
Notes on tree- and path-chromatic number

Tony Huynh, Bruce Reed, David R. Wood, and Liana Yepremyan

Abstract Tree-chromatic number is a chromatic version of treewidth, where the
cost of a bag in a tree-decomposition is measured by its chromatic number rather
than its size. Path-chromatic number is defined analogously. These parameters
were introduced by Seymour [JCTB 2016]. In this paper, we survey all the known
results on tree- and path-chromatic number and then present some new results and
conjectures. In particular, we propose a version of Hadwiger’s Conjecture for tree-
chromatic number. As evidence that our conjecture may be more tractable than
Hadwiger’s Conjecture, we give a short proof that every K5-minor-free graph has
tree-chromatic number at most 4, which avoids the Four Colour Theorem. We
also present some hardness results and conjectures for computing tree- and path-
chromatic number.

1 Introduction

Tree-chromatic number is a hybrid of the graph parameters treewidth and chromatic
number, recently introduced by Seymour [17]. Here is the definition.
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A tree-decomposition of a graph G is a pair (T,B) where T is a tree and
B := {Bt | t ∈ V (T )} is a collection of subsets of vertices of G, called bags,
satisfying:

• for each uv ∈ E(G), there exists t ∈V (T ) such that u,v ∈ Bt , and
• for each v ∈ V (G), the set of all t ∈ V (T ) such that v ∈ Bt induces a non-empty

subtree of T .

A graph G is k-colourable if each vertex of G can be assigned one of k colours,
such that adjacent vertices are assigned distinct colours. The chromatic number of a
graph G is the minimum integer k such that G is k-colourable.

For a tree-decomposition (T,B) of G, the chromatic number of (T,B) is
max{χ(G[Bt ]) | t ∈V (T )}. The tree-chromatic number of G, denoted tree-χ(G), is
the minimum chromatic number taken over all tree-decompositions of G. The path-
chromatic number of G, denoted path-χ(G), is defined analogously, where we insist
that T is a path instead of an arbitrary tree. Henceforth, for a subset B ⊆ V (G), we
will abbreviate χ(G[B]) by χ(B). For v ∈ V (G), let NG(v) be the set of neighbours
of v and NG[v] := NG(v)∪{v}.

The purpose of this paper is to survey the known results on tree- and path-
chromatic number, and to present some new results and conjectures.

Clearly, tree-χ and path-χ are monotone under the subgraph relation, but
unlike treewidth, they are not monotone under the minor relation. For example,
tree-χ(Kn) = n, but the graph G obtained by subdividing each edge of Kn is bipartite
and so tree-χ(G)≤ χ(G) = 2.

By definition, for every graph G,

tree-χ(G)≤ path-χ(G)≤ χ(G).

Section 2 reviews results that show that each of these inequalities can be strict and
in fact, both of the pairs (tree-χ(G),path-χ(G)) and (path-χ(G),χ(G)) can be
arbitrarily far apart.

We present our new results and conjectures in Sections 3-5. In Section 3, we
propose a version of Hadwiger’s Conjecture for tree-chromatic number and show
how it is related to a ‘local’ version of Hadwiger’s Conjecture. In Section 4, we
prove that K5-minor-free graphs have tree-chromatic number at most 4, without
using the Four Colour Theorem. We finish in Section 5, by presenting some hardness
results and conjectures for computing path-χ and tree-χ .

2 Separating χ , path-χ and tree-χ

Complete graphs are a class of graphs with unbounded tree-chromatic number. Are
there more interesting examples? The following lemma of Seymour [17] leads to an
answer. A separation (A,B) of a graph G is a pair of edge-disjoint subgraphs whose
union is G.
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Lemma 1. For every graph G, there is a separation (A,B) of G such that χ(A∩B)≤
tree-χ(G) and

χ(A−V (B)),χ(B−V (A))≥ χ(G)− tree-χ(G).

Seymour [17] noted that Lemma 1 shows that the random construction of
Erdős [6] of graphs with large girth and large chromatic number also have large
tree-chromatic number with high probability.

