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Abstract

The Lovász Local Lemma is a powerful probabilistic technique for proving the
existence of combinatorial objects. It is especially useful for colouring graphs and
hypergraphs with bounded maximum degree. This paper presents a general theorem
for colouring hypergraphs that in many instances matches or slightly improves upon
the bounds obtained using the Lovász Local Lemma. Moreover, the theorem directly
shows that there are exponentially many colourings. The elementary and self-contained
proof is inspired by a recent result for nonrepetitive colourings by Rosenfeld [2020]. We
apply our general theorem in the setting of proper hypergraph colouring, proper graph
colouring, independent transversals, star colouring, nonrepetitive colouring, frugal
colouring, Ramsey number lower bounds, and for k-SAT.

1 Hypergraph Colouring

In their seminal 1975 paper, Erdős and Lovász [25] introduced what is now called the Lovász
Local Lemma. This tool is one of the most powerful probabilistic techniques for proving
the existence of combinatorial objects. Their motivation was hypergraph colouring. A
hypergraph G consists of a set V (G) of vertices and a set E(G) of edges , each of which is a
subset of V (G). A colouring of a hypergraph G is a function that assigns a ‘colour’ to each
vertex of G. A colouring of G is proper if no edge of G is monochromatic. The chromatic
number χ(G) is the minimum number of colours in a proper colouring of G. The degree
of a vertex v in a hypergraph G is the number of edges that contain v. A hypergraph is
r-uniform if each edge has size r. Erdős and Lovász [25] proved (using the Lovász Local
Lemma) that χ(G) 6 d(4r∆)1/(r−1)e for every r-uniform hypergraph G with maximum
degree ∆. The following result is a consequence of the strengthened Lovász Local Lemma
first stated by Spencer [60]; see the book by Molloy and Reed [46] for a comprehensive
treatment.

Theorem 1 ([25, 60]). For every r-uniform hypergraph G with maximum degree ∆,

χ(G) 6 d(e(r(∆− 1) + 1))1/(r−1)e.

This paper presents a general theorem for colouring hypergraphs, which in the special
case of proper hypergraph colouring, (slightly) improves the upper bound in Theorem 1.
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Moreover, the proof directly shows that there are exponentially many such colourings.
The proof uses a simple counting argument inspired by a recent result for nonrepetitive
colourings by Rosenfeld [58], which in turn is inspired by the power series method for
pattern avoidance [13, 49, 51].

It is well known that the proof of Theorem 1 works in the setting of list colourings, which
we now introduce. Let G be a hypergraph. A list-assignment for G is a function L that
assigns each vertex v of G a set L(v), whose elements are called colours. If |L(v)| = c

for each vertex v of G, then L is a c-list-assignment . An L-colouring of G is a function
φ such that φ(v) ∈ L(v) for each vertex v of G. The choosability χch(G) is the minimum
integer c such that G has a proper L-colouring for every c-list-assignment L of G. For a list
assignment L of a hypergraph G, let P (G,L) be the number of proper L-colourings of G.

The following theorem is our first contribution.

Theorem 2. For all integers r > 3 and ∆ > 1, and for every r-uniform hypergraph G with
maximum degree ∆,

χch(G) 6 c :=

⌈(r − 1

r − 2

)(
(r − 2)∆

)1/(r−1)
⌉
.

Moreover, for every c-list assignment L of G,

P (G,L) >
(
(r − 2)∆

)|V (G)|/(r−1)
.

We now compare the above-mentioned bounds. Since ( r−1
r−2)r−2 < e, it follows that(

r−1
r−2

)(
(r − 2)∆

)1/(r−1)
< (e(r − 1)∆)1/(r−1), and assuming ∆ > r − 1, the bound in

Theorem 2 is slightly better than the bound in Theorem 1. The difference is most evident
for small r. For example, if r = 3 then the bound in Theorem 2 is

⌈
2
√

∆
⌉
compared with⌈√

e(3∆− 2)
⌉
from Theorem 1.

Several researchers have communicated to us that, with a little effort, one can conclude
the existence of exponentially many colourings using the Lovász Local Lemma (or other
methods), although as far as we are aware no general result of this nature is published. One
attraction of our proof is that it gives exponentially many colourings for free. Indeed, this
stronger conclusion is a key to enabling the simple proof. See [1, 2, 5, 8, 16, 29, 38, 48, 50]
for more results on colouring hypergraphs with given maximum degree or number of edges,
and see [21, 22, 39, 43, 61, 62] for other theorems showing the existence of exponentially
many colourings in various graph settings.

