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Abstract

Load balancing on a multi-processor system involves redistributing tasks among processors so that each processor has roughly

the same amount of work to perform. The token-distribution problem is a static variant of the load balancing problem for the case in

which the workloads in the system cannot be divided arbitrarily; that is, where each token represents an atomic element of work. A

scalable method for distributing tokens over a parallel architecture is the so-called dimension-exchange approach. Our results include

improved analysis of two existing dimension-exchange algorithms for token distribution on arbitrary graphs and on arbitrary trees,

respectively. In particular, we establish a logarithmic upper bound on the discrepancy of the resulting distribution when the second

algorithm is applied to an arbitrary initial distribution on a tree. We then present a new dimension-exchange algorithm for token

distribution on trees, which assuming each node knows the number of nodes in the tree, determines a ‘perfectly balanced’

distribution. Furthermore, the rate of convergence is worst-case optimal for trees of bounded degree. Note that an algorithm for

token-distribution on trees is applicable to arbitrary architectures, since the algorithm can be applied on a spanning tree of any given

connected graph.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One of the fundamental data distribution problems
on parallel architectures is that of token distribution, a
static variant of the well-studied load balancing
problem. Each processing element (PE) of the parallel
architecture possesses an initial set of tokens, each of
which represents a task to be performed; the number of
tokens stored at a particular PE is called the load of that
PE. Ideally, one would prefer that the distribution of the
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tokens over the set of PEs be as even as possible, as
imbalances would result in a delay in the time needed to
perform all tasks. The goal of a token distribution
algorithm is to redistribute the tokens in such a way that
the final loads of the PEs differ as little as possible.
In this paper it is assumed that each token requires

only a constant amount of time to be sent from one PE
to an adjacent PE, and that no tokens are created or
destroyed before the redistribution is complete. We
assume that each PE has facilities for synchronous
single-port communication. Under this assumption, the
PEs are connected to their neighbours by bi-directional
communication links, and may send and receive at most
one message at any one time. This model is considerably
weaker than the ‘multiport’ model, where concurrent
communication to all the neighbours is allowed. The
multiport model has been employed for token distribu-
tion in [9,13,17,22,30]. Note that bi-directional commu-
nication links can be simulated by a constant number of
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communication steps over uni-directional links. Our
results therefore apply in this weaker model with constant
factor slow-down. We choose the bi-directional model for
ease of explanation. We model the interconnection
network of the parallel architecture by a connected
simple undirected graph, whose nodes correspond to PEs
and edges correspond to communication links.

1.1. Dimension-exchange algorithms

There are many data distribution methods that
achieve a balanced token distribution by gathering and
making use of a certain amount of global information
[4,5,7,8,20,28]. Such methods are often unsatisfactory, in
that they do not take into account the practical
limitations of the parallel architecture, or result in
algorithms that are unnecessarily complex.
One method for token distribution in the single-port

model that requires no such global information is the so-
called dimension-exchange method. To implement a
dimension-exchange algorithm on a particular parallel
architecture, the edges of the corresponding graph are
coloured such that no two edges incident to a common
node receive the same colour. (The classical result of
Vizing [29] states that a simple graph with maximum
degree D has such an edge-colouring with D þ 1
colours.) The copy of the algorithm running at
node v uses the colouring of edges incident to v in order
to pair processors for data exchange. Dimension-
exchange algorithms are invariably of the following
general form, where the set of edge colours is taken to
be f0; 1;y; w� 1g:

Algorithm Dimension-Exchange (node v)

t’0;

repeat
if there exists an edge of colour t ðmod wÞ incident
to v then
let vw be this (unique) edge;

exchange information on loads between v and w;

compare the loads of v and w according to some
protocol;

if required, send a token(s) from v to w or receive
a token(s) from w;
end-if

t’t þ 1;
until some stopping condition is satisfied;

For the dimension-exchange protocols described in
this paper, the body of the ‘if ’ statement in the
Dimension-Exchange algorithm can be implemented
in parallel across all nodes in a constant number of
communication steps. We therefore consider these steps
to be executed in one unit of time.
Definition 1. In each parallel step, those edges of
the colour under consideration are said to be active.
A sequence of w consecutive parallel steps is called a
round. (During a round every edge is active exactly
once.)

Due to their simplicity and scalability, many research-
ers have studied the applicability of dimension-exchange
techniques to load balancing problems. Cybenko [6]
proposed a dimension-exchange algorithm for the d-
dimensional hypercube under the assumption that the
load in each node is infinitely-divisible; that is, a real-
valued quantity able to be split among processors in an
arbitrary fashion. Cybenko showed that if every
exchange results in an equal sharing of the load between
the two nodes involved, then after d iterations the
difference between the maximum and minimum load
over all nodes of the network (called the discrepancy)
would be the minimum possible.
This original work prompted a steady stream of

research into the analysis of dimension-exchange
algorithms. Hosseini et al. [14] demonstrated that,
for infinitely-divisible loads, Cybenko’s analysis could
be generalised to arbitrary w-colourable networks. Xu
and Lau [31,32] and Litow [19] extended the work in [14]
by showing that for the chain, ring, mesh and toroidal
mesh topologies, the rate at which the discrepancy
converged to zero could be optimised by altering the
ratio with which infinitely-divisible loads were locally
balanced.
To date, a large body of results exist detailing the

performance of the dimension-exchange approach over
infinitely-divisible loads. On the other hand, less is
known concerning dimension-exchange under the more
realistic assumption of finitely-divisible loads; that is,
loads representable as a set of tokens.
Ranka et al. [27] studied the operation of Cybenko’s

algorithm empirically for the d-dimensional hypercube
assuming finitely-divisible loads. They observed that the
discrepancy would eventually fall to at most d: Hosseini
et al. [14] and Plaxton [25] independently confirmed this
observation by providing algorithms which, after d

steps, reduced the discrepancy to at most d:
Ghosh and Muthukrishnan [11] and Ghosh et al. [10]

studied the performance of a randomised dimension-
exchange algorithm for token distribution on arbitrary
graphs (as well as a deterministic algorithm which
transfers tokens across all edges simultaneously). Their
algorithm determines a random matching at each
parallel step, as opposed to cycling through the edges
with respect to a fixed edge-colouring.
Houle and Turner [16] proposed and analysed a

dimension-exchange algorithm for the two-dimensional
mesh and torus. The algorithm was shown to reduce the
discrepancy to two for the mesh and four for the torus,
both in worst-case optimal time. The same algorithm is
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analysed by Houle et al. [15] for token distribution on
the complete binary tree. They showed that the
discrepancy converges to at most the height of the tree,
and the rate of this convergence is optimal in the worst
case.
Load balancing from a more applied viewpoint has

also been widely studied; see [1–3,12,21,26] for example.
Note that this list is far from exhaustive. The interested
reader should refer to [21,26] and the references therein.

