In this case, eg(G〈x〉) � eg(G〈a〉)+eg(G〈b〉) by Lemma 2. This implies the following
strengthening of Lemma 4.

Lemma 5. If (T , {G〈u〉: u ∈ L(T )}) is a tree representation in G, then

eg(G) �
∑

u∈L(T )

eg
(
G〈u〉).

Let S be a set of vertices in a graph G . A tree representation (T , {G〈u〉: u ∈ L(T )}) in G respects S
if L(T ) = S and G〈u〉 = Gu for each u ∈ S; henceforth denoted (T , {Gu: u ∈ S}).

Let G be an irreducible triangulation of a surface with Euler genus g � 1. By Lemma 3, G has
minimum degree at least 4. Let S be an independent set of G such that degG(v) � 9 for all v ∈ S . For
i ∈ [4,9], define

Si := {
v ∈ S: degG(v) = i

}
,

Ŝ i := S4 ∪ · · · ∪ Si = {
v ∈ S: degG(v) � i

}
, and

Hi :=
⋃
v∈ Ŝ i

G v .

Observe that H4 ⊆ H5 ⊆ · · · ⊆ H9. We say that S is good if there is a tree representation
(T , {Gu: u ∈ S}) respecting S such that for all i ∈ [4,9], for every component X of Hi , there is a
node x ∈ V (T ) such that

L
(
T [x]) = Ŝ i ∩ V (X) and X = G〈x〉.

Note that these two conditions are equivalent.
For each good independent set S of G , let φ(S) be the vector (|S4|, |S5|, . . . , |S9|). Define

(a4, . . . ,a9) � (b4, . . . ,b9) if there exists j ∈ [4,8] such that ai = bi for all i ∈ [4, j], and a j+1 > b j+1.
Thus � is a linear ordering. Hence there is a good independent set S such that φ(S) � φ(S ′) for every
other good independent set S ′ . Fix S throughout the remainder of the proof, and let (T , {G v : v ∈ S})
be a tree representation respecting S .
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Fig. 1. Construction of T ′ .

Lemma 6. Let i ∈ [4,9]. Suppose that v is a vertex in G − V (Hi), such that degG(v) � i. Then v has at least
three neighbours in some component of Hi .

Proof. Suppose on the contrary that v has at most two neighbours in each component of Hi . Let
j := degG(v). We now prove that S ′ := Ŝ j ∪ {v} is a good independent set.

Say the components of H j are X1, . . . , X p , where X1, . . . , Xq are the components of H j that in-
tersect NG(v). For � ∈ [1, p], the component X� is a subgraph of some component of Hi . Thus v has
at most two neighbours in X� . That is, G v and X� are compatible. By assumption, for each � ∈ [1, p],
there is a node x� ∈ V (T ) such that L(T [x�]) = Ŝ j ∩ V (X�) and X� = G〈x�〉. Thus T [x�] ∩ T [xk] = ∅ for
distinct �,k ∈ [1, p].

Let T ′ be the tree obtained from the forest
⋃{T [x�]: � ∈ [1, p]} by adding a path (v, y1, . . . , yp),

where each y� is adjacent to x� . Root T ′ at yp , as illustrated in Fig. 1. Observe that

L
(
T ′) =

⋃
�∈[1,p]

L
(
T [x�]

) ∪ {v} =
⋃

�∈[1,p]

(
Ŝ j ∩ V (X�)

) ∪ {v} = Ŝ j ∪ {v} = S ′.

Let G〈u〉 := Gu for each leaf u ∈ L(T ′). Thus G〈x�〉 = X� in T ′ , and associated with the node y� is
the subgraph G〈y�〉 = ⋃{Xk: k ∈ [1, �]} ∪ G v . The children of y1 are x1 and v , and for � ∈ [2, p],
the children of y� are x� and y�−1. Since v has at most two neighbours in X� , and since (X1 ∪
· · · ∪ X�−1) ∩ X� = ∅, the subgraphs G〈y�−1〉 and G〈x�〉 are compatible.

Define H ′
4, . . . , H ′

9 with respect to S ′ . We must prove that for each k ∈ [4,9] and for each compo-
nent X of H ′

k , there is a node z ∈ V (T ′) such that X = G〈z〉.

