THE BIG-LINE-BIG-CLIQUE CONJECTURE IS FALSE FOR INFINITE POINT SETS

ATTILA PÓR AND DAVID R. WOOD

Let P be a finite set of points in the plane. Two distinct points v and w in the plane are visible with respect to P if no point in P is in the open line segment $\overline{v w}$. Kára et al. (4) made the following Ramsey-theoretic conjecture, which has recently received considerable attention [1 6].
Big-Line-Big-Clique Conjecture [4] For all $k \geq 2$ and $\ell \geq 2$ there is an integer n such that every finite set of at least n points in the plane:

- contains ℓ collinear points, or
- contains k pairwise visible points.

This conjecture is true for $k \leq 5$ or $\ell \leq 3$ [1, 2, [4], and is open for $k=6$ or $\ell=4$. Note that the natural approach for attacking this conjecture using extremal graph theory fails [6]. Another natural approach for attacking the Big-Line-Big-Clique Conjecture is to follow an infinitary compactness argument (which can be used to establish many results in Ramsey theory). The purpose of this note is to show that this conjecture is false for infinite point sets, which suggests that an infinitary compactness argument cannot work.

Theorem 1. There is a countably infinite point set with no 4 collinear points and no 3 pairwise visible points.
Proof. Let x_{1}, x_{2}, x_{3} be three non-collinear points in the plane. Given points x_{1}, \ldots, x_{n-1}, define x_{n} as follows. By the Sylvester-Gallai theorem, there is a line through exactly two of x_{1}, \ldots, x_{n-1}. Choose such a line $\overleftrightarrow{x_{i} x_{j}}$ with $i<j$ such that j is minimum and then i is minimum. Insert x_{n} on $\overline{x_{i} x_{j}}$, such that $\left\{x_{i}, x_{n}, x_{j}\right\}$ is the only collinear triple that contains x_{n}. This is possible, since there are only finitely many $\left(\leq\binom{ n-3}{2}\right)$ excluded locations for x_{n}.

Repeat this step to obtain a point set $\left\{x_{i}: i \in \mathbb{N}\right\}$, which by construction, contains no 4 collinear points. Moreover, if x_{i} and x_{k} are visible with $i<k$, then x_{i} and x_{k} are collinear with some other point $x_{i^{\prime}}$ (otherwise some point would be added at a later stage in $\left.\overline{x_{i} x_{k}}\right)$. Since $i<k$ we have $x_{k} \in \overline{x_{i} x_{i^{\prime}}}$ and $i^{\prime}<k$.

Suppose on the contrary that three points x_{i}, x_{j}, x_{k} are pairwise visible, where $i<j<k$. As proved above, $x_{k} \in \overline{x_{i} x_{i^{\prime}}}$ and $x_{k} \in \overline{x_{j} x_{j^{\prime}}}$, where $i^{\prime}, j^{\prime}<k$. Since x_{k}

[^0]is in only one collinear triple amongst x_{1}, \ldots, x_{k}, we have $i^{\prime}=j$ and $j^{\prime}=i$. Thus x_{i}, x_{k}, x_{j} are collinear, and x_{i} and x_{j} are not visible. This contradiction proves that no 3 points are pairwise visible.

References

[1] Zachary Abel, Brad Ballinger, Prosenjit Bose, Sébastien Collette, Vida Dujmović, Ferran Hurtado, Scott D. Kominers, Stefan Langerman, Attila Pór, and David R. Wood. Every large point set contains many collinear points or an empty pentagon. Proc. 21st Canadian Conference on Computational Geometry (CCCG '09), pp. 99-102, 2009. Graphs and Combinatorics, to appear. http://arxiv.org/abs/0904.0262
[2] Louigi Addario-Berry, Cristina Fernandes, Yoshiharu Kohayakawa, Jos Coelho de Pina, and Yoshiko WakABAYASHI. On a geometric Ramsey-style problem, 2007. http://crm.umontreal.ca/cal/en/mois200708.html.
[3] Greg Aloupis, Brad Ballinger, Prosenjit Bose, Sébastien Collette, Stefan Langerman, Attila Pór, and David R. Wood. Blocking coloured point sets. In Proc. 26th European Workshop on Computational Geometry (EuroCG '10), pp. 29-32. 2010. http://arxiv.org/abs/1002.0190.
[4] Jan Kára, Attila Pór, and David R. Wood. On the chromatic number of the visibility graph of a set of points in the plane. Discrete Comput. Geom., 34(3):497-506, 2005. http://dx.doi.org/10.1007/s00454-005-1177-z.
[5] Jirí Matoušek. Blocking visibility for points in general position. Discrete Comput. Geom., 42(2):219-223, 2009. http://dx.doi.org/10.1007/s00454-009-9185-z.
[6] Attila Pór and David R. Wood. On visibility and blockers. J. Comput. Geom., 1(1):29-40, 2010. http://www.jocg.org/index.php/jocg/article/view/24.

```
Department of Mathematics
Western Kentucky University
Bowling Green, Kentucky, U.S.A.
E-mail address: attila.por@wku.edu
Department of Mathematics and Statistics
The University of Melbourne
Melbourne, Australia
E-mail address: woodd@unimelb.edu.au
```


[^0]: 1991 Mathematics Subject Classification. 52C10 Erdős problems and related topics of discrete geometry, 05D10 Ramsey theory.

 David Wood is supported by a QEII Research Fellowship from the Australian Research Council.

