Hypergraph Colouring and Degeneracy

David R. Wood*

10 October 2013; revised August 15, 2014

Abstract

A hypergraph is d-degenerate if every subhypergraph has a vertex of degree at most d. A greedy algorithm colours every such hypergraph with at most d+1 colours. We show that this bound is tight, by constructing an r-uniform d-degenerate hypergraph with chromatic number d+1 for all $r \geq 2$ and $d \geq 1$. Moreover, the hypergraph is triangle-free, where a triangle in an r-uniform hypergraph consists of three edges whose union is a set of r+1 vertices.

1 Introduction

Erdős and Lovász [7] proved the following fundamental result about colouring hypergraphs 1

Theorem 1 ([7]). For fixed r, every r-uniform hypergraph with maximum degree Δ has chromatic number at most $O(\Delta^{1/(r-1)})$.

Theorem 1 implies that every r-uniform hypergraph with maximum degree Δ has an independent set of size at least $\Omega(n/\Delta^{1/(r-1)})$. Spencer [10] proved the following stronger bound.

Theorem 2 ([10]). For fixed r, every r-uniform hypergraph with n vertices and average degree d has an independent set of size at least $\Omega(n/d^{1/(r-1)})$.

A hypergraph is d-degenerate if every subhypergraph has a vertex of degree at most d. A minimum-degree-greedy algorithm colours every d-degenerate

^{*}School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council.

 $^{^1}$ A hypergraph G consists of a set V(G) of vertices and a set E(G) of subsets of V(G) called edges. A hypergraph is r-uniform if every edge has size r. A graph is a 2-uniform hypergraph. A hypergraph H is a subhypergraph of a hypergraph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A colouring of a hypergraph G assigns one colour to each vertex in V(G) such that no edge in E(G) is monochromatic. The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colours in a colouring of G. A colouring of G can be thought of as a partition of V(G) into independent sets, each containing no edge. The degree of a vertex v is the number of edges that contain v. See the textbook of Berge [3] for other notions of degree in a hypergraph.

hypergraph with at most d+1 colours. This bound is tight for graphs (r=2) since the complete graph on d+1 vertices is d-degenerate, and of course, has chromatic number d+1. However, this observation does not generalise for $r\geq 3$. In particular, for the complete r-uniform hypergraph on n vertices, every vertex has degree $\binom{n-1}{r-1}$, yet the chromatic number is $\lceil \frac{n}{r-1} \rceil$. Thus for $r\geq 3$, the degeneracy is much greater than the chromatic number.

Given Theorems 1 and 2, it seems plausible that for $r \geq 3$, every r-uniform d-degenerate hypergraph is o(d)-colourable. It even seems possible that every r-uniform d-degenerate hypergraph is $O(d^{1/(r-1)})$ -colourable. This natural strengthening of Theorems 1 and 2 would (roughly) say that G can be partitioned into independent sets, whose average size is that guaranteed by Theorem 2.

This note rules out these possibilities, by showing that the naive upper bound $\chi \leq d+1$ is tight for all r. This is the main conclusion of this paper. Moreover, we prove it for triangle-free hypergraphs, where a triangle in an r-uniform hypergraph consists of three edges whose union is a set of r+1 vertices. Observe that this definition with r=2 is equivalent to the standard notion of a triangle in a graph (although there are other notions of a triangle in a hypergraph [4]).

Theorem 3. For all $r \geq 2$ and $d \geq 1$ there is a triangle-free d-degenerate r-uniform hypergraph with chromatic number d + 1.

Theorem 3 and its proof is a generalisation of a result of Alon et al. [2] who proved it for graphs (r = 2). Of course, the complete graph K_{d+1} is d-degenerate with chromatic number d + 1. The triangle-free property was the main conclusion of their result. See [1, 9] for other related results.

2 Proof

Theorem 3 is a corollary of the following:

Lemma 4. Fix $r \geq 2$. For all $d \geq 1$ there is a triangle-free d-degenerate r-uniform hypergraph G_d with chromatic number d+1, such that in every (d+1)-colouring of G_d each colour is assigned to at least r-1 vertices.

Proof. We proceed by induction on d. First consider the base case d=1. Let n:=r(r-1). Let $V(G_1):=\{v_1,\ldots,v_n\}$ and $E(G_1):=\{e_i:1\leq i\leq n-r+1\}$, where $e_i:=\{v_i,v_{i+1},\ldots,v_{i+r-1}\}$. If $S\subseteq V(G_1)$ and i is minimum such that $v_i\in S$, then v_i has degree at most 1 in the subhypergraph induced by S. Thus G_1 is 1-degenerate. If e_i,e_j,e_k are three edges in G_1 with i< j< k, then $e_i\cup e_j\cup e_k$ includes the r+2 distinct vertices $v_i,v_{i+1},\ldots,v_{i+r-1},v_{j+r-1},v_{k+r-1}$. Hence G_1 is triangle-free. Consider a 2-colouring of G_1 . Clearly, G_1 contains r-1 pairwise disjoint edges, each of which contains vertices of both colours. Hence each colour is assigned to at least r-1 vertices. This completes the base case.

Now assume that G_{d-1} is a triangle-free (d-1)-degenerate r-uniform hypergraph with chromatic number d, such that in every d-colouring of G_{d-1} each colour is assigned to at least r-1 vertices.