Theorem 2 is a special case of a more general result that we introduce in the following
section. Then, in Section 3, we apply this general result to a variety of colouring problems,
including hypergraph colouring, graph colouring, independent transversals, star colouring,
nonrepetitive colouring, frugal colouring, Ramsey number lower bounds, and k-SAT. Sec-
tion 4 concludes by comparing our general result with other techniques including the Lovász
Local Lemma and entropy compression.
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2 General Framework

For a hypergraphG (allowing parallel edges), let CG be the set of all colourings φ : V (G)→ Z.
(For concreteness, we assume all colours are integers.) For an edge e of G, let Ce be the
set of all colourings φ : e→ Z. An instance is a pair (G,B) where G is a hypergraph and
B = (Be ⊆ Ce : e ∈ E(G)). A colouring φ ∈ CG is B-bad if, for some edge e ∈ E(G), we
have that φ restricted to e is in Be. Every other colouring in CG is B-good . For an integer
c > 1, we say G is (B, c)-choosable if there is a B-good L-colouring of G for every c-list
assignment L of G. For a list assignment L of G, let P (G,B, L) be the number of B-good
L-colourings of G.

Fix an instance (G,B) and consider an edge e of G. A subset S ⊆ e determines Be if any
two colourings in Be that agree on S are identical. For every vertex v in e, we assume that
Be is determined by some subset of e \ {v}. (Consider this assumption to be part of the
definition of ‘instance’.) Then define the weight of (v, e) to be |e| − 1− |S|, where S is a
minimum-sized subset of e \ {v} that determines Be. For each vertex v of G, let Ek(v) be
the number of pairs (v, e) with weight k.

For example, to model proper colouring in an r-uniform hypergraph G, for each edge e of
G, let Be be the monochromatic colourings in Ce. Then a colouring is B-good if and only if
it is proper. For every edge e and every vertex v in e, if w is any vertex in e \ {v}, then
{w} determines Be, implying that (v, e) has weight r − 2.

Theorem 3. Let (G,B) be an instance. Assume there exist a real number β > 1 and an
integer c > 1 such that for every vertex v of G,

c > β +
∑
k>0

β−kEk(v). (1)

Then G is (B, c)-choosable. Moreover, for every c-list assignment L of G,

P (G,B, L) > β|V (G)|.

Before proving Theorem 3 we make a couple of minor observations. If β > 1 then Theorem 3
guarantees exponentially many B-good colourings. If β = 1 then Theorem 3 guarantees at
least one B-good colouring. In most applications β > 1, but on one occasion the case β = 1

is of interest (see Section 3.1). When applying Theorem 3 it is not necessary to determine
the weight of a pair exactly; it suffices to determine a lower bound on the weight (because
of the β−k term in (1), where β > 1).

Theorem 3 is an immediate corollary of the following lemma. If (G,B) is an instance
with B = (Be : e ∈ E(G)), and H is a sub-hypergraph of G, then (H,B) refers to the
instance

(
H, (Be : e ∈ E(H))

)
. Similarly, if L is a list-assignment for G, then we consider

L (restricted to V (H)) to be a list-assignment for H.

Lemma 4. Let (G,B) be an instance. Assume there exist a real number β > 1 and an
integer c > 1 such that (1) holds for every vertex v of G. Then for every c-list assignment
L of G, for every induced sub-hypergraph H of G, and for every vertex v of H,

P (H,B, L) > β P (H − v,B, L).
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Proof. We proceed by induction on |V (H)|. The base case with |V (H)| = 1 is trivial.
Let H be an induced sub-hypergraph of G, and assume the claim holds for all induced
sub-hypergraphs of G with less than |V (H)| vertices. Let v be any vertex of H. Let X be
the set of B-bad L-colourings of H that are B-good on H − v. Then

P (H,B, L) = c P (H − v,B, L) − |X|. (2)

We now find an upper bound for |X|. For each L-colouring φ in X there is an edge e ∈ E(H)

containing v such that φ ∈ Be (if there are several options for e, fix a choice arbitrarily).
Charge φ to (v, e). Let Xk be the set of colourings in X that are charged to a pair with
weight k. Consider φ in Xk charged to (v, e). Let S be a minimum-sized subset of e \ {v}
that determines Be. Let T := e \ S. Then |T | = k + 1 and v ∈ T . Since φ is B-good on
H − v, we know that φ is also B-good on H − T . Since S determines Be, the number of
L-colourings in Xk charged to (v, e) is at most P (H − T,B, L). By induction,

P (H − v,B, L) > βk P (H − T,B, L).

Thus the number of L-colourings in Xk charged to (v, e) is at most β−k P (H − v,B, L).
Hence |Xk| 6 Ek(v)β−k P (H − v,B, L), and

|X| =
∑
k>0

|Xk| 6 P (H − v,B, L)
∑
k>0

Ek(v)β−k.

By (2),

P (H,B, L) > c P (H − v,B, L) − P (H − v,B, L)
∑
k>0

β−kEk(v).

By (1), P (H,B, L) > β P (H − v,B, L), as desired.