Interestingly, it is unclear if the known explicit constructions of large girth,
large chromatic graphs also have large tree-chromatic number. For example, shift
graphs are one of the classic constructions of triangle-free graphs with unbounded
chromatic number, as first noted in [7]. The vertices of the n-th shift graph Sn are all
intervals of the form [a,b], where a and b are integers satisfying 1 ≤ a < b ≤ n. Two
intervals [a,b] and [c,d] are adjacent if and only if b = c or d = a. The following
lemma (first noted in [17]) shows that the gap between χ and path-χ is unbounded
on the class of shift graphs.

Lemma 2. For all n ∈ N, path-χ(Sn) = 2 and χ(Sn)≥ �log2 n	.

Proof. The fact that χ(Sn) ≥ �log2 n	 is well-known; we include the proof for
completeness. Let � = χ(Sn) and φ : V (Sn) → [�] be a proper �-colouring of Sn.
For each j ∈ [n] let Cj = {φ([i, j]) | i < j}. We claim that for all j < k, Cj �=Ck. By
definition, φ([ j,k])∈Ck. If Cj =Ck, then φ([i, j]) = φ([ j,k]) for some i< j. But this
is a contradiction, since [i, j] and [ j,k] are adjacent in Sn. Since there are 2� subsets
of [�], 2� ≥ n, as required.

We now show that path-χ(Sn) = 2. For each i ∈ [n], let Bi = {[a,b] ∈ V (Sn) |
a ≤ i ≤ b}. Let Pn be the path with vertex set [n] (labelled in the obvious way).
We claim that (Pn,{Bi | i ∈ [n]}) is a path-decomposition of Sn. First observe
that [a,b] ∈ Bi if and only if a ≤ i ≤ b. Next, for each edge [a,b][b,c] ∈ E(Sn),
[a,b], [b,c] ∈ Bb. Finally, observe that for all i ∈ [n], Xi = {[a,b] ∈ Bi | b = i} and
Yi = {[a,b] ∈ Bi | b > i} is a bipartition of Sn[Bi]. Therefore, Sn has path-chromatic
number 2, as required.

Given that shift graphs contain large complete bipartite subgraphs, the following
question naturally arises.

Open Problem 1 Does there exist a function f : N×N→N such that for all s ∈N
and all Ks,s-free graphs G, χ(G)≤ f (s, tree-χ(G))?

It is not obvious that the parameters path-χ and tree-χ are actually different.
Indeed, Seymour [17] asked if path-χ(G) = tree-χ(G) for all graphs G? Huynh
and Kim [10] answered the question in the negative by exhibiting for each k ∈N, an
infinite family of k-connected graphs for which tree-χ(G)+ 1 = path-χ(G). They
also prove that the Mycielski graphs [14] have unbounded path-chromatic number.

However, can tree-χ(G) and path-χ(G) be arbitrarily far apart? Seymour [17]
suggested the following family as a potential candidate. Let Tn be the complete
binary rooted tree with 2n leaves. A path P in Tn is called a V if the vertex of P
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closest to the root (which we call the low point of the V) is an internal vertex of P.
Let Gn be the graph whose vertices are the Vs of Tn, where two Vs are adjacent if
the low point of one is an endpoint of the other.

Lemma 3 ([17]). For all n ∈ N, tree-χ(Gn) = 2 and χ(Gn)≥ �log2 n	.

Proof. For each t ∈ V (Tn), let Bt be the set of Vs in Tn which contain t. We claim
that (Tn,{Bt | t ∈ V (Tn)}) is a tree-decomposition of Gn with chromatic number 2.
First observe that if P is a V, then {t ∈V (Tn) | P∈ Bt}=V (P), which induces a non-
empty subtree of Tn. Next, if P1 and P2 are adjacent Vs with V (P1)∩V (P2) = {t},
then P1,P2 ∈ Bt . Finally, for each t ∈ Bt , let Xt be the elements of Bt whose low
point is t and let Yt := Bt \Xt . Then (Xt ,Yt) is a bipartition of Gn[Bt ], implying that
tree-χ(Gn) = 2.

For the second claim, it is easy to see that Gn contains a subgraph isomorphic to
the n-th shift graph Sn. Thus, χ(Gn)≥ χ(Sn)≥ �log2 n	, by Lemma 2.