1.2. Our results

We now describe the contributions of this paper, and
how they improve upon existing results in the literature.
The contributions of this paper are three-fold. Firstly,

we analyse a well-known dimension-exchange protocol,
and show that for an arbitrary initial distribution of
tokens on a graph, the algorithm reduces the discre-
pancy of loads to at most the diameter of the graph.
Secondly, we provide a new analysis of the dimension-
exchange protocol introduced in [15,16] for arbitrary
trees. Previous analysis of this protocol on trees has
been for the complete binary tree only. For a given tree
T ; we determine the worst case distribution on T under
this protocol. We then prove that for an arbitrary initial
distribution on an n-node tree T with maximum degree
D; this protocol will reduce the discrepancy to at most

min
n

2

j k
; 1þ ðD � 2ÞJlog2 nn;

D þ 1

2
Jlog2 nn

� �� �
:

As an example, we show that this protocol will reduce
the discrepancy of a distribution on the complete k-ary
tree of height h (kX1; hX1) to at most

minfðk � 1Þh þ 1; ðk þ 2Þðh þ 1Þ=2g:

This result generalises the above-mentioned result of
Houle et al. [15] for the complete binary tree to the case
of any complete k-ary tree.
Thirdly, we present a new dimension-exchange algo-

rithm for trees, which assuming that each node has
knowledge of the number of nodes in the tree, reduces
the discrepancy of an arbitrary token distribution to at
most one. For trees of bounded degree, the rate of
convergence is shown to be optimal in the worst-case.
This is the first local dimension-exchange algorithm for
the token distribution problem on tree-connected
architectures that achieves optimal discrepancy. Note
that an algorithm for token-distribution on trees is
applicable to arbitrary architectures, since the algorithm
can be applied on a spanning tree of a given connected
graph.
The paper is organised as follows. In Section 2, we

formalise the token distribution problem and describe
the two existing dimension-exchange protocols for this
problem. In Sections 3 and 4 we analyse the perfor-
mance of these protocols on graphs and trees, respec-
tively. Our algorithm for reducing the discrepancy of an
arbitrary initial distribution on a tree to at most one is
presented in Section 5. Conclusions and open problems
are presented in Section 6.
2. Protocols for dimension-exchange algorithms

The token distribution problem was first posed by
Peleg and Upfal [23,24], and may be stated as follows.
Suppose we are given:

* a parallel architecture whose interconnection network
is represented by an undirected graph G ¼ ðV ;EÞ;
and

* a distribution function load: V�!N where loadðvÞ is
the number of tokens initially at the node v:

The load of a node v at time t (that is, immediately
before time step t) is denoted by loadtðvÞ: We define the
(node-)discrepancy between nodes v and w at time t;
denoted by Dtðv;wÞ; to be

Dtðv;wÞ ¼ jloadtðvÞ � loadtðwÞj:
The (edge-)discrepancy of an edge vw at time t; denoted
by Dtðv;wÞ; is the node-discrepancy between v and w at
time t: The (global) maximum and minimum load at time
t are globalMaxtðGÞ ¼ maxfloadtðvÞ : vAVg and
globalMintðGÞ ¼ minfloadtðvÞ : vAVg; respectively.
The (global) discrepancy at time t; denoted by DtðGÞ; is
defined to be the maximum node-discrepancy taken over
all pairs of nodes; that is,

DtðGÞ ¼ globalMaxtðGÞ � globalMintðGÞ:
The token distribution problem is the problem of
redistributing the tokens on a given graph so that the
global discrepancy of the resulting distribution is
minimised. The following lower bound for the time
required to solve the token distribution problem on trees
is proved in [15] using an elementary bisection-width
argument.

Observation 1. There are instances of the token distribu-

tion problem on n-node trees with discrepancy D that

require OððD� dÞ 
 nÞ parallel steps to reduce the

discrepancy to d:

In this paper, we establish upper bounds on the
discrepancy of the distribution produced by certain
algorithms. With this goal in mind, we now formalise
the notion of a distribution which ‘cannot be improved’
by a particular dimension-exchange algorithm.

Definition 1. For a given dimension-exchange algo-
rithm, we say a distribution of tokens on a graph G is
stable at some time t; if applying the algorithm leads to a
token distribution at some later time t04t with t0 �
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tðmod wÞ such that for every node v; loadtðvÞ ¼ loadt0 ðvÞ:
The maximum stable discrepancy of a graph G; with
respect to a given dimension-exchange algorithm, is the
maximum dAN such that there exists a stable distribu-
tion on G with global discrepancy d:

For each of the dimension-exchange protocols intro-
duced in this paper, an arbitrary initial distribution
always converges to a stable distribution. Hence the
maximum stable discrepancy is an upper bound on the
final discrepancy of the distribution produced by a
particular protocol.
Our first dimension-exchange protocol, called

Threshold-2, always sends a token across an edge
with discrepancy at least two, and has appeared in [10].

Protocol Threshold-2 (node v; time t)

if there exists an edge of colour t ðmod wÞ incident to v

then
let vw be this (unique) edge;

send the value loadtðvÞ to w and receive the value
loadtðwÞ from w;

if loadtðvÞXloadtðwÞ þ 2 then send one token from
v to w;
end-if

Note that with the Threshold-2 protocol running
synchronously at both v and w; a token sent from v will
be received at w and vice versa. In Section 3, we prove
that for a graph G with diameter d; the maximum
stable discrepancy of G under the Threshold-2
protocol is at most d; and hence, given an arbitrary
initial distribution of tokens on G; the Threshold-2
protocol will determine a distribution on G with
discrepancy at most d:
Our second dimension-exchange protocol, called

Threshold-1, is stated below. This rule differs from
Threshold-2 in that a token is sent across an edge
with discrepancy one. Threshold-1 was analysed for
meshes and tori in [16], and for complete binary trees
in [15]. In Section 4, we analyse Threshold-1 for
arbitrary trees.

Protocol Threshold-1 (node v; time t)

if there exists an edge of colour t ðmod wÞ incident to v

then
let vw be this (unique) edge;

send the value loadtðvÞ to w and receive the value
loadtðwÞ from w;

if loadtðvÞXloadtðwÞ þ 1 then send one token from
v to w;
end-if

We now make some elementary observations com-
mon to Threshold-2 and Threshold-1. Consider
the potential function

P
vloadðvÞ

2 under the action of
the Threshold-2 or the Threshold-1 protocol. If
the discrepancy of an active edge xy is at most one,
then the discrepancy of xy is unchanged by the
application of either protocol, and hence

P
v loadðvÞ

2

is unchanged. If the discrepancy of an active edge xy is
at least two, then under either Threshold-2 or
Threshold-1, one token is moved from the node with
greater load to the node with lesser load. It is easily seen
that in this case, loadðxÞ2 þ loadðyÞ2 decreases by at
least two. The following observation immediately
follows.

Observation 2. For an arbitrary distribution on a graph,

under the Threshold-2 or the Threshold-1 protocol,
the function

P
vloadtðvÞ2 is non-increasing with t.

This enables us to prove the following assertion
concerning stable distributions.

Lemma 2. Suppose a distribution on a graph G is stable

at time t under the Threshold-2 or the Threshold-1
protocol. Then at every time step after t; the discrepancy

of every active edge is at most one.

Proof. Suppose to the contrary that a distribution on G

is stable at time t0; and at some time t14t0 there is an
active edge xy with discrepancy at least two. We can
assume without loss of generality that t1 is the first time
after t0 that xy is active with discrepancy at least two. As
stated earlier, loadðxÞ2 þ loadðyÞ2 will decrease by at
least two at time t1: By Observation 2,

P
v loadðvÞ

2 is
non-increasing with time. ThusX

v

loadt1þ1ðvÞ
2 o

X
v

loadt0ðvÞ
2 : ð1Þ

Now applying the definition of a stable distribution,
there is some time t24t0 with t2 � tðmod wÞ such that
for every node v; loadt0ðvÞ ¼ loadt2ðvÞ: Therefore, by (1)
we haveX

v

loadt1þ1ðvÞ
2o
X

v

loadt0ðvÞ
2 ¼

X
v

loadt2ðvÞ
2: ð2Þ

After t2 the algorithm will repeat the same movement of
tokens as carried out between t0 and t2: Hence, the first
time xy is active with discrepancy at least two is before
t2; that is, t1ot2: However, Observation 2 asserts thatP

v loadðvÞ
2 is non-increasing with time, which contra-

dicts (2), as required. &

The next observation affirms that the global discre-
pancy is also non-increasing with time. An elementary
proof is given in [15].

Observation 3. For an arbitrary distribution on a graph,
the maximum load is non-increasing and the minimum

load is non-decreasing with time, under the Threshold-2
or the Threshold-1 protocol.
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3. Analysis of the Threshold-2 protocol

In this section, we analyse the dimension-exchange
protocol Threshold-2 introduced in Section 2. We first
show that under this protocol, a distribution always
converges to a stable distribution.