First suppose that k ∈ [ j,9]. Since every vertex in S ′ has degree at most j, we have Ŝ ′
k = Ŝ ′

j . Thus
H ′

k = H ′
j , and each component X of H ′

k is a component of H ′
j . Hence, either X = X1 ∪ · · · ∪ Xq ∪ G v ,

or X = X� for some � ∈ [q + 1, p]. In the first case, X = G〈yq〉. In the second case, X = G〈x�〉.
Now suppose that k ∈ [4, j − 1]. Thus S ′

k = Sk and H ′
k = Hk . Each component X of H ′

k is a subset
of X� for some � ∈ [1, p], and there is a node z ∈ T [x�] ⊆ T ′ such that X = G〈z〉.

This proves that (T ′, {Gu: u ∈ S ′}) is a tree representation respecting S ′ . Thus S ′ is a good indepen-
dent set. Moreover, φ(S ′) = (|S4|, . . . , |S j−1|, |S j| + 1,0, . . . ,0). Thus φ(S ′) � φ(S). This contradiction
proves that v has at least three neighbours in some component of Hi . �
4.1. Properties of the neighbourhood of S

Recall that S is a good independent set such that φ(S) � φ(S ′) for every other good independent
set S ′ . First note that Lemmas 3 and 5 imply:
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g � eg(G) �
∑
u∈S

eg(Gu) � |S|. (5)

Partition N := NG(S) as follows. For i ∈ [4,9], define

Ui := NG( Ŝ i),

Yi := N − Ui,

V i := {
v ∈ Yi: degG(v) � i

}
, and

W i := {
v ∈ Yi: degG(v) � i + 1

}
.

Thus {Ui, Yi} and {Ui, V i, W i} are partitions of N (for each i ∈ [4,9]). Also note that U4 ⊆ U5 ⊆
· · · ⊆ U9, and Hi = ⋃{G v : v ∈ Ŝ i} is a spanning subgraph of G[ Ŝ i ∪ Ui]. Each vertex in N has at least
one neighbour in S , and each vertex in Si has i neighbours in N . Thus

|N| � e(S, N) =
∑

i∈[4,9]
i|Si|. (6)

For i ∈ [5,9], each vertex in Ui − Ui−1 has at least one neighbour in Si , and each vertex in Si has at
most i neighbours in Ui − Ui−1. Thus

|Ui | � |Ui−1| + i|Si |. (7)

For i ∈ [4,9], let ci be the number of components of Hi . Thus∑
j∈[4,i]

j|S j| �
∣∣E(Hi)

∣∣ �
∣∣V (Hi)

∣∣ − ci = |Ui| + | Ŝ i| − ci .

Hence

|Ui | � ci +
∑

j∈[4,i]
( j − 1)|S j|. (8)

Consider a vertex v ∈ Ui for some i ∈ [4,9]. Thus v is adjacent to some vertex w ∈ Ŝ i . It follows from
Lemma 3 that G[NG(w)] has minimum degree at least 3. In particular, v has at least three neighbours
in NG(w), which is a subset of Ui . Thus

3|Ui | �
∑
v∈Ui

e(v, Ui) = 2e(Ui). (9)

Consider a vertex v ∈ V i for some i ∈ [4,9]. Thus v is in G − V (Hi) and degG(v) � i. By Lemma 6,
v has at least three neighbours in Hi , implying e(v, Ui) � 3 since NG(v) ∩ Ŝ i = ∅. Hence for i ∈ [4,9],

3|V i | �
∑
v∈V i

e(v, Ui) = e(Ui, V i) � e(Ui, Yi). (10)

4.2. Beyond the neighbourhood of S

As in Section 3, partition V (G) − (S ∪ N) as

A := {
v ∈ V (G) − (S ∪ N): e(v, N) � 3

}
and

Z := {
v ∈ V (G) − (S ∪ N): e(v, N) � 2

}
.

Thus {S, N, A, Z} is a partition of V (G). Further partition A as follows. For i ∈ [4,9], let

Ai := {
v ∈ A: degG(v) = i

}
, and let

A10 := {
v ∈ A: degG(v) � 10

}
.
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Thus {A4, . . . , A10} is a partition of A. For i ∈ [4,9], let

Âi := A4 ∪ · · · ∪ Ai .