Barrera-Cruz, Felsner, Mészáros, Micek, Smith, Taylor, and Trotter [1]
subsequently proved that path-χ(Gn) = 2 for all n ∈ N. However, with a slight
modification of the definition of Gn, they were able to construct a family of graphs
with tree-chromatic number 2 and unbounded path-chromatic number.

Theorem 2 ([1]). For each integer n ≥ 2, there exists a graph Hn with tree-χ(Hn) =
2 and path-χ(Hn) = n.

The definition of Hn is as follows. A subtree of the complete binary tree Tn is
called a Y if it has three leaves and the vertex of the Y closest to the root of Tn is one
of its three leaves. The vertices of Hn are the Vs and Ys of Tn. Two Vs are adjacent
if the low point of one is an endpoint of the other. Two Ys are adjacent if the lowest
leaf of one is an upper leaf of the other. A V is adjacent to a Y if the low point of the
V is an upper leaf of the Y. The proof that path-χ(Hn) = n uses Ramsey theoretical
methods for trees developed by Milliken [13].

3 Hadwiger’s Conjecture for tree-χ and path-χ

One could hope that difficult conjectures involving χ might become tractable for
tree-χ or path-χ , thereby providing insightful intermediate results. Indeed, the
original motivation for introducing tree-χ was a conjecture of Gyárfás [8] from
1985, on χ-boundedness of triangle-free graphs without long holes 1.

Conjecture 1 (Gyárfás’s Conjecture [8]). For every integer �, there exists c such that
every triangle-free graph with no hole of length greater than � has chromatic number
at most c.

Seymour [17] proved that Conjecture 1 holds with χ replaced by tree-χ .

1 A hole in a graph is an induced cycle of length at least 4.
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Theorem 3 ([17]). For all integers d ≥ 1 and �≥ 4, if G is a graph with no hole of
length greater than � and χ(NG(v))≤ d for all v∈V (G), then tree-χ(G)≤ d(�−2).

Note that Theorem 3 with d = 1 implies that tree-χ(G) ≤ �− 2 for every
triangle-free graph G with no hole of length greater than �. A proof of Gyárfás’s
Conjecture [8] (among other results) was subsequently given by Chudnovsky, Scott,
and Seymour [3].

The following is another famous conjectured upper bound on χ , due to
Hadwiger [9]; see [16] for a survey.

Conjecture 2 ([9]). If G is a graph without a Kt+1-minor, then χ(G)≤ t.

We propose the following weakenings of Hadwiger’s Conjecture.

Conjecture 3. If G is a graph without a Kt+1-minor, then tree-χ(G)≤ t.

Conjecture 4. If G is a graph without a Kt+1-minor, then path-χ(G)≤ t.

By Theorem 2, tree-χ(G) and path-χ(G) can be arbitrarily far apart, so
Conjecture 3 may be easier to prove than Conjecture 4. By Theorem 3, χ and
tree-χ can be arbitrarily far apart, so Conjecture 3 may be easier to prove than
Hadwiger’s Conjecture. We give further evidence of this in the next section, by
proving Conjecture 3 for t = 5, without using the Four Colour Theorem.

Robertson, Seymour, and Thomas [15] proved that every K6-minor-free graph is
5-colourable. Their proof uses the Four Colour Theorem and is 83 pages long. Thus,
even if we are allowed to use the Four Colour Theorem, it would be interesting to
find a short proof that every K6-minor-free graph has tree-chromatic number at most
5.

Conjectures 3 and 4 are also related to a ‘local’ version of Hadwiger’s Conjecture
via the following lemma.

Lemma 4. Let (T,{Bt | t ∈ V (T )}) be a tree-χ-optimal tree-decomposition of G,
with |V (T )| minimal. Then there are vertices v ∈ V (G) and � ∈ V (T ) such that
NG[v]⊆ B�.

Proof. Let � be a leaf of T and u be the unique neighbour of � in T . If B� ⊆ Bu, then
T − � contradicts the minimality of T . Therefore, there is a vertex v ∈ B� such that
v /∈ Bt for all t �= �. It follows that NG[v]⊆ B�, as required.

Lemma 4 immediately implies that the following ‘local version’ of Hadwiger’s
Conjecture follows from Conjecture 3.

Conjecture 5. If G is a graph without a Kt+1-minor, then there exists v ∈V (G) such
that χ(NG[v])≤ t.

It is even open whether Conjectures