Hypergraph Colouring and Degeneracy

David R. Wood *

10 October 2013; revised August 15, 2014

Abstract

A hypergraph is d-degenerate if every subhypergraph has a vertex of degree at most d. A greedy algorithm colours every such hypergraph with at most $d+1$ colours. We show that this bound is tight, by constructing an r-uniform d-degenerate hypergraph with chromatic number $d+1$ for all $r \geq 2$ and $d \geq 1$. Moreover, the hypergraph is triangle-free, where a triangle in an r-uniform hypergraph consists of three edges whose union is a set of $r+1$ vertices.

1 Introduction

Erdős and Lovász [7] proved the following fundamental result about colouring hypergraphs ${ }^{1}$

Theorem 1 ([7]). For fixed r, every r-uniform hypergraph with maximum degree Δ has chromatic number at most $O\left(\Delta^{1 /(r-1)}\right)$.

Theorem 1 implies that every r-uniform hypergraph with maximum degree Δ has an independent set of size at least $\Omega\left(n / \Delta^{1 /(r-1)}\right)$. Spencer [10] proved the following stronger bound.

Theorem 2 ([10]). For fixed r, every r-uniform hypergraph with n vertices and average degree d has an independent set of size at least $\Omega\left(n / d^{1 /(r-1)}\right)$.

A hypergraph is d-degenerate if every subhypergraph has a vertex of degree at most d. A minimum-degree-greedy algorithm colours every d-degenerate

[^0]hypergraph with at most $d+1$ colours. This bound is tight for graphs $(r=2)$ since the complete graph on $d+1$ vertices is d-degenerate, and of course, has chromatic number $d+1$. However, this observation does not generalise for $r \geq 3$. In particular, for the complete r-uniform hypergraph on n vertices, every vertex has degree $\binom{n-1}{r-1}$, yet the chromatic number is $\left\lceil\frac{n}{r-1}\right\rceil$. Thus for $r \geq 3$, the degeneracy is much greater than the chromatic number.

Given Theorems 1 and 2, it seems plausible that for $r \geq 3$, every r-uniform d-degenerate hypergraph is $o(d)$-colourable. It even seems possible that every r-uniform d-degenerate hypergraph is $O\left(d^{1 /(r-1)}\right)$-colourable. This natural strengthening of Theorems 1 and 2 would (roughly) say that G can be partitioned into independent sets, whose average size is that guaranteed by Theorem 2.

This note rules out these possibilities, by showing that the naive upper bound $\chi \leq d+1$ is tight for all r. This is the main conclusion of this paper. Moreover, we prove it for triangle-free hypergraphs, where a triangle in an r uniform hypergraph consists of three edges whose union is a set of $r+1$ vertices. Observe that this definition with $r=2$ is equivalent to the standard notion of a triangle in a graph (although there are other notions of a triangle in a hypergraph [4]).

Theorem 3. For all $r \geq 2$ and $d \geq 1$ there is a triangle-free d-degenerate r-uniform hypergraph with chromatic number $d+1$.

Theorem 3 and its proof is a generalisation of a result of Alon et al. [2] who proved it for graphs $(r=2)$. Of course, the complete graph K_{d+1} is d degenerate with chromatic number $d+1$. The triangle-free property was the main conclusion of their result. See $[1,9]$ for other related results.

2 Proof

Theorem 3 is a corollary of the following:
Lemma 4. Fix $r \geq 2$. For all $d \geq 1$ there is a triangle-free d-degenerate r uniform hypergraph G_{d} with chromatic number $d+1$, such that in every $(d+1)$ colouring of G_{d} each colour is assigned to at least $r-1$ vertices.

Proof. We proceed by induction on d. First consider the base case $d=1$. Let $n:=r(r-1)$. Let $V\left(G_{1}\right):=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E\left(G_{1}\right):=\left\{e_{i}: 1 \leq i \leq n-r+1\right\}$, where $e_{i}:=\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}$. If $S \subseteq V\left(G_{1}\right)$ and i is minimum such that $v_{i} \in S$, then v_{i} has degree at most 1 in the subhypergraph induced by S. Thus G_{1} is 1-degenerate. If e_{i}, e_{j}, e_{k} are three edges in G_{1} with $i<j<k$, then $e_{i} \cup e_{j} \cup e_{k}$ includes the $r+2$ distinct vertices $v_{i}, v_{i+1}, \ldots, v_{i+r-1}, v_{j+r-1}, v_{k+r-1}$. Hence G_{1} is triangle-free. Consider a 2 -colouring of G_{1}. Clearly, G_{1} contains $r-1$ pairwise disjoint edges, each of which contains vertices of both colours. Hence each colour is assigned to at least $r-1$ vertices. This completes the base case.

Now assume that G_{d-1} is a triangle-free $(d-1)$-degenerate r-uniform hypergraph with chromatic number d, such that in every d-colouring of G_{d-1} each colour is assigned to at least $r-1$ vertices.

Initialise G_{d} to consist of $d+r-2$ disjoint copies H_{1}, \ldots, H_{d+r-2} of G_{d-1}. Let S be a set of $(r-1) d$ vertices in $H_{1} \cup \cdots \cup H_{d+r-2}$ such that $\left|S \cap V\left(H_{i}\right)\right| \in\{0, r-1\}$ for $1 \leq i \leq d+r-2$. That is, S contains exactly $r-1$ vertices from exactly d of the H_{i}, and contains no vertices from the other $r-2$. Now, for each such set S, add $r-1$ new vertices v_{1}, \ldots, v_{r-1} to G_{d} and add the new edge $\left(S \cap V\left(H_{i}\right)\right) \cup\left\{v_{j}\right\}$ to G_{d} whenever $\left|S \cap V\left(H_{i}\right)\right|=r-1$. Thus each new vertex has degree d. Since $H_{1} \cup \cdots \cup H_{d+r-2}$ is d-degenerate, G_{d} is also d-degenerate.