Consider a vertex v ∈ A ∪ Z such that i = degG(v) ∈ [4,9]. By Lemma 6, v has at least three
neighbours in Hi , implying e(v, N) � 3 since NG(v) ∩ S = ∅. Thus v ∈ A. Hence degG(v) � 10 for
every vertex v ∈ Z . Since NG(Z) ⊆ A ∪ Z ∪ N ,

10|Z | �
∑
v∈Z

degG(v) = 2e(Z) + e(N, Z) + e(A, Z). (11)

Since NG(A) ⊆ A ∪ Z ∪ N ,∑
i∈[4,10]

i|Ai| �
∑
v∈A

degG(v) = 2e(A) + e(N, A) + e(A, Z). (12)

4.3. Global inequalities

Let i ∈ [4,9]. Consider the sum of the degrees of the vertices in Yi . Each vertex in V i has degree
at least 4, and each vertex in W i has degree at least i + 1. Each neighbour of a vertex in Yi is in
Si+1 ∪ · · · ∪ S9 ∪ Ui ∪ Yi ∪ A ∪ Z . Hence

4|V i| + (i + 1)|W i| �
∑
v∈Yi

degG(v)

� e(Yi, Si+1 ∪ · · · ∪ S9) + e(Ui, Yi) + 2e(Yi) + e(N, Z) + e(Yi, A)

�
∑

j∈[i+1,9]
j|S j| + e(Ui, Yi) + 2e(Yi) + e(N, Z) + e(N, A) − e(Ui, A).

Consider a vertex v ∈ Âi . Thus v is in G − V (Hi) and degG(v) � i. By Lemma 6, v has at least three
neighbours in some component of Hi , implying e(v, Ui) � 3 since NG(v) ∩ S = ∅. Thus

3| Âi| �
∑
v∈ Âi

e(v, Ui) � e(Ui, A).

Hence

4|V i| + (i + 1)|W i| + 3| Âi| �
∑

j∈[i+1,9]
j|S j| + e(Ui, Yi) + 2e(Yi) + e(N, Z) + e(N, A). (13)

As proved above, each vertex in Âi has at least three neighbours in some component of Hi . Let
X1, . . . , Xci be the components of Hi . Let {D1, . . . , Dci } be a partition of Âi such that for each � ∈
[1, ci], each vertex in D� has at least three neighbours in X� . Let B� be the bipartite subgraph of G
with parts ( Ŝ i ∩ V (X�)) ∪ D� and V (X�) ∩ Ui .

Let (T , {Gu: u ∈ S}) be a tree representation respecting S . For each � ∈ [1, ci], there is a node x�

in T such that G〈x�〉 = X� . Let T ′ be the tree obtained from T by replacing each subtree T [x�] by
the single node x� . Thus x� is a leaf in T ′ . Redefine G〈x�〉 := B� . Every other leaf in T ′ is a vertex in
S − Ŝ i . Thus L(T ′) = (S − Ŝ i) ∪ {x�: � ∈ [1, ci]}. For each u ∈ S − Ŝ i , leave G〈u〉 = Gu unchanged. Now
D� ∩ Dk = ∅ for distinct �,k ∈ [1, ci], and Gu ∩ D� = ∅ for all u ∈ S − Ŝ i . Thus (T ′, {G〈u〉: u ∈ L(T ′)})
is a tree representation in G . By Lemma 5,

g � eg(G) �
∑

u∈L(T ′)
eg

(
G〈u〉) =

∑
u∈S− Ŝ i

eg(Gu) +
∑

�∈[1,ci]
eg(B�).

By Lemma 3, eg(Gu) � 1 for all u ∈ S − Ŝ i . Euler’s formula applied to the bipartite graph B� implies
that |E(B�)| � 2(|V (B�)| + eg(B�) − 2). Thus
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g � |S − Ŝ i | +
∑

�∈[1,ci]

(
1

2

∣∣E(B�)
∣∣ − ∣∣V (B�)

∣∣ + 2

)
.

Since B� ∩ Bk = ∅ for distinct �,k ∈ [1, ci], and
⋃{V (B�): � ∈ [1, ci]} = Ŝ i ∪ Ui ∪ Âi ,

g � |S − Ŝ i | −
(| Ŝ i | + |Ui| + | Âi|

) + 2ci + 1

2

∑
�∈[1,ci]

∣∣E(B�)
∣∣.