3 Examples

In this section, we apply Theorem 3 for various types of (hyper)graph colouring problems
and for k-SAT. In most cases, Theorem 3 matches or improves on the best known bound
on the number of colours (as a function of maximum degree), and in addition shows that
there are exponentially many colourings.

3.1 Proper Colouring

First we prove Theorem 2. LetG be an r-uniform hypergraph with maximum degree ∆ where
r > 3. For each edge e of G, let Be be the monochromatic colourings in Ce; then a colouring
is B-good if and only if it is proper. Each pair (v, e) has weight r − 2, and Er−2(v) 6 ∆.
Observe that (1) holds with β :=

(
(r − 2)∆

)1/(r−1) and c :=
⌈(

r−1
r−2

)(
(r − 2)∆

)1/(r−1)⌉.
Theorem 2 then follows from Theorem 3.

Now consider proper colouring in a graph with maximum degree ∆ (the case r = 2 in
the above). Then every pair (v, e) has weight 0, and E0(v) 6 ∆. Thus c := d∆ + βe
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satisfies (1). Theorem 3 with β = 1 says that every graph G with maximum degree ∆

is (∆ + 1)-choosable. Theorem 3 with β > 2 says that for every (∆ + β)-list assignment
L of G there are at least β|V (G)| L-colourings. These well-known facts are easily proved
by a greedy algorithm. It is interesting that the above general framework includes such
statements (the Lovász Local Lemma does not). Note that the Local Action Lemma of
Bernshteyn [9] is another general-purpose tool that implies (∆ + 1)-colourability; also see
[10].

See [53, 54] for results about the number of 2-colourings in random hypergraphs and about
the number of k-colourings in random graphs.

3.2 Star Colouring

A colouring φ of a graph G is a star colouring if it is proper and every bichromatic subgraph
is a star forest; that is, there is no 2-coloured P4 (path on four vertices). The star chromatic
number χst(G) is the minimum number of colours in a star colouring of G. Fertin, Raspaud,
and Reed [27] proved (using the Lovász Local Lemma) that χst(G) 6 O(∆3/2) for every
graph G with maximum degree ∆, and that this bound is tight up to a O(log ∆) factor.
The best known bound is χst(G) 6

√
8∆3/2 + ∆ proved by Esperet and Parreau [26] using

entropy compression. Both these methods work for star choosability. We prove the same
bound holds with exponentially many colourings.

Theorem 5. Every graph G with maximum degree ∆ is star d∆ +
√

8∆(∆− 1)e-choosable.
Moreover, for every d∆ +

√
8∆(∆ − 1)e-list assignment L, there are at least

(√
2∆(∆ −

1)
)|V (G)| star L-colourings of G.

Proof. Define the following hypergraph G′ with V (G′) = V (G). Introduce one edge
e = {v, w} to G′ for each edge vw of G, where Be is the set of L-colourings φ ∈ Ce such
that φ(v) = φ(w), and introduce one edge e = {u, v, w, x} to G′ for each P4 subgraph
(u, v, w, x) of G, where Be is the set of L-colourings φ ∈ Ce such that φ(u) = φ(w) and
φ(v) = φ(x). For any list assignment L of G, note that G is star L-colourable if and only
if P (G′,B, L) > 1. Also, the weight of each 2-element edge is 0, and the weight of each
4-element edge is 1. Thus E0(v) 6 ∆ and E1(v) 6 2∆(∆− 1)2. Since (1) is satisfied with
β :=

√
2∆(∆− 1) and c := d∆ +

√
8∆(∆− 1)e, the result follows from Theorem 3.

3.3 Nonrepetitive Graph Colouring

Let φ be a colouring of a graph G. A path (v1, . . . , v2t) in G is repetitively coloured by φ if
φ(vi) = φ(vt+i) for each i ∈ {1, . . . , t}. A colouring φ of G is nonrepetitive if no path in G
is repetitively coloured by φ. The nonrepetitive chromatic number π(G) is the minimum
number of colours in a nonrepetitive colouring of G. The nonrepetitive choice number
πch(G) is the minimum integer c such that G has a nonrepetitive L-colouring for every c-list
assignment L of G. Alon, Grytczuk, Hałuszczak, and Riordan [4] proved that π(G) 6 O(∆2)

for every graph with maximum degree ∆, and that this bound is tight up to a O(log ∆)

factor. The proof shows the same bound for πch. Several authors subsequently improved
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the constant in the O(∆2) term: to 36∆2 by Grytczuk [36], to 16∆2 by Grytczuk [35], to
(12.2 + o(1))∆2 by Haranta and Jendro ’l [37], and to 10.4∆2 by Kolipaka, Szegedy, and
Xu [44]. All these proofs used the Lovász Local Lemma. Dujmović, Joret, Kozik, and
Wood [19] improved the constant to 1, by showing that for every graph G with maximum
degree ∆,

π(G) 6 ∆2 +O(∆5/3). (3)

The proof of Dujmović et al. [19] uses entropy compression; see [26, 33] for refinements and
simplifications to the method. Equation (3) was subsequently proved using the Local Cut
Lemma of Bernshteyn [10] and using cluster-expansion [7, 12]. Most recently, Rosenfeld [58]
proved (3) with exponentially many colourings. His paper inspired the present work. We
now show that the result of Rosenfeld follows from our general framework. Note that all of
the above results hold in the setting of choosability.