Lemma 3. For an arbitrary initial distribution on a graph

G; the dimension-exchange algorithm under the Thresh-
old-2 protocol will determine a stable distribution.

Proof. By Observation 2,
P

v loadðvÞ
2 is non-increasing

with time under the Threshold-2 protocol. A token is
moved across an active edge under the Threshold-2
protocol if and only if the discrepancy of the edge is at
least two. In this case,

P
v loadðvÞ

2 decreases by at least
two. Since

P
v loadðvÞ

2 is bounded from below (for a
fixed total number of tokens), the number of moves is
finite. Therefore, there is some time t after which every
active edge has discrepancy at most one. After t there is
no movement of tokens, and thus the distribution is
stable at t: &

We now characterise stable distributions under the
Threshold-2 protocol.

Lemma 4. A distribution on a graph G is stable under the

Threshold-2 protocol if and only if every edge of G has

discrepancy at most one.

Proof. ð(Þ Observe that if every edge has discrepancy
at most one, then during the course of one round there is
no movement of tokens, and thus the distribution is
stable.

ð)Þ Suppose that at time t0 the distribution is
stable. By Lemma 2, every active edge after t0 has
discrepancy at most one. Therefore, there is no move-
ment of tokens. In the round starting at t0 every edge
becomes active. Hence, every edge has discrepancy at
most one. &

This enables us to prove the main result of this
section.

Theorem 5. Let G be a connected graph with diameter d:
Given an arbitrary initial distribution of tokens on G; the

Threshold-2 protocol will determine a distribution on G

with discrepancy at most d:

Proof. By Lemma 3, the Threshold-2 protocol will
determine a stable distribution. Hence the maximum
stable discrepancy is an upper bound on the discrepancy
of the final distribution.
We now show that the maximum stable discrepancy

of G under the Threshold-2 protocol is at most d:
Suppose there is a stable distribution on G; and that P is
a shortest path from a node with minimum load to a
node with maximum load. P has at most d edges and, by
Lemma 4, the discrepancy of edges on P is at most one.
Hence the difference between the loads of the end-nodes
of P is at most d: Hence the global discrepancy is at
most d:
We now show that there exists a stable distribution on

G with discrepancy d: Let P be a path in G with d edges,
and let v be an end-node of P: Set the load of every node
w of G to be the graph-theoretic distance from w to v:
This distribution has discrepancy d and the discrepancy
of every edge is at most one. By Lemma 4, the
distribution is therefore stable under the Threshold-2
protocol.
Hence the maximum stable discrepancy of G is d; and

therefore the Threshold-2 protocol will determine a
distribution with discrepancy at most d: &
4. Analysis of the Threshold-1 protocol

In this section, we provide a number-theoretic method
for determining the maximum stable discrepancy of a
given tree under the Threshold-1 protocol introduced
in Section 2. The Threshold-1 protocol differs from
Threshold-2 in that a token is moved across an edge
with discrepancy one. In this case, the discrepancy of the
edge and

P
v loadtðvÞ2 do not change. Hence the analysis

introduced in Section 3 for the Threshold-2 protocol is
not applicable to Threshold-1. The following subsec-
tion introduces the notion of an observer tour which is
subsequently used in the analysis of the Threshold-1
protocol.

4.1. The observer tour

Let T be a tree whose edges are coloured 0; 1;y; w�
1: (Using depth-first search for example, the edges of a
tree with maximum degree D can be coloured with w ¼
D colours.) Consider the directed graph T 0 obtained
from T by adding w� degðvÞ self-loops to each node v;
where degðvÞ is the degree of v in T ; and replacing each
edge vw of T by two directed arcs vw

�!
and wv

�!
: Every

node v of T 0 has in-degree w and out-degree w (where a
self-loop counts as both incoming and outgoing).
Colour the arcs vw

�!
and wv

�!
of T 0 with the same colour

as the edge vw in T ; and colour the self-loops of T 0 so
that for every colour cAf0; 1;y; w� 1g; each node has
precisely one incoming arc and one outgoing arc
coloured with c:

Definition 2. The observer tour of T is the cyclic
sequence S of the arcs of T 0 defined by the following
rule: if vw

�!
is coloured c then the outgoing arc at w

coloured ðc þ 1Þmod w is immediately after vw
�!

in S:
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For each edge vw of T ; vw denotes the start-node of
the arc vw

�!
in the observer tour of T ; as shown in Fig. 1.

The following lemma enables us to analyse the
Threshold-2 protocol for trees.

Lemma 6. For a tree T ; the observer tour defines an

Eulerian tour of T 0:

Proof. Suppose the arc vw
�!

is coloured c: The next arc in
the observer tour after vw

�!
which is also incident with v is

wv
�!

(otherwise there is a cycle in T). By definition, wv
�!

is
also coloured c; and thus the arc following wv

�!
in the

observer tour is the outgoing arc at v coloured ðc þ
1Þmod w: Continuing in this manner, if the outgoing arcs
at v are ordered ðvw0

�!
; vw1
�!

;y; vww�1
�! Þ in the observer

tour then vwc
�!

; 0pcpw� 1; is coloured c: Therefore, at
each node v all arcs incident with v are traversed before
the observer tour repeats itself. Hence the observer tour
includes all arcs of T 0 and therefore is an Eulerian tour
of T 0: &

For each edge vw of T ; we denote by Tðv;wÞ
the connected subtree of T obtained by removing vw;
and containing the node v: Since every node has w
outgoing arcs in T 0; each node of Tðv;wÞ contributes
precisely w arcs to the directed path on the observer
tour from wv to vw: Hence we have the following
observation, where the number of nodes in a tree T is
denoted by jT j:

Observation 4. For each edge vw of a tree T ; the number

of arcs from wv to vw on the observer tour is w 
 jTðv;wÞj:

The observer tour defines w orderings of the nodes of
T in the following manner. For each colour
cAf0; 1;y; w� 1g; let Ec ¼ ðe0
�!

; e1
�!

;y; en�1
�! Þ be the

cyclic ordering of the arcs in T 0 coloured with c ordered
as they appear in the observer tour. Each node has one
outgoing arc in Ec: If ei

�!
and ej

�!
are the outgoing arcs in

Ec at distinct nodes v and w; respectively, then we say
the c-gap from v to w is

gapcðv;mÞ ¼ ðj � iÞmod n:

Since 1pgapcðv;wÞpn � 1; we call an integer
pAf1; 2;y; n � 1g a gap of T : Clearly gapcðv;mÞ þ
gapcðw; vÞ ¼ n: It follows from the definitions that for all
nodes v;w;x of T ;

gapcðv;mÞ ¼ ðgapcðv; xÞ þ gapcðx;wÞÞmod n: ð3Þ

In the tree shown in Fig. 1, the 0-ordering is
ða; d; c; e; f ; g; h; b; j; k; l; i; n; o;mÞ; the 1-ordering is
ðb; d; e; c; g; f ; h; a; k; j; l;m; n; o; iÞ; and the 2-ordering is
ðc; d; e; b; g; h; f ; i; k; l; j; n;m; o; aÞ: The gaps between the
nodes a and b are gap0ða; bÞ ¼ 7; gap0ðb; aÞ ¼ 8;
gap1ða; bÞ ¼ 8; gap1ðb; aÞ ¼ 7; gap2ða; bÞ ¼ 4 and
gap2ðb; aÞ ¼ 11:

4.2. Observers and phases

The Threshold-1 protocol has the effect of circulat-
ing tokens. To see this, consider the action of the
Threshold-1 protocol, in the case that a node v of the
tree T initially contains one token, and all other nodes
contain zero tokens. If xy is an active edge with
loadðxÞ ¼ 1 and loadðyÞ ¼ 0 then one token is sent
from x to y: Hence loadðxÞ becomes zero and loadðyÞ
becomes one. The token will thus follow the sequence of
edges starting at v which are coloured 0; 1; 2;y; that is,
it follows the observer tour. By Lemma 6, the observer
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tour is an Eulerian tour of T 0: Since T 0 has w 
 n arcs,
after w 
 n steps, the token will have traversed the entire
tree and will have returned to v:

Definition 3. A phase is a sequence of n con-
secutive rounds; that is, w 
 n consecutive parallel steps.
A phase commencing at time t � cmod w is called a c-
phase.