Each vertex in Âi is incident to at least three edges in some B� . Thus∑
�∈[1,ci ]

∣∣E(B�)
∣∣ � 3| Âi| + e( Ŝ i, Ui) = 3| Âi| +

∑
j∈[4,i]

j|S j|.

Hence

g � |S − Ŝ i| −
(| Ŝ i| + |Ui| + | Âi|

) + 2ci + 3

2
| Âi| + 1

2

∑
j∈[4,i]

j|S j|

= |S| − |Ui| + 1

2
| Âi| + 2ci + 1

2

∑
j∈[4,i]

( j − 4)|S j|. (14)

At this point, the reader is invited to check, using their favourite linear programming software,
that inequalities (3)–(14) and the obvious equalities imply that |V (G)| � 13g − 24

7 . (Also note that
removing any one of these inequalities leads to a worse bound.) What follows is a concise proof of
this inequality, which we include for completeness.

4.4. Summing the inequalities

The notation (x.y) refers to the inequality with label (x), taken with i = y. (For instance, (8.4)
stands for inequality (8) with i = 4.)

Summing 4 × (8.4), 8 × (8.5), 4 × (8.7), 4 × (14.4), 4 × (14.5), and 2 × (14.7), and since c4 � 0,

4|U5| + 2|U7| + 5|A4| + 3|A5| + |A6| + |A7| + 10|S8| + 10|S9|
� 38|S4| + 35|S5| + 8|S6| + 11|S7| + 10g. (15)

Summing 2 × (9.6), 4 × (9.8), 2 × (10.6), 5 × (10.8), 2 × (13.6), and 3 × (13.8) yields

6|U6| + 12|U8| + 14|V 6| + 27|V 8| + 14|W6| + 27|W8| + 15|A4| + 15|A5|
+ 15|A6| + 9|A7| + 9|A8|

� 14|S7| + 16|S8| + 45|S9| + 4e(U6) + 8e(U8) + 4e(U6, Y6) + 8e(U8, Y8) + 4e(Y6)

+ 6e(Y8) + 5e(N, Z) + 5e(N, A).

Since 6e(Y8) � 8e(Y8) and e(N) = e(Ui) + e(Ui, Yi) + e(Yi) for i = 6 and 8, the above inequality
becomes

6|U6| + 12|U8| + 14|V 6| + 27|V 8| + 14|W6| + 27|W8| + 15|A4| + 15|A5| + 15|A6|
+ 9|A7| + 9|A8|

� 14|S7| + 16|S8| + 45|S9| + 12e(N) + 5e(N, Z) + 5e(N, A). (16)

Summing 12 × (7.6), 5 × (7.7), and 11 × (7.8) gives

7|U6| + 11|U8| � 12|U5| + 6|U7| + 72|S6| + 35|S7| + 88|S8|. (17)
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Summing (16) and (17), and since |N| = |Ui | + |V i| + |W i | for i = 6 and 8, we obtain

36|N| + |V 6| + 4|V 8| + |W6| + 4|W8| + 15|A4| + 15|A5| + 15|A6| + 9|A7| + 9|A8|
� 12|U5| + 6|U7| + 72|S6| + 49|S7| + 104|S8| + 45|S9| + 12e(N) + 5e(N, Z) + 5e(N, A).

Since trivially |V 6| + 4|V 8| + |W6| + 4|W8| � 0 and e(N, Z) � 0, the previous inequality implies

36|N| + 15|A4| + 15|A5| + 15|A6| + 9|A7| + 9|A8|
� 12|U5| + 6|U7| + 72|S6| + 49|S7| + 104|S8| + 45|S9| + 12e(N)

+ 6e(N, Z) + 5e(N, A). (18)

Summing (3), 6 × (11) and 6 × (12) gives

3|A| + 6
∑

j∈[4,10]
j|A j| + 60|Z | � 12e(A) + 7e(N, A) + 12e(A, Z) + 12e(Z) + 6e(N, Z). (19)

Since |A| = ∑
i∈[4,10] |Ai |, summing 3 × (15) with (18) and (19) gives

57|A| + 3|A8| + 6|A10| + 36|N| + 60|Z |
� 114|S4| + 105|S5| + 96|S6| + 82|S7| + 74|S8| + 15|S9|

+ 12e(N) + 12e(A) + 12e(Z) + 12e(N, Z) + 12e(N, A) + 12e(A, Z) + 30g. (20)

Summing 12 × (4) with (20) and since e(S, N) = ∑
i∈[4,9] i|Si|, we next obtain

2|S7| + 22|S8| + 93|S9| + 57|A| + 3|A8| + 6|A10| + 36|N| + 60|Z |
� 66|S4| + 45|S5| + 24|S6| + 36

∣∣V (G)
∣∣ + 66g − 72.