Initialise G_d to consist of d+r-2 disjoint copies H_1, \ldots, H_{d+r-2} of G_{d-1} . Let S be a set of (r-1)d vertices in $H_1 \cup \cdots \cup H_{d+r-2}$ such that $|S \cap V(H_i)| \in \{0, r-1\}$ for $1 \leq i \leq d+r-2$. That is, S contains exactly r-1 vertices from exactly d of the H_i , and contains no vertices from the other r-2. Now, for each such set S, add r-1 new vertices v_1, \ldots, v_{r-1} to G_d and add the new edge $(S \cap V(H_i)) \cup \{v_j\}$ to G_d whenever $|S \cap V(H_i)| = r-1$. Thus each new vertex has degree d. Since $H_1 \cup \cdots \cup H_{d+r-2}$ is d-degenerate, G_d is also d-degenerate.

Suppose on the contrary that G_d contains a triangle T. Since G_{d-1} is triangle-free, at least one edge in T is a new edge, which is contained in $V(H_i) \cup \{v\}$ for some $i \in [1, d+r-2]$ and some new vertex v. Each vertex in a triangle is in at least two of the edges of the triangle. However, by construction, v is contained in only one edge contained in $V(H_i) \cup \{v\}$. Thus G_d is triangle-free.

Since $H_1 \cup \cdots \cup H_{d+r-2}$ is d-colourable, and no edge contains only new vertices, assigning all the new vertices a (d+1)-th colour produces a (d+1)-colouring of G_d . Thus $\chi(G_d) \leq d+1$.

Suppose on the contrary that G_d has a (d+1)-colouring with at most r-2 vertices of some colour, say 'blue'. Say the other colours are $1,\ldots,d$. At most r-2 copies of the H_i contain blue vertices. Hence, without loss of generality, H_1,\ldots,H_d contain no blue vertices. That is, H_1,\ldots,H_d are d-coloured with colours $1,\ldots,d$. By induction, H_i contains a set S_i of r-1 vertices coloured i for $1 \leq i \leq d$. By construction, there are r-1 vertices v_1,\ldots,v_{r-1} in G_d , such that $S_i \cup \{v_j\}$ is an edge of G_d for $1 \leq i \leq d$ and $1 \leq j \leq r-1$. Since each such edge is not monochromatic, each vertex v_j is coloured blue. In particular, there are at least r-1 blue vertices, which is a contradiction. Therefore, in every (d+1)-colouring of G_d , each colour class has at least r-1 vertices, as claimed. (In particular, G_d has no d-colouring.)

3 An Open Problem

We conclude with an open problem. The girth of a graph (that contains some cycle) is the length of its shortest cycle. Erdős [5] proved that there exists a graph with chromatic number at least k and girth at least g, for all $k \geq 3$ and $g \geq 4$. (Erdős and Hajnal [6] proved an analogous result for hypergraphs). Theorem 3 strengthens this result for triangle-free graphs (that is, with girth g=4). This leads to the following question: Does there exist a d-degenerate graph with chromatic number d+1 and girth g, for all $g \geq 4$ Odd cycles prove the g=4 case. An affirmative answer would strengthen the above result of Erdős [5]. A negative answer would also be interesting—this would provide a non-trivial upper bound on the chromatic number of g=4-degenerate graphs with girth g=4.

Note

After this paper was written the author discovered the beautiful paper by Kostochka and Nešetřil [8] which proves a strengthening of Theorem 3 and includes the positive solution of the above open problem.

Acknowledgement

Thanks to an anonymous referee for pointing out an error in an earlier version of this paper.

References

- [1] NOGA ALON. Hypergraphs with high chromatic number. Graphs and Combinatorics, 1(1):387–389, 1985. doi:10.1007/BF02582966.
- [2] NOGA ALON, MICHAEL KRIVELEVICH, AND BENNY SUDAKOV. Coloring graphs with sparse neighborhoods. *J. Combin. Theory Ser. B*, 77(1):73–82, 1999. doi: 10.1006/jctb.1999.1910.
- [3] Claude Berge. Graphs and Hypergraphs. North Holland, 1973.
- [4] Jeff Cooper and Dhruv Mubayi. List coloring triangle-free hypergraphs. 2013. arXiv: 1302.3872.
- [5] PAUL ERDŐS. Graph theory and probability. Canad. J. Math., 11:34–38, 1959. doi: 10.4153/CJM-1959-003-9.
- [6] PAUL ERDŐS AND ANDRÁS HAJNAL. On chromatic number of graphs and set-systems. *Acta Math. Acad. Sci. Hungar*, 17:61–99, 1966. https://www.renyi.hu/~p_erdos/1966-07.pdf.
- [7] PAUL ERDŐS AND LÁSZLÓ LOVÁSZ. Problems and results on 3-chromatic hypergraphs and some related questions. In *Infinite and Finite Sets*, vol. 10 of *Colloq. Math. Soc. János Bolyai*, pp. 609–627. North-Holland, 1975. https://www.renyi.hu/~p_erdos/1975-34.pdf.
- [8] ALEXANDR V. KOSTOCHKA AND JAROSLAV NEŠETŘIL. Properties of Descartes' construction of triangle-free graphs with high chromatic number. Combin. Probab. Comput., 8(5):467–472, 1999. doi:10.1017/S0963548399004022.
- [9] ALEXANDR V. KOSTOCHKA AND VOJTECH RÖDL. Constructions of sparse uniform hypergraphs with high chromatic number. *Random Structures Algorithms*, 36(1):46–56, 2010. doi:10.1002/rsa.20293.
- [10] JOEL SPENCER. Turán's theorem for k-graphs. Discrete Math., 2:183–186, 1972. doi: 10.1016/0012-365X(72)90084-2. MR: 0297614.