Theorem 6. For every graph G with maximum degree ∆, if

β := (1 + 21/3∆−1/3)(∆− 1)2 and c := dβ + 2−2/3∆5/3(1 + 21/3∆−1/3)2e,

then G is nonrepetitively c-choosable. Moreover, for every c-list assignment L of G there
are at least β|V (G)| nonrepetitive L-colourings of G.

Proof. Let G′ be the hypergraph with V (G′) = V (G), where there is an edge V (P ) for
each path P in G of even order. Here we consider a path to be a subgraph of G, so that a
path and its reverse contribute one edge to G′. For each edge e of G′ corresponding to a
path P in G of order 2t, let Be be the set of L-colourings φ ∈ Ce such that P is repetitively
coloured by φ. Thus G is nonrepetitively L-colourable if and only if P (G′,B, L) > 1.

Consider an edge e of G′ corresponding to a path P in G on 2t vertices. For each vertex v
in P , any colouring φ ∈ Be is uniquely determined by φ restricted to the t vertices in the
half of P not containing v. Hence (v, e) has weight t− 1. Every vertex of G is in at most
t∆(∆− 1)2t−2 paths on 2t vertices. So Et−1(v) 6 t∆(∆− 1)2t−2. Equation (1) requires

c > β +
∑
t>1

t∆(∆− 1)2t−2 β1−t.

Define β := (1 + ε)(∆− 1)2 where ε > 0 is defined shortly. Equation (1) requires

c > (1 + ε)(∆− 1)2 + ∆
∑
t>1

t (1 + ε)−t+1 = (1 + ε)(∆− 1)2 + ε−2(1 + ε)2∆.

Define ε := 21/3∆−1/3 (to approximately minimise (1 + ε)(∆− 1)2 + ε−2(1 + ε)2∆). Then
(1) holds with c defined above, and the result follows from Theorem 3.

3.4 Frugal Colouring

For an integer k > 1, a colouring φ of a graph G is k-frugal if φ is proper and
∣∣{w ∈ NG(v) :

φ(w) = i}
∣∣ 6 k for every vertex v of G and for every colour i, where NG(v) is the set of

neighbours of v in G. A 1-frugal colouring of G corresponds to a proper colouring of G2.

6



Hind, Molloy, and Reed [41] proved that for each integer k > 1 and sufficiently large ∆, every
graph with maximum degree ∆ has a k-frugal colouring with max{(k + 1)∆, e

3

k ∆1+1/k}
colours. An example due to Alon shows that this upper bound is within a constant factor
of optimal [41]. In particular, for all ∆ > k > 1, Alon constructed a graph with maximum
degree at most ∆ that has no k-frugal colouring with 1

2k∆1+1/k colours. Here we improve
the constant in the upper bound without assuming that ∆ is sufficiently large, and with
exponentially many colourings.

Theorem 7. For all integers ∆ > k > 2, let

β :=

(
(k − 1)∆

(
∆− 1

k

))1/k

and c := ∆ +

⌈
kβ

k − 1

⌉
.

Then every graph G with maximum degree ∆ has a k-frugal c-colouring. Moreover, for
every c-list-assignment L of G, the number of k-frugal L-colourings of G is at least β|V (G)|.

Proof. Let G′ be the hypergraph with V (G′) = V (G), where every edge of G is an edge of G′,
and {w1, . . . , wk+1} is an edge of G′ for every vertex v of G and set {w1, . . . , wk+1} ⊆ NG(v).
In the latter case, we say the edge is centred at v. For every edge e = {v, w} of G′, let Be be
the set of L-colourings φ ∈ Ce such that φ(v) = φ(w). For every edge e = {w1, . . . , wk+1}
of G′, let Be be the set of L-colourings φ ∈ Ce such that φ(w1) = φ(w2) = · · · = φ(wk+1).
Then a colouring of G is k-frugal if and only if it is B-good.

For each edge e = {v, w} of G′, both (v, e) and (w, e) have weight 0. Consider an edge
e = {w1, . . . , wk+1} of G′ centred at v. For each i ∈ {1, . . . , k + 1}, the pair (wi, e) has
weight k − 1, since every colouring φ ∈ Be is determined by {wj} for any j 6= i.