Suppose on the contrary that G_{d} contains a triangle T. Since G_{d-1} is triangle-free, at least one edge in T is a new edge, which is contained in $V\left(H_{i}\right) \cup$ $\{v\}$ for some $i \in[1, d+r-2]$ and some new vertex v. Each vertex in a triangle is in at least two of the edges of the triangle. However, by construction, v is contained in only one edge contained in $V\left(H_{i}\right) \cup\{v\}$. Thus G_{d} is triangle-free.

Since $H_{1} \cup \cdots \cup H_{d+r-2}$ is d-colourable, and no edge contains only new vertices, assigning all the new vertices a $(d+1)$-th colour produces a $(d+1)$ colouring of G_{d}. Thus $\chi\left(G_{d}\right) \leq d+1$.

Suppose on the contrary that G_{d} has a $(d+1)$-colouring with at most $r-2$ vertices of some colour, say 'blue'. Say the other colours are $1, \ldots, d$. At most $r-2$ copies of the H_{i} contain blue vertices. Hence, without loss of generality, H_{1}, \ldots, H_{d} contain no blue vertices. That is, H_{1}, \ldots, H_{d} are d-coloured with colours $1, \ldots, d$. By induction, H_{i} contains a set S_{i} of $r-1$ vertices coloured i for $1 \leq i \leq d$. By construction, there are $r-1$ vertices v_{1}, \ldots, v_{r-1} in G_{d}, such that $S_{i} \cup\left\{v_{j}\right\}$ is an edge of G_{d} for $1 \leq i \leq d$ and $1 \leq j \leq r-1$. Since each such edge is not monochromatic, each vertex v_{j} is coloured blue. In particular, there are at least $r-1$ blue vertices, which is a contradiction. Therefore, in every ($d+1$)-colouring of G_{d}, each colour class has at least $r-1$ vertices, as claimed. (In particular, G_{d} has no d-colouring.)

3 An Open Problem

We conclude with an open problem. The girth of a graph (that contains some cycle) is the length of its shortest cycle. Erdős [5] proved that there exists a graph with chromatic number at least k and girth at least g, for all $k \geq 3$ and $g \geq 4$. (Erdős and Hajnal [6] proved an analogous result for hypergraphs). Theorem 3 strengthens this result for triangle-free graphs (that is, with girth $g=4$). This leads to the following question: Does there exist a d-degenerate graph with chromatic number $d+1$ and girth g, for all $d \geq 2$ and $g \geq 4$? Odd cycles prove the $d=2$ case. An affirmative answer would strengthen the above result of Erdős [5]. A negative answer would also be interesting-this would provide a non-trivial upper bound on the chromatic number of d-degenerate graphs with girth g.

Note

After this paper was written the author discovered the beautiful paper by Kostochka and Nešetřil [8] which proves a strengthening of Theorem 3 and includes the positive solution of the above open problem.

Acknowledgement

Thanks to an anonymous referee for pointing out an error in an earlier version of this paper.

References

[1] Noga Alon. Hypergraphs with high chromatic number. Graphs and Combinatorics, 1(1):387-389, 1985. doi: 10.1007/BF02582966.
[2] Noga Alon, Michael Krivelevich, and Benny Sudakov. Coloring graphs with sparse neighborhoods. J. Combin. Theory Ser. B, 77(1):73-82, 1999. doi: 10.1006/jctb.1999.1910.
[3] Claude Berge. Graphs and Hypergraphs. North Holland, 1973.
[4] Jeff Cooper and Dhruv Mubayi. List coloring triangle-free hypergraphs. 2013. arXiv: 1302.3872.
[5] Paul Erdős. Graph theory and probability. Canad. J. Math., 11:34-38, 1959. doi: 10.4153/CJM-1959-003-9.
[6] Paul Erdős and András Hajnal. On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar, 17:61-99, 1966. https: //www.renyi.hu/~p_erdos/1966-07.pdf.
[7] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, vol. 10 of Colloq. Math. Soc. János Bolyai, pp. 609-627. North-Holland, 1975. https://www.renyi.hu/~p_erdos/1975-34.pdf.
[8] Alexandr V. Kostochka and Jaroslav Nešetřil. Properties of Descartes' construction of triangle-free graphs with high chromatic number. Combin. Probab. Comput., 8(5):467-472, 1999. doi: 10.1017/S0963548399004022.
[9] Alexandr V. Kostochka and Vojtech Rödl. Constructions of sparse uniform hypergraphs with high chromatic number. Random Structures Algorithms, 36(1):46-56, 2010. doi: 10.1002/rsa. 20293.
[10] Joel Spencer. Turán's theorem for k-graphs. Discrete Math., 2:183-186, 1972. doi: 10.1016/0012-365X(72)90084-2. MR: 0297614.

[^0]: *School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council.
 ${ }^{1}$ A hypergraph G consists of a set $V(G)$ of vertices and a set $E(G)$ of subsets of $V(G)$ called edges. A hypergraph is r-uniform if every edge has size r. A graph is a 2-uniform hypergraph. A hypergraph H is a subhypergraph of a hypergraph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A colouring of a hypergraph G assigns one colour to each vertex in $V(G)$ such that no edge in $E(G)$ is monochromatic. The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colours in a colouring of G. A colouring of G can be thought of as a partition of $V(G)$ into independent sets, each containing no edge. The degree of a vertex v is the number of edges that contain v. See the textbook of Berge [3] for other notions of degree in a hypergraph.