Combining this with 4|S8| + 54|S9| + 3|A8| + 6|A10| + 3|Z | � 0, it follows that

2|S7| + 18|S8| + 39|S9| + 57|A| + 36|N| + 57|Z |
� 66|S4| + 45|S5| + 24|S6| + 36

∣∣V (G)
∣∣ + 66g − 72. (21)

Summing 21 × (6) with (21) and since |S| = ∑
i∈[4,9] |Si |, we derive

5|S7| + 57|A| + 57|N| + 57|Z | � 150|S| + 36
∣∣V (G)

∣∣ + 66g − 72.

Since 5|S7| � 0 and |V (G)| = |S| + |N| + |A| + |Z |, we obtain

21
∣∣V (G)

∣∣ � 207|S| + 66g − 72. (22)

Summing 207 × (5) with (22) gives 21|V (G)| � 273g − 72. That is, |V (G)| � 13g − 24
7 , as claimed.

To conclude the proof of Theorem 1, note that 24
7 > 3, implying that |V (G)| � 13g − 4 since |V (G)|

and g are both integers.

References

[1] Dan Archdeacon, The nonorientable genus is additive, J. Graph Theory 10 (3) (1986) 363–383, http://dx.doi.org/10.1002/
jgt.3190100313.

[2] Dan Archdeacon, C. Paul Bonnington, Joanna A. Ellis-Monaghan, How to exhibit toroidal maps in space, Discrete Comput.
Geom. 38 (3) (2007) 573–594, http://dx.doi.org/10.1007/s00454-007-1354-3.

[3] David W. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (3) (1982) 222–230,
http://dx.doi.org/10.1016/0095-8956(82)90041-7.

[4] David W. Barnette, Allan L. Edelson, All orientable 2-manifolds have finitely many minimal triangulations, Israel J.
Math. 62 (1) (1988) 90–98, http://dx.doi.org/10.1007/BF02767355.

[5] David W. Barnette, Allan L. Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1) (1989)
123–128, http://dx.doi.org/10.1007/BF02764905.

http://dx.doi.org/10.1002/jgt.3190100313
http://dx.doi.org/10.1002/jgt.3190100313
http://dx.doi.org/10.1007/s00454-007-1354-3
http://dx.doi.org/10.1016/0095-8956(82)90041-7
http://dx.doi.org/10.1007/BF02767355
http://dx.doi.org/10.1007/BF02764905


G. Joret, D.R. Wood / Journal of Combinatorial Theory, Series B 100 (2010) 446–455 455
[6] C. Paul Bonnington, Atsuhiro Nakamoto, Geometric realization of a triangulation on the projective plane with one face
removed, Discrete Comput. Geom. 40 (1) (2008) 141–157, http://dx.doi.org/10.1007/s00454-007-9035-9.

[7] Beifang Chen, Serge Lawrencenko, Structural characterization of projective flexibility, Discrete Math. 188 (1–3) (1998) 233–
238, http://dx.doi.org/10.1016/S0012-365X(98)00052-1.

[8] Siu-Wing Cheng, Tamal K. Dey, Sheung-Hung Poon, Hierarchy of surface models and irreducible triangulations, Comput.
Geom. 27 (2) (2004) 135–150, http://dx.doi.org/10.1016/j.comgeo.2003.07.001.

[9] Carmen Cortés, Atsuhiro Nakamoto, Diagonal flips in outer-Klein-bottle triangulations, Discrete Math. 222 (1–3) (2000)
41–50, http://dx.doi.org/10.1016/S0012-365X(00)00004-2.

[10] Reinhard Diestel, Graph Theory, 2nd edition, Grad. Texts in Math., vol. 173, Springer, 2000, http://diestel-graph-theory.com/
index.html.
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