Consider a vertex v of G. Then E0(v) 6 ∆. Now consider a pair (v, e) with non-zero weight.
Then (v, e) has weight k − 1, and e = {w1, . . . , wk, v} is centred at some vertex u, for some
vertices w1, . . . , wk ∈ NG(u) \ {v}. There are at most ∆ choices for u and at most

(
∆−1
k

)
choices for w1, . . . , wk. Thus Ek−1(v) 6 ∆

(
∆−1
k

)
. Hence

β +
∑
i>0

Ei(v)β−i 6 β + ∆ + ∆

(
∆− 1

k

)
β1−k = ∆ +

kβ

k − 1
6 c.

The result follows from Theorem 3.

Since k(k − 1)−1+1/k → 1 and
(

∆−1
k

)1/k
6 e

k (∆− 1), Theorem 7 implies this:

Corollary 8. As ∆ > k →∞, for every d(e+o(1))∆1+1/k/ke-list-assignment L of a graph
G with maximum degree ∆, the number of k-frugal L-colourings of G is at least β|V (G)|.

Note that Alon’s example in [41] shows that Corollary 8 is within a factor of 2e+ o(1) of
optimal.

3.5 Independent Transversals and Constrained Colourings

Consider a hypergraph G. A set X ⊆ V (G) is independent if no edge of G is a subset of X.
Consider a partition V1, . . . , Vn of V (G). A transversal of V1, . . . , Vn is a set X such that

7



|X ∩ Vi| = 1 for each i. Let ` : V (G)→ {1, . . . , n} be the function where `(v) := i for each
vertex v ∈ Vi. For S ⊆ V (G), let `(S) := {`(v) : v ∈ S}. An edge e of G is stretched by
V1, . . . , Vn if |`(e)| = |e|. The following theorem provides a condition that guarantees an
independent transversal.

Theorem 9. Fix integers r > 2 and t > 1. For an r-uniform hypergraph G, let V1, . . . , Vn
be a partition of V (G) such that |Vi| > t and at most r−r(r − 1)r−1tr−1 |Vi| stretched edges
in G intersect Vi, for each i ∈ {1, . . . , n}. Then there exist at least ( r−1

r t)n independent
transversals of V1, . . . , Vn.

Proof. Non-stretched edges do not influence whether a transversal is independent, so
we may assume that every edge is stretched. We may also assume that |Vi| = t, since
if |Vi| > t and v is a vertex in Vi with maximum degree, then by removing v and its
incident edges we obtain another hypergraph satisfying the assumptions. Let X be the
hypergraph with V (X) := {1, . . . , n}, where for each edge {v1, . . . , vr} of G there is an
edge e = {`(v1), . . . , `(vr)} in X. By assumption, each vertex i of X has degree at most
r−r(r − 1)r−1tr−1|Vi| = r−r(r − 1)r−1tr. Let L be the list-assignment of X with L(i) := Vi
for each i ∈ {1, . . . , n}. For each edge e of X corresponding to edge {v1, . . . , vr} of G, let
Be be the set consisting of the L-colouring φ of e with φ(`(vj)) = vj for each j ∈ {1, . . . , r}.
Thus B-good L-colourings of X correspond to independent transversals of V1, . . . , Vn. Since
Be is determined by ∅, each pair (i, e) has weight r − 1. Define β := r−1

r t. Then

|L(i)| = t = β +
(r − 1)r−1 tr

rr βr−1
> β +

Er−1(i)

βr−1
.

Thus (1) holds and the result follows from Theorem 3.

Erdős, Gyárfás, and Łuczak [23] study independent transversals in a particular family of
sparse hypergraphs. They define an [n, k, r]-hypergraph to be an r-uniform hypergraph G
whose vertex set V (G) is partitioned into n sets V1, . . . , Vn, each with k vertices, such that
every edge is stretched by V1, . . . , Vn and for every r-element subset S of {1, 2, . . . , n} there
is exactly one edge e ∈ E(G) such that `(e) = S. Erdős et al. [23] defined fr(k) to be the
maximum integer n such that every [n, k, r]-hypergraph has an independent transversal.
Using the Lovász Local Lemma, they proved that if

e

((
n

r

)
−
(
n− r
r

))
< kr, (4)

then fr(k) > n. Observe that for every [n, k, r]-hypergraph G with partition V1, . . . , Vn, for
each i ∈ {1, . . . , n}, exactly

(
n−1
r−1

)
edges of G intersect Vi. Thus Theorem 9 implies that if(
n− 1

r − 1

)
6

(r − 1)r−1kr

rr
, (5)

then fr(k) > n. We now compare these last two results. Consider r to be fixed. As k grows,
the largest n satisfying (4) or (5) also grows, so we can think of n being large relative to r.
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Then

(r − 1)r−1
[(

n
r

)
−
(
n−r
r

)]
rr
(
n−1
r−1

)
=

(
r − 1

r

)r−1 n

r2

[
1− (n− r)!2

n!(n− 2r)!