For our purposes it shall suffice to consider disjoint c-
phases for some fixed colour c:
In order to analyse the effects of the Threshold-1

protocol on the circulation of tokens, it will be
convenient to view tokens from a vantage point which
itself circulates through the tree. Associated with each
node v of the tree, we consider there to be an ‘observer’
which at the start of a phase is at v and thereafter
follows the observer tour. At each time step, each
observer inspects the load of its current node; it is the
sequence of load values encountered by an observer that
we wish to analyse. We formalise these notions as
follows.

Definition 4. Consider a phase of the dimension-
exchange algorithm on a tree T starting at time t0 �
cmod w: For each node v of T the observer of v at time t;
t0ptot0 þ w 
 n; denoted by obstðvÞ; is the node w with
gapcðv;mÞ ¼ t: We say obsðvÞ is at w at time t

if obstðvÞ ¼ w: (The load of an observer is thus the
load of the node where the observer is currently
situated.) At a particular time point during the
phase, we say an observer is maximum (respectively,
minimum) if the current load of the observer equals
Fig. 2. Movement of an obser

Fig. 3. Example of one ph
globalMaxt0
ðTÞ ðglobalMint0

ðTÞÞ; that is, the maximum
(minimum) load at the start of the phase.
Suppose that obsðvÞ is a maximum (respectively,

minimum) observer, and at some time point in a phase,
obsðvÞ is at a node x and the edge xy is active. If the
discrepancy of xy is at most one, then the load of obsðvÞ
is unchanged as obsðvÞ moves to y; as shown in Fig. 2(a)
and (b). Otherwise, the discrepancy of xy is at least two,
and obsðvÞ will no longer be a maximum (minimum)
observer after it moves to y; as shown in Fig. 2(c).
We therefore have the following observation.

Observation 5. Let obsðvÞ be at node x and the edge xy be

active. Then under the action of the Threshold-1
protocol, the load of obsðvÞ increases/decreases if and

only if the edge discrepancy DðxyÞX2 and x is more

lightly/heavily loaded.

Fig. 3 provides an example of a stable token
distribution on the complete binary tree of height two.
The colour of each edge and the load of each node after
each parallel step is indicated. There are two maximum
observers and one minimum observer, each of which
remain maximum or minimum observers throughout
the phase.

Lemma 7. Consider a phase of Threshold-1 on a

tree T starting at time t0 and ending at time t1:
If globalMint0

ðTÞ ¼ globalMint1
ðTÞ; then all nodes

v with loadt1ðvÞ ¼ globalMint1
ðTÞ had loadt0ðvÞ ¼

globalMint0
ðTÞ: Similarly, if globalMaxt0

ðTÞ ¼
globalMaxt1

ðTÞ; then all nodes v with loadt1ðvÞ ¼
globalMaxt1

ðTÞ had loadt0ðvÞ ¼ globalMaxt0
ðTÞ:
ver under Threshold-1.

ase of Threshold-1.
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Fig. 4. Relative positions of v; w; and the edge xy in the c-ordering

starting at v:
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Proof. We shall prove the result for the minimum
load. The proof for the maximum load is analogous.
Suppose on the contrary that there exists a node
v with loadt0ðvÞ4globalMint0

ðTÞ and loadt1ðvÞ ¼
globalMint1

ðTÞ ¼ globalMint0
ðTÞ: At some time

during the phase the load of obsðvÞ has decreased
to globalMint0

ðTÞ: Let x and y be the nodes such
that by obsðvÞ moving from x to y the load of
obsðvÞ first decreases from globalMint0

ðTÞ þ 1 to
globalMint0

ðTÞ: By Observation 5, for the load of
obsðvÞ to decrease we must have that DðxyÞX2 and
loadðxÞ ¼ globalMint0

ðTÞ þ 1XloadðyÞ þ 2: Hence
loadðyÞpglobalMint0

ðTÞ � 1: However this contradicts
Observation 3, which asserts that the minimum load is
on-increasing with time. &

We now show that the dimension-exchange algorithm
using the Threshold-1 protocol converges to a stable
distribution.

Lemma 8. For an arbitrary initial distribution on a tree

T ; under the Threshold-1 protocol, the dimension-

exchange algorithm will determine a stable distribution.

Proof. Suppose the active edge vw has discrepancy at
least two. In this case, the Threshold-1 protocol will
always move a token, and as a result

P
vloadðvÞ

2

decreases by at least two. Since
P

vloadðvÞ
2 is bounded

below (for a fixed total number of tokens), and since
under Threshold-1

P
v loadðvÞ

2 is non-increasing, the
number of moves across edges with discrepancy at least
two is finite. Thus there is some time t after which every
active edge has discrepancy at most one. During the
phase starting at t; the load of every observer will not
change; thus at the completion of the phase each node
has the same load as at the start. Therefore the
distribution is stable. &

As a result of Lemma 8, the maximum stable
discrepancy provides an upper bound on the final
discrepancy of a given distribution under the Thresh-
old-1 protocol.

4.3. Maximum stable discrepancy

We now describe how to determine the maximum
stable discrepancy of a tree T ¼ ðV ;EÞ under the
Threshold-1 protocol. Suppose there is a stable
distribution on T at time t � c mod w: In Lemma 9
below we show that if gapcðv;mÞ ¼ jTðx; yÞj for some
pair of nodes v; w and some edge xy; then the node-
discrepancy Dtðv;wÞp1: We therefore define the stable

gaps for discrepancy 1 as follows:

SG1ðTÞ ¼ fjTðx; yÞj; jTðy; xÞj : xyAEg:
Since jTðx; yÞj þ jTðy; xÞj ¼ n; if pASG1ðTÞ then n �
pASG1ðTÞ: For T2;2; the complete binary tree of height
two (see Fig. 3), SG1ðT2;2Þ ¼ f1; 3; 4; 6g; and for T3;2;
the complete binary tree of height three (see Fig. 1),
SG1ðT3;2Þ ¼ f1; 3; 7; 8; 12; 14g:
We now show that the stable gaps for discrepancy 1

determine which observers meet at an active edge during
a phase.

Lemma 9. Under the action of the Threshold-1
protocol on a tree T ; two observers obsðvÞ and obsðwÞ
in a particular c-phase are at end-nodes of a common

active edge during this phase if and only if

gapcðv;mÞASG1ðTÞ:

Proof. ð(Þ Suppose gapcðv;mÞASG1ðTÞ: Then, by the
definition of SG1ðTÞ; there is some edge xy in T with
gapcðv;mÞ ¼ jTðx; yÞj: Throughout the phase, the num-
ber of arcs on the observer tour from obsðvÞ to obsðwÞ is
w 
 jTðx; yÞj: By Observation 4, the number of arcs from
yx to xy on the observer tour is w 
 jTðx; yÞj: Hence, as
illustrated in Fig. 4, when obsðvÞ is at yx; obsðwÞ will be
at xy: The edge on the observer tour immediately ahead
of an observer is always active. Hence xy is active at this
time as required.

ð)Þ Now suppose that obsðvÞ and obsðwÞ are at
nodes y and x; respectively at some time point during
the phase, and that xy is an active edge. Since the
number of edges from yx to xy on the observer tour is
w 
 jTðx; yÞj; and the number of edges on the observer
tour from one observer to another is constant during a
phase, it follows that gapcðv;mÞ ¼ jTðx; yÞj; and thus
gapcðv;mÞASG1ðTÞ: &

In a stable distribution, whenever two observers meet
at an active edge, their discrepancy must be at most one.
Since Lemma 9 characterises when two observers will
meet at an active edge, we have a necessary condition for
a distribution to be stable. The next result asserts that
this condition is sufficient.