]
=

(
r − 1

r

)r−1 n

r2

[
1−

r−1∏
i=0

n− r − i
n− i

]

>

(
r − 1

r

)r−1 n

r2

[
1−

(
n− r
n

)r ]

=

(
r − 1

r

)r−1
1−

(
r

2

)
1

n
+
n

r2

dr/2e∑
i=2

((
r

2i− 1

)( r
n

)2i−1
−
(
r

2i

)( r
n

)2i
)

>

(
r − 1

r

)r−1
1− r2

2n
+
n

r2

dr/2e∑
i=2

(
r

2i− 1

)( r
n

)2i−1
(

1− (r − 2i+ 1)r

2in

)
>

(
r − 1

r

)r−1 [
1− r2

2n

]
(6)

if n > r2/4. Also (1− 1/r)r−1 > 1/e. Hence, if n is sufficiently large relative to r, then (6)
will exceed 1/e, and (5) implies (4). In other words, our bound on fr(k) is better when k
is sufficiently large relative to r. Yuster [63, 64] used a different argument to get a better
bound in the case of graphs (r = 2).

Theorem 9 in the case of graphs says:

Corollary 10. Fix an integer t > 1. For a graph G, let V1, . . . , Vn be a partition of V (G)

such that |Vi| > t and there are at most t
4 |Vi| edges in G with exactly one endpoint in Vi, for

each i ∈ {1, . . . , n}. Then there exist at least ( t
2)n independent transversals of V1, . . . , Vn.

Corollary 10 immediately implies the following result (since the average degree out of Vi is
at most the maximum degree).

Corollary 11. For a graph G with maximum degree at most ∆, if V1, . . . , Vn is a partition
of V (G) such that |Vi| > 4∆ for each i ∈ {1, . . . , n}, then there exist at least (2∆)n

independent transversals of V1, . . . , Vn.

We now compare Corollaries 10 and 11 with the literature. Reed and Wood [57] proved the
weakening of Corollary 10 with t

4 replaced by t
2e and with ( t

2)n replaced by 1, and Dvořák,
Esperet, Kang, and Ozeki [20] noted that Corollary 10 holds with ( t

2)n replaced by 1 (using
different terminology). Similarly, Alon [3] proved the weakening of Corollary 11 with 4∆

replaced by 2e∆ and with (2∆)n replaced by 1. The proofs of Reed and Wood [57] and
Alon [3] used the Lovász Local Lemma, while the proof of Dvořák et al. [20] used the Local
Cut Lemma. Using a different method, Haxell [40] proved the strengthening of Corollary 11
with 4∆ replaced by 2∆, but with (2∆)n replaced by 1. The bound here of 2∆ is best
possible [15, 64]. It is open whether t

4 in Corollary 10 can be improved to t
2 ; see [42]. See

[32, 45, 63] for more on independent transversals in graphs.
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These results are related to the following ‘constrained colouring’ conjecture of Reed [55]:

Conjecture 12 ([55]). Let L be a (k + 1)-list assignment of a graph G such that for each
vertex v of G and colour c ∈ L(v), there are at most k neighbours w ∈ NG(v) with c ∈ L(w).
Then there exists a proper L-colouring of G.

Haxell [40] observed the following connection between constrained colourings and inde-
pendent transversals. Consider an f(k)-list-assignment L of a graph G. Let H be the
graph with V (H) := {(v, c) : v ∈ V (G), c ∈ L(v)}, where (v, c)(w, c) ∈ E(H) for each
edge vw ∈ E(G) and colour c ∈ L(v) ∩ L(w). Let Hv := {(v, c) : c ∈ L(v)}. Then
(Hv : v ∈ V (G)) is a partition of H with each |Hv| > f(k) such that proper L-colourings
of G correspond to independent transversals of (Hv : v ∈ V (G)). Now if we assume that
for each vertex v and colour c ∈ L(v) there are at most k neighbours w ∈ NG(v) with
c ∈ L(w), then H has maximum degree at most k. Hence the above-mentioned result of
Alon [3] proves Conjecture 12 with k + 1 replaced by 2ek (also proved by Reed [55]), and
the above-mentioned result of Haxell [40] proves Conjecture 12 with k + 1 replaced by 2k.
Bohman and Holzman [14] disproved Conjecture 12. The best asymptotic result, due to
Reed and Sudakov [56], says that for each ε > 0 there exists k0 such that Conjecture 12
holds with k+1 replaced by (1+ε)k for all k > k0. None of these results conclude that there
are exponentially many colourings. Corollary 10 and the above connection by Haxell [40]
implies the following result:

Corollary 13. Fix an integer t > 2. Let L be a t-list assignment of a graph G such that
for each vertex v of G,

4
∑

w∈NG(v)

|L(v) ∩ L(w)| 6 t2.

Then there exist at least ( t
2)|V (G)| proper L-colourings of G.

Taking t = 4k we obtain the following result in the direction of Conjecture 12:

Corollary 14. Let L be a 4k-list assignment of a graph G such that for each vertex v of G
and colour c ∈ L(v), there are at most k neighbours w ∈ NG(v) such that c ∈ L(w). Then
there exist at least (2k)|V (G)| proper L-colourings of G.

The following stronger result can also be proved using a variant of Theorem 3.

Theorem 15. Let L be a list-assignment of a graph G such that for every vertex v of G,

|L(v)| > 4
∑

w∈NG(v)

|L(v) ∩ L(w)|
|L(w)|

. (7)

Then there exist at least
∏

v∈V (G)
|L(v)|

2 proper L-colourings.

Proof. We proceed by induction on |V (H)| with the following hypothesis: for every induced
subgraph H of G, and for every vertex v of H,

P (H,L) >
|L(v)|

2
P (H − v, L).

10



(The proof is very similar to that of Lemma 4 except that β depends on v; in particular,
βv = |L(v)|

2 .) The base case with |V (H)| = 1 is trivial. Let H be an induced subgraph of G,
and assume the claim holds for all induced subgraphs of G with less than |V (H)| vertices.
Let v be any vertex of H. Let X be the set of improper L-colourings of H that are proper
on H − v. Then

P (H,L) = |L(v)| P (H − v, L) − |X|. (8)

We now find an upper bound for |X|. For w ∈ NG(v), let Xw be the set of colourings φ in
X such that φ(v) = φ(w). Each L-colouring in X is in some Xw. Thus

|X| 6
∑

w∈NG(v)

|Xw| 6
∑

w∈NG(v)

P (H − v − w,L) |L(v) ∩ L(w)|.

By induction, P (H − v, L) > |L(w)|
2 P (H − v − w,L). Hence

|X| 6
∑

w∈NG(v)

2|L(v) ∩ L(w)|
|L(w)|

P (H − v, L).

By (8)

P (H,L) > |L(v)| P (H − v, L) −
∑

w∈NG(v)

2|L(v) ∩ L(w)|
|L(w)|

P (H − v, L).

By (7), P (H,L) > |L(v)|
2 P (H − v, L), as desired.

Note that Theorem 15 immediately implies Corollary 13, taking |L(v)| = 2t for each v.

3.6 Ramsey Numbers

For integers k, c > 2, let Rc(k) be the minimum integer n such that every edge c-colouring of
Kn contains a monochromatic Kk. Ramsey [52] and Erdős and Szekeres [24] independently
proved that Rc(k) exists. The best asymptotic lower bound on R2(k) is due to Spencer [59,
60] who proved that

R2(k) >

(√
2

e
− o(1)

)
k 2k/2. (9)

More precisely, Spencer [59, 60] proved that if

e

(
k

2

)((
n− 2

k − 2

)
+ 1

)
< 2(k2)−1, (10)

then there exists an edge 2-colouring of Kn with no monochromatic Kk, implying R2(k) > n.
Theorem 3 leads to an analogous result with the same asymptotics, but with slightly better
lower order terms. For a graph G and integer k > 2, let Dk(G) be the maximum, taken
over all edges vw ∈ E(G), of the number of k-cliques in G containing v and w.
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Theorem 16. Fix integers k > 3 and c > 2. Let m :=
(
k
2

)
− 1. Then for every graph G

with

Dk(G) 6
(m− 1)m−1 cm

mm
, (11)

there exists an edge c-colouring of G with no monochromatic Kk. In fact, there exists at
least

(
Dk(G)(m− 1)

)|E(G)|/m such colourings.

Proof. Let G′ be the hypergraph with V (G′) := E(G), where S ⊆ E(G) is an edge
of G′ whenever S is the edge-set of a Kk subgraph in G. For each edge vw of G, let
L(vw) := {1, . . . , c}. For each edge S of G′, let BS be the set of monochromatic L-
colourings of S. Thus B-good L-colourings of G′ correspond to edge c-colourings of G with
no monochromatic Kk. Each pair (v, e) has weight m− 1, and Em−1(v) 6 Dk(G). Thus
(1) holds if

c > β +Dk(G)β1−m. (12)

To minimise the right-hand side of this expression, define β :=
(
Dk(G) (m− 1)

)1/m. Then
(11) implies (12), so the result follows from Theorem 3.

Applying Theorem 16 to a complete graph gives the following corollary.

Corollary 17. For every integer k > 3 and c > 2, if m :=
(
k
2

)
− 1 and

mm

(m− 1)m−1

(
n− 2

k − 2

)
6 cm

then there exists an edge c-colouring of Kn with no monochromatic Kk, and Rc(k) > n.

Since mm

(m−1)m−1 < em = e
((

k
2

)
− 1
)
, Corollary 17 is slightly stronger than (10). While this

improvement only changes the implicit lower order term in (9), we consider it to be of
interest, since it suggests a new approach for proving lower bounds on Rc(k).

3.7 k-SAT

The k-SAT problem takes as input a Boolean formula ψ in conjunctive normal form, where
each clause has exactly k distinct literals, and asks whether there is a satisfying truth
assignment for ψ. The Lovász Local Lemma proves that if each variable is in at most 2k

ke

clauses, then there exists a satisfying truth assignment; see [30] for a thorough discussion of
this topic. The following result (slightly) improves upon this bound (since

(
k−1
k

)k−1
> 1

e ),
and moreover, guarantees exponentially many truth assignments.

Theorem 18. Let ψ be a Boolean formula in conjunctive normal form, with variables
v1, . . . , vn and clauses c1, . . . , cm, each with exactly k literals. Assume that each variable is
in at most ∆ := 2k

k

(
k−1
k

)k−1 clauses. Then there exists a satisfying truth assignment for ψ.
In fact, there are at least (2− 2

k )n such truth assignments.

Proof. Let G be the hypergraph with V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}, where
edge ei consists of those variables in clause ci. So G is k-uniform. Let L(vi) = {0, 1}

12



for each vertex vi. Let Bei be the set of L-colourings of ei such that ci is not satisfied.
Satisfying truth assignments for ψ correspond to B-good L-colourings of G. Each pair (v, e)

has weight k − 1. Thus Ek−1(v) 6 ∆ and Ei(v) = 0 for all i 6= k − 1. Then (1) holds with
β := 2− 2

k and c := 2. The result follows from Theorem 3.

Note that Gebauer, Szabó, and Tardos [31] proved that if each variable is in at most
(1− o(1))2k+1

ke clauses, then there exists a satisfying truth assignment, and that this bound
is best possible up to the o(1) term; see Harris [38] for further improvements. These results
improve upon the bound in Theorem 18 by a factor of 2. However, Theorem 18 may still
be of interest since it gives exponentially many satisfying assignments and is an immediate
corollary of our general framework.

See [17] for bounds on the number of satisfying truth assignments in random k-SAT formulas.

4 Reflection

We now reflect on Theorem 3, which provides a general framework for colouring hypergraphs
of bounded degree.

First we discuss minimising the number of colours in Theorem 3. To do so, one needs to
minimise the right hand side of (1), which is a Laurent series Q(β) with nonnegative integer
coefficients. We assume that at least one edge has positive weight, since otherwise Q(β)

is linear. We also assume that the coefficients in Q(β) grow slowly enough that it and its
first two derivatives converge for all β > R for some real number R. For example, when
the weight of edges is bounded (which is true in every example in this paper outside of
Section 3.3), we are optimising a Laurent polynomial, and may take R = 0. Now, Q′′(β) > 0

for all β > R, so we expect a unique minimum for Q(β) on the interval [R,∞), say at
β = β0. Since Q′(1) 6 0 (or R > 1), we must have β0 > 1. Even using a value of β 6= β0,
one still obtains a non-trivial result from Theorem 3. In fact, choosing β > β0 may be
desirable if one wants to find conditions under which there are more colourings than are
guaranteed by taking β = β0.

Compared with the Lovász Local Lemma, Theorem 3 has the advantage of directly proving
the existence of exponentially many colourings, and often gives slightly better bounds. The
proof of Theorem 3 is elementary, and as discussed above, (1) is often easier to optimise
than the General Lovász Local Lemma.

Theorem 3 should also be compared with entropy compression, which is a method that
arose from the algorithmic proof of the Lovász Local Lemma due to Moser and Tardos [47].
See [11, 18, 19, 26, 34] for examples of the use of entropy compression in the context of
graph colouring. We expect that the results in Section 3 can be proved using entropy
compression. For example, see [33, Theorem 12] for a generic graph colouring lemma in a
similar spirit to our Theorem 3 that is proved using entropy compression. However, we
consider the proof of Theorem 3 and the proofs of results that apply Theorem 3 to be
simpler than their entropy compression counterparts, which require non-trivial analytic
techniques from enumerative combinatorics. On the other hand, entropy compression has

13



the advantage that it provides an explicit algorithm to compute the desired colouring, often
with polynomial expected time complexity.

It is also likely that our results in Section 3 can be proved using the Local Cut Lemma [10]
or via cluster expansion [12]. The advantage of Theorem 3 is the simplicity and elementary
nature of its proof. See [6, 28] for results connecting the Lovász Local Lemma, entropy
compression, and cluster expansion.

Finally, we mention a technical advantage of the Lovász Local Lemma and of entropy
compression. In the setting of hypergraph colouring, the Lovász Local Lemma and entropy
compression need only bound the number of edges that intersect a given edge, whereas
Theorem 3 requires a bound on the number of edges that contain a given vertex (because
the proof is by induction on the number of vertices).
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