Lemma 10. A distribution on a tree T is stable under the

Threshold-1 protocol at some time t � cmod w if and
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only if every pair v;w of nodes of T with

gapcðv;mÞASG1ðTÞ has node-discrepancy Dtðv;wÞp1:

Proof. ð(Þ If for each pair v;w of nodes of T with
gapcðv;mÞASG1ðTÞ we have Dtðv;wÞp1; then by
Lemma 9, every active edge during the c-phase starting
at t has discrepancy at most one. Hence the load of every
observer does not change, and at the completion of this
phase each node has the same load as at the start.
Therefore the distribution is stable.

ð)Þ Consider a stable distribution on T at time t

under the Threshold-1 protocol. Suppose on the
contrary, that gapcðv;mÞASG1ðTÞ for some pair of
node v; w of T ; and Dtðv;wÞX2: By Lemma 2, the
discrepancy of every active edge after t is at most one.
Hence the load of obsðvÞ and obsðwÞ will be unchanged
after t: By Lemma 9, obsðvÞ and obsðwÞ will be at end-
nodes of an active edge xy at some time t0 during the c-
phase starting at t: Therefore 1XDt0 ðxyÞ ¼ Dt0 ðv;wÞX2;
which is a contradiction as required. &

For any stable distribution at time t � cmod w;
we have shown that if two nodes have c-gap in
SG1ðTÞ; then their node-discrepancy must be at most
one. If two nodes have a c-gap of ðp þ qÞmod n; for
some p; qASG1ðTÞ; then in a stable distribution
their node-discrepancy must be at most two. We
therefore define the stable gaps for discrepancy i ðiX2Þ
as follows:

SGiðTÞ ¼
Xk

j¼1
pj

 !
mod n : pjASG1ðTÞ; 1pkpi

( )
:

Note that SGiðTÞ is not defined with respect to a
particular edge-colouring of T ; and for each iX2;

SGiðTÞ ¼ SGi�1ðTÞ,fðp þ qÞmod n : pASGi�1ðTÞ;
qASG1ðTÞg: ð4Þ

We define the stability of a gap p of T to be

stabilityðpÞ ¼ minfiX1 : pASGiðTÞg:
For each gap p; if pASGiðTÞ then n � pASGiðTÞ; and

hence stabilityðpÞ ¼ stabilityðn � pÞ: Lemma 10 pro-
vided our first characterisation of stable distributions
under the Threshold-1 protocol. We now provide
a second characterisation of stable distributions under
the Threshold-1 protocol in terms of the stability
of gaps.

Theorem 11. Let T be a tree whose edges are coloured

0; 1;y; w� 1: Under the Threshold-1 protocol, a

distribution on T is stable at time t � cmod w if and

only if for all pairs of nodes v; w of T ; the node-

discrepancy Dtðv;wÞpstabilityðgapcðv;mÞÞ:

Proof. ð(Þ Suppose that for all pairs of nodes v; w of T

the node-discrepancy Dtðv;wÞpstabilityðgapcðv;mÞÞ:
Then for all pairs of nodes v; w of T with
gapcðv;mÞASG1ðTÞ; the node-discrepancy Dtðv;wÞp1:
By Lemma 10, the distribution is stable.

ð)Þ We prove the ‘only if ’ part of this result by
induction on i with the following induction hypothesis:

If a distribution on T is stable at time t � cmod w
under the Threshold-1 protocol, then for all pairs of

nodes v;w of T with stabilityðgapcðv;mÞÞ ¼ i; the node-

discrepancy Dtðv;wÞpi:
The basis of the induction with i ¼ 1 is the ‘only

if ’ assertion in Lemma 10. Let iX2; and assume that
the induction hypothesis is true for values less than i:
Assume, to the contrary, that there is a stable
distribution on T at time t � c mod w such that
for some nodes v and w with stability ðgapcðv;mÞÞ ¼ i;
the node-discrepancy Dtðv;wÞXi þ 1: Thus gapcðv;mÞA
SGiðTÞ\SGi�1ðTÞ; and hence

gapcðv;mÞ ¼
Xi

j¼1
pj

 !
mod n; ð5Þ

with pjASG1ðTÞ: Let x be the node with gapcðv; xÞ ¼ pi:
By (3), gapcðv; xÞ þ gapcðx;wÞ ¼ gapcðv;mÞ: Hence
gapcðx;wÞ ¼ gapcðv;mÞ � pi; and by (5),

gapcðx;wÞ ¼
Xi�1
j¼1

pj

 !
mod n:

Thus gapcðx;wÞASGi�1ðTÞ; and by the induction
hypothesis, Dtðx;wÞpi � 1: Since piASG1ðTÞ; by the
basis of the induction, Dtðv; xÞp1: By the triangle
inequality, Dtðv;wÞpDtðv; xÞ þ Dtðx;wÞp1þ ði � 1Þ ¼
i; which contradicts our initial assumption. &

The characterisation of stable distributions in Theo-
rem 11 can be used to determine a stable distribution on
a tree T with maximum discrepancy. For an n-node tree
T ; we define

MSDðTÞ ¼ minfiX1 : SGiðTÞ ¼ f1; 2;y; n � 1gg:

Equivalently, MSDðTÞ is the maximum stability taken
over all gaps of T : Note that MSDðTÞ is not defined
with respect to a particular edge-colouring of T :

Theorem 12. The maximum stable discrepancy of a tree

T under the Threshold-1 protocol is MSDðTÞ:

Proof. By Theorem 11, for every edge-colouring of T

with colours 0; 1;y; w� 1; and for each colour
cAf0; 1;y; w� 1g; in a stable distribution on T at time
t � cmod w; for all pairs of nodes v;w of T ; the node-
discrepancy Dtðv;wÞpstabilityðgapcðv;mÞÞ: For every
gap pAf1; 2;y; n � 1g; there exist pairs of nodes v; w

with gapcðv;mÞ ¼ p: Therefore the global discrepancy is
at most the maximum of stabilityðpÞ taken over all gaps
pAf1; 2;y; n � 1g: Since SGiðTÞDSGiþ1ðTÞ; this max-
imum is precisely MSDðTÞ: Hence there is no stable
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distribution on T with greater global discrepancy than
MSDðTÞ:
We now construct, for an arbitrary time t; a

distribution on T with discrepancy MSDðTÞ which is
stable at time t: Let s be an arbitrary node of T : Set
loadðsÞ’0; and for every other node v; set
loadðvÞ’stabilityðgapcðs; vÞÞ where t � cmod w; that is,

loadðvÞ ¼ minfiX1 : gapcðs; vÞASGiðTÞg:

Since SGi�1ðTÞDSGiðTÞ for every iX2; the discrepancy
of this distribution is MSDðTÞ:
It remains to be shown that the distribution is stable

at time t: Consider the action of the Threshold-1
protocol for the c-phase starting at t: Suppose on
the contrary, that at some time t0Xt an edge xy

with discrepancy at least 2 becomes active. Without
loss of generality loadðxÞXloadðyÞ þ 2; and t0 is the
first step of the phase at which such an edge becomes
active.
Before step t0 in the phase, the discrepancy of every

active edge is at most one. Thus, by Observation 5, the
load of each observer is unchanged. In particular, if
obsðvÞ and obsðwÞ are at x and y; respectively, then
loadðxÞ ¼ minfiX1 : gapcsvASGiðTÞg and loadðyÞ ¼
minfiX1 : gapcðs;wÞASGiðTÞg:
Let j ¼ loadðyÞ: Hence gapcðs;wÞASGjðTÞ: Since

obsðvÞ and obsðwÞ are end-nodes of an active edge, by
Lemma 9, gapcðv;mÞASG1ðTÞ: By (3), gapcðs; vÞ ¼
ðgapcðs;wÞ þ gapcðw; vÞÞmod n; and by (4),
gapcðs; vÞASGjþ1ðTÞ: Thus loadðxÞpj þ 1 ¼ loadðyÞ þ
1; which contradicts our assumption that
loadðxÞXloadðyÞ þ 2; as required.
Therefore, during the phase there is no active edge

with discrepancy at least two. Thus throughout the
phase the load of each observer is unchanged, and at the
end of the phase, each node has the same load as at the
start. Hence this distribution is stable, and therefore the
maximum stable discrepancy is MSDðTÞ: &

Note that for any given n-node tree T ; the maximum
stable discrepancy of T can be determined by first
computing SG1ðTÞ; and then repeatedly building
SGiðTÞ until SGiðTÞ ¼ f1; 2;y; n � 1g: Since SG1ðTÞ
can be computed in linear time by means of a depth-first
search of T ; and since SGiðTÞ can be computed from
SGi�1ðTÞ according to (4) in Oðn2Þ time, the maximum
stable discrepancy of T can be determined in Oðn2 

MSDðTÞÞ sequential time. The proof of Theorem 12
describes how to compute a distribution on T with
maximum discrepancy.

4.4. Bounds for the maximum stable discrepancy

First we establish a linear upper bound on the
maximum stable discrepancy of an arbitrary tree under
the Threshold-1 protocol.
Lemma 13. Under the Threshold-1 protocol, the

maximum stable discrepancy of an n-node tree is at most

n=2:

Proof. Observe that, for an arbitrary n-node tree T ; if a
gap pAf1; 2;y;In=2mg is the sum of at most i terms in
SG1ðTÞ for some iX1; then pASGiðTÞ and n �
pASGiðTÞ: Since all trees have a node of degree one,
1ASG1ðTÞ: If pAf1; 2;y;In=2mg then p ¼ p 

1ASGIn=2mðTÞ and also n � pASGIn=2mðTÞ: Thus
SGIn=2mðTÞ ¼ f1; 2;y; n � 1g; and by Theorem 12,
the maximum stable discrepancy of T is at most
n=2: &

We now establish a logarithmic upper bound on
the maximum stable discrepancy of an arbitrary tree
under the Threshold-1 protocol. The construct

subgraph algorithm to follow, given a tree T and gap
p of T ; determines a connected subtree a with
p nodes. It does so by building up the subgraph a
from a single node, and maintaining a connected
subgraph b; disjoint from a; of candidate nodes
for inclusion into a such that b has one node adjacent
to a node in a: We implicitly associate the subgraphs
a and b with the sets of nodes which respectively
induce them.
The algorithm makes use of the centroid of a

tree, defined as follows. For each node v of a tree
T ; let

CðvÞ ¼ maxfjSj : S is a connected subgraph of T\fvgg:

A centroid is any node v of T for which CðvÞ is
minimum. Kang and Ault [18] have shown that if v is a
centroid of T ; then CðvÞpjT j=2:

Algorithm CONSTRUCT SUBGRAPH (gap p of a tree
T ¼ ðV ;EÞ))

choose a leaf-node l of T ;

set a’flg; b’V \flg;

While jajop do
let v be a centroid node of b with d ¼ degðvÞ (see
Fig. 5);

let b1; b2;y; bd be the connected subgraphs of
b\fvg such that

b1 contains a node adjacent to a node in a; or

if v is adjacent to a node in a then b1 ¼ |;
Case 1: if jaj þ jb1j4p then set b’b1; else

Case 2: if jaj þ jb1j ¼ p then set a’a,b1;else

Case 3: if jaj þ jb1jop then Pn o

set i’min jX1 : jaj þ 1þ j

k¼1 jbkj4p ;Si�1
set a’a,fvg, j¼1 bj ;

set b’bi;
end-if
end-while
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Fig. 6. Vertices vi and subgraphs of size gi; j associated with a

subgraph a:

Fig. 5. The subgraphs b1;b2;y;bd associated with a centroid node v

of b:
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Lemma 14. Given a gap p of an n-node tree T with

maximum degree D, the algorithm Construct Sub-
graph determines a connected p-vertex subtree a of T
within Jlog2 nn iterations of the while-loop.

Proof. We now show that at the start of each iteration
of the algorithm the following invariants hold: (a) a and
b are connected disjoint subtrees, (b) there is one edge
between a and b; and (c) jaj þ jbjXp: Let a0 and b0 be the
new values of a and b after some iteration of the
algorithm. In Case 1, a0 ¼ a and b0 ¼ b1 are connected
subgraphs with one edge between b1 and a; and ja0j þ
jb0j ¼ jaj þ jb1j4p: In Case 2, a0 ¼ a,b1 with jaj þ
jb1j ¼ p; thus ja0j ¼ p: Therefore following Case 2 the
algorithm terminates. In Case 3, a0 and b0 are connected
subgraphs, the edge from v to bi connects a

0 and b0; and
ja0j þ jb0j ¼ jaj þ 1þ

Pi
k¼j jbj j4p:

In Case 1 and 3 of the algorithm, b is replaced by a
connected subgraph bi of b\fvg: By the result in [18]
discussed above, jbijpjbj=2: Initially jbj ¼ n � 1; thus
after Jlog2 nn iterations jbj ¼ 0: Since the algorithm
maintains that jaj þ jbjXp; after Jlog2 nn iterations
jajXp; and thus the algorithm will have terminated.
Upon termination, a is a connected subgraph with p

vertices. &

Lemma 15. Let p be a gap of an n-node tree T with

maximum degree D; and let M ¼ min 1þ ðD � 2Þf
Jlog2 nn; Dþ1

2
Jlog2 nn

� �
g: Then pASGMðTÞ:

Proof. Let a be the subgraph produced by CON-

STRUCT SUBGRAPH (p). Then jaj ¼ p: Let
v1; v2;y; vr be the vertices in a incident to an edge
whose other endpoint is not in a: Each vi corresponds to
a centroid node chosen in some iteration of the
algorithm (when Case 3 is executed), or the node in b1
adjacent to the centroid node (when Case 1 or Case 2 is
executed). In either case each vi corresponds to a distinct
iteration of the algorithm. Hence by Lemma 14,
rpJlog2 nn:
For each vertex vi; 1pipr; let wi;1;wi;2;y;wi;ci
be the

nodes adjacent to vi which are not in a; and let
wi;ciþ1;wi;ciþ2;y;wi;di

be the nodes adjacent to vi which
are in a; where di ¼ degðviÞ: For 1pjpdi; let gi; j ¼
jTðwi;jviÞj; see Fig. 6.
Each gi; jASG1ðTÞ and thus n � gi; jASG1ðTÞ: We can

express p as the sum modulo n of terms in SG1ðTÞ as
follows:

p ¼ n �
Xr

i¼1

Xci

j¼1
gi; j ¼

Xr

i¼1

Xci

j¼1
ðn � gi; jÞ ðmod nÞ:

Let M1 ¼
Pr

i¼1ci: Then p is the sum modulo n of M1

terms of SG1ðTÞ; and hence pASGM1
ðTÞ:

We now establish an upper bound on M1: If vi is a
‘Case 1’ or ‘Case 2’ node then ci ¼ 1: Suppose vi is a
centroid node chosen when Case 3 of the algorithm is
executed. If jaj þ jb1j ¼ p � 1 then a will be replaced by
a,b1,fvg (the algorithm will terminate on the next
iteration), and hence ci ¼ di � 1pD�1: If jaj þ
jb1j4p � 1 then at least b1 and b2 will be added to a;
and hence cipdi � 2pD�2: Thus M1p1þ

Pr
i¼1 ðdi �

2Þp1þ ðD � 2Þr: Hence pASG1þðD�2ÞrðTÞ: Since
rpJlog2 nn; pASG1þðD�2ÞJlog2nnðTÞ: This establishes
the first part of the result.
We can also express n � p as the sum of terms in

SG1ðTÞ as follows:

n � p ¼
Xr

i¼1

Xci

j¼1
gi; j

¼ � r þ
Xr

i¼1
1þ

Xci

j¼1
gi; j

 !

¼ � r þ
Xr

i¼1
n �

Xdi

j¼ciþ1
gi; j

 !
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¼ðn � rÞ þ
Xr

i¼1

Xdi

j¼ciþ1
ðn � gi; jÞ ðmod nÞ:

r ¼ r 
 1 is the sum of r terms of SG1ðTÞ: Hence n � r is
the sum modulo n of at most r terms of SG1ðTÞ; see
Lemma 13. Since each n � gi; jASG1ðTÞ; it follows that
n � p is the sum modulo n of at most

r þ
Xr

i¼1
ðdi � ciÞ ¼

Xr

i¼1
ð1þ di � ciÞ

p
Xr

i¼1
ðD þ 1� ciÞ ¼ rðD þ 1Þ � M1

terms of SG1ðTÞ: Hence n � pASGrðDþ1Þ�M1
ðTÞ and

thus pASGrðDþ1Þ�M1
ðTÞ: Clearly minfM1; rðD þ 1Þ �

M1gpIrðD þ 1Þ=2m: Hence pASGIrðDþ1Þ=2mðTÞ: Since
rpJlog2 nn; pASGIðDþ1ÞJlog2 nn=2mðTÞ: This establishes
the second part of the result. &

Since every gap is in SGMðTÞ; MSDðTÞpM; and by
Theorem 12, the maximum stable discrepancy of T is at
most M: Also, by Lemma 13 the maximum stable
discrepancy of T is at most n=2: By Lemma 8, under the
Threshold-1 protocol, the distribution always con-
verges to a stable distribution. We therefore have the
following result.

Theorem 16. Given an arbitrary initial distribution of

tokens on an n-node tree with maximum degree D; under

the Threshold-1 protocol, the final distribution has

discrepancy at most

min
n

2

j k
; 1þ ðD � 2ÞJlog2 nn;

D þ 1

2
Jlog2 nn

� �� �
:

4.5. Examples

Let Sk be the k-star; that is, the tree with k edges all
incident to a single node. Then SG1ðSkÞ ¼ f1g: It
follows that MSDðSkÞ ¼ Iðk þ 1Þ=2m ¼ In=2m; and
hence Lemma 13 is tight for Sk: By Theorem 5, the
maximum stable discrepancy of Sk under the Thresh-
old-2 protocol is 2: Therefore, the Threshold-2
protocol is superior to the Threshold-1 protocol for
star architectures. Conversely, by Theorem 5, the n-node
path Pn has maximum stable discrepancy of n � 1 under
the Threshold-2 protocol, and since SG1ðPnÞ ¼
f1; 2;y; n � 1g; Theorem 12 implies that Pn has
maximum stable discrepancy of 1 under the Thresh-
old-1 protocol. Therefore for paths, Threshold-1 is
superior to Threshold-2.
Houle et al. [15], who introduced the Threshold-1

protocol for trees, provided analysis only in the case of
the complete binary tree. We now provide two upper
bounds on the maximum stable discrepancy of the
complete k-ary tree under the Threshold-1 protocol.
The first uses an inductive argument and matches the
bound in [15] for k ¼ 2 (up to an additive constant of 1).
The second strengthens the generic result of Theorem 16
to provide a better bound for large values of k:

Lemma 17. Under the Threshold-1 protocol, the

maximum stable discrepancy of the complete k-ary tree

of height h; Th;k ðkX1; hX1Þ is at most minfðk � 1Þh þ
1; ðk þ 2Þðh þ 1Þ=2g:

Proof. We first prove the upper bound of ðk � 1Þh þ 1:
The number of nodes in Th;k is jTh;kj ¼ khþ1�1

k�1 : We
proceed by induction on the height h of Th;k (for fixed
kX1) with the following inductive hypothesis. Since
each jTj;kjASG1ðTh;kÞ; the result will follow.

Every gap p of Th;k is the sum of at most ðk � 1Þh þ 1
terms in fjTj;kj : 0pjph � 1g:
The induction basis with h ¼ 1 is trivial, since for

every gap pAf1; 2;y; jTh;kj � 1g ¼ f1; 2;y; kg; p ¼ p 

1 is the sum of at most k terms in fjTj;kj : 0pjph �
1g ¼ f1g: Let hX2; and assume that the induction
hypothesis holds for h � 1: For every gap p of Th;k;

ppjTh;kj � 1 ¼ khþ1 � 1� ðk � 1Þ
k � 1

¼ kðkh � 1Þ
k � 1

¼ kjTh�1;kj:

Let q be the quotient and r the remainder when p is
divided by jTh�1;kj; that is, p ¼ qjTh�1;kj þ r with qpk

and rpjTh�1;kj � 1: Suppose r ¼ 0: Then p ¼ qjTh�1;kj
and qpkpðk � 1Þh þ 1: Thus the induction hypothesis
holds. Suppose r40: Then qpk � 1 and rpjTh�1;kj � 1
is a gap of Th�1;k: It follows from the induction
hypothesis applied to r with a value of h � 1 that r is
the sum of at most ðk � 1Þðh � 1Þ þ 1 terms of fjTj;kj :
0pjph � 2g: Thus p is the sum of q þ ðk � 1Þðh � 1Þ þ
1pðk � 1Þ þ ðk � 1Þðh � 1Þ þ 1 ¼ ðk � 1Þh þ 1 terms of
fjTj;kj : 0pjph � 1g:
Hence the induction hypothesis is true for all hX1: It

is easily seen that for each j; 0pjph � 1;
jTj;kjASG1ðTh;kÞ: Thus each gap p of Th;k is in
SGðk�1Þhþ1ðTh;kÞ; and by Theorem 12, the maximum
stable discrepancy of Th;k under the Threshold-1
protocol is at most ðk � 1Þh þ 1:
We now prove the upper bound of ðk þ 2Þðh þ 1Þ=2:

Consider the Construct Subgraph algorithm applied
to a complete k-ary tree of height h: In the first iteration,
the subtree b is a complete k-ary tree with a leaf-node
removed. Thereafter b is a complete k-ary tree with
progressively smaller height. Hence bi ¼ ðjbj � 1Þ=k;
and therefore the algorithm terminates in Jlogk nn ¼
h þ 1 iterations. Since the maximum degree is k þ 1;
it follows using the analysis of Lemma 15 that
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the maximum stable discrepancy is at most
ðk þ 2Þðh þ 1Þ=2: &

We conjecture that for all kX1 and hX1; the
maximum stable discrepancy of Th;k under the Thresh-
old-1 protocol is Iðk � 1Þh=2m or Iðk � 1Þh=2mþ 1:
By directly computing MSDðTh;kÞ; this conjecture has
been confirmed for the complete binary tree Th;2 with
hp18; and for Th;k with 1php6 and 1pkp6:
5. The discrepancy-1 algorithm

In this section, we present algorithm Discrepancy-1.
This is the first local dimension-exchange algorithm for
the token distribution problem on trees that reduces the
discrepancy of an arbitrary distribution to at most one.
Furthermore, for trees with bounded degree, the rate of
convergence is optimal in the worst-case. This algorithm
depends on additional information being stored at each
node. In particular, each node stores the maximum
number of tokens at that node during certain time
periods, and we assume that each node has knowledge
of the total number of nodes in the tree.
A distribution with relatively large discrepancy can

be stable under the Threshold-1 protocol, since
maximum and minimum observers may never meet
at an active edge during a phase (for example see Fig. 3).
In the Threshold-1 Plus protocol which follows,
if a node with maximum load is incident to an active
edge with discrepancy one, then no token is sent across
the edge—in effect, the Threshold-2 protocol is
running at nodes with maximum load. Note that the
choice of ‘freezing’ nodes with maximum loads is
arbitrary; we could instead ‘freeze’ nodes with minimum
load. Based purely on local information, however, each
node has no way of knowing if its current load is a
global maximum. For each node v; the algorithm stores
localMaxðvÞ; which can be considered a ‘local approx-
imation’ to the current global maximum. We shall
describe later how localMaxðvÞ is determined. Algo-
rithm Discrepancy-1 uses the following dimension-
exchange protocol.
Protocol Threshold-1 Plus (node v; time t)

if there exists an edge of colour t ðmod wÞ incident to v

then
let vw be this (unique) edge;

send the value loadtðvÞ to w and receive the value
loadtðwÞ from w;

if loadtðvÞXloadtðwÞ þ 2 or
(loadtðvÞ ¼ loadtðwÞ þ 1 and
loadtðvÞalocalMaxðvÞ) then
send one token from v to w;

end-if
end-if
Algorithm Discrepancy-1 below runs in cycles, each
composed of an A-phase followed by a B-phase. During
the A-phase, we use the Threshold-1 protocol, and the
local information localMaxðvÞ is updated so that at the
end of the A-phase, for each node v; localMaxðvÞ is the
maximum number of tokens stored at v at any one time
during the A-phase. In the B-phase we apply the
Threshold-1 Plus protocol, using the local informa-
tion gained during the previous A-phase.

Algorithm Discrepancy-1 (node v; time t)

localMaxðvÞ’loadðvÞ;
A:
 for j ¼ 1 to w 
 n do
apply Threshold� 1ðv; tÞ;

if loadtðvÞ4localMaxðvÞ then
localMaxðvÞ’loadtðvÞ;

end-if
t’t þ 1;

end-for
B:
 for j ¼ 1 to w 
 n do
apply Threshold-1 Plus ðv; tÞ;

t’t þ 1;
end-for
To assist in the analysis of this algorithm, for a given
observer obsðvÞ which is maximum (respectively, mini-
mum) at the start of a particular phase, we say that
obsðvÞ survives the phase if it is still a maximum
(minimum) observer at the end of the phase. As in
Observation 3, it is easily seen that under the Thresh-
old-1Plus protocol, the maximum (minimum) loads
are non-increasing (non-decreasing). Hence the load of a
surviving maximum or minimum observer is unchanged
throughout the phase.
Let obsðvÞ be a surviving maximum or minimum

observer in the A-phase, or a surviving minimum
observer in the B-phase. The action of the Thresh-
old-1 Plus protocol for minimum observers is equiva-
lent to that for the Threshold-1 protocol. Thus, by
Observation 5, during this phase the discrepancy of an
active edge incident to obsðvÞ is at most one.

Theorem 18. For an arbitrary initial distribution on a tree

T ; repeated application of the algorithm Discrepancy-1
will decrease the discrepancy to at most one. Furthermore,
for bounded degree trees, the rate of convergence is

asymptotically optimal in the worst case.

Proof. We first prove that during one cycle of the
Discrepancy-1 algorithm, the discrepancy will decrease
by at least one, assuming that the discrepancy at the
start of the cycle is at least two. We proceed by showing
that if the discrepancy has not decreased by the end of
the A-phase, then during the B-phase either the global
maximum decreases or the global minimum increases.
Let t0 be the start of the A-phase, t1 be the start of the
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B-phase, and t2 be the start of the next cycle. Then
globalMaxt0

ðTÞ � globalMint0
ðTÞX2:

If during the A-phase the discrepancy decreases, then
we are done. We now assume that during the A-phase
the discrepancy has not decreased; that is,
globalMaxt1

ðTÞ ¼ globalMaxt0
ðTÞ and

globalMint1
ðTÞ ¼ globalMint0

ðTÞ: Clearly there is at
least one maximum observer which has survived the A-
phase. Since such an observer traverses every node of
the tree, at the end of the A-phase, localMaxðuÞ ¼
globalMaxt0

ðTÞ for every node u of T :
If at the end of the B-phase the global maximum has

decreased; that is, globalMaxt2
ðTÞoglobalMaxt0

ðTÞ;
then the global discrepancy has decreased by at least
one, and we are done. We now assume that
globalMaxt2

ðTÞ ¼ globalMaxt0
ðTÞ: Thus there exists a

node v with loadt2ðvÞ ¼ globalMaxt0
ðTÞ: Now

loadt2ðvÞ ¼ localMaxðvÞ; thus by the definition of
Threshold-1Plus, during the B-phase the discrepancy
of every active edge incident to v is at most one, and
throughout the B-phase loadðvÞ ¼ localMaxðvÞ: Intui-
tively, a maximum does not move during the B-phase.
We now prove that the global minimum must increase

during the B-phase. Suppose on the contrary, that a
minimum observer obsðwÞ survives the B-phase; that is,
loadt2ðwÞ ¼ globalMint2

ðTÞ ¼ globalMint1
ðTÞ: Note

that the notion of a minimum observer introduced for
the Threshold-1 protocol carries over for the Thresh-
old-1 Plus protocol. Now obsðwÞ will traverse every
node of the tree; in particular, in the step before obsðwÞ
reaches v; obsðwÞ will be at a node u with the edge uv

active. In this case DðuvÞ ¼ loadðvÞ � loadðobsðwÞÞ ¼
globalMaxt0

ðTÞ � globalMint0
ðTÞX2; which contra-

dicts our previous assertion that during the B-phase
every active edge incident to v has discrepancy at most
one. Since we have assumed that at least one maximum
observer survives the B-phase, no minimum observer
survives. By Lemma 7, if no minimum observer survives
a phase then the minimum load has increased. Hence the
minimum load at the end of the B-phase is at least
globalMint0

ðTÞ þ 1; and therefore the global discre-
pancy has decreased by at least one.
Provided that the discrepancy at the beginning of a

cycle is at least two, with every cycle the Discrepancy-1
algorithm reduces the discrepancy by at least one.
Therefore the number of steps needed to reduce the
discrepancy of a given distribution to at most one is no
more than 2ðD0ðTÞ � 1Þ 
 wn; which by the lower bound
in Observation 1 is asymptotically optimal for trees with
bounded degree. &

Note that at a node v of T ; if localMaxðvÞ has
not changed during two consecutive applications of
the Discrepancy-1 algorithm, then the current dis-
tribution is stable, and hence the global discrepancy is at
most one. In this manner, each node can determine
when to terminate the algorithm based purely on local
information.
6. Conclusion and open problems

In this paper, we have provided new analyses of two
existing dimension-exchange algorithms and introduced
a new dimension-exchange algorithm for the token
distribution problem on trees. All algorithms are easy to
implement and are completely scalable.
The first algorithm reduces the discrepancy of a given

distribution on arbitrary graph to at most the diameter
of the graph. For the second algorithm, we have
presented a number-theoretic method for determining
a stable distribution with maximum discrepancy on a
given tree. We established a logarithmic upper bound on
the maximum stable discrepancy of an arbitrary tree.
This protocol has previously been analysed only for the
complete binary tree.
Our final algorithm reduces the global discrepancy of

an arbitrary distribution on a tree to at most one. To the
best of our knowledge, this constitutes the first dimen-
sion-exchange algorithm for the token distribution
problem on tree-connected architectures that achieves
optimal discrepancy.
We now conclude with a number of open problems

concerning token distribution problem on trees.

* Can a maximum stable discrepancy of 1 be achieved
by an algorithm which stores no local information
and has no global knowledge of the network?

* For n-node trees with maximum degree D; the
analysis of the randomised algorithm in [10] shows
that the discrepancy is reduced to Oðnlog nÞ: Is there
a randomised strategy for token distribution which
performs well on trees?

* For a given graph G we can apply the dimension-
exchange algorithm on a fixed spanning tree of G:
What properties make a given spanning tree most
appropriate?

* Can the methods developed in this paper we extended
to the case of Steiner trees and heterogeneous
systems?

* Can the work of Xu and Lau [31,32] for optimising
the rate at which the discrepancy converges to zero
for infinitely-divisible loads, be extended to the case
of trees?

* Can the methods developed in this paper be applied
in a dynamic setting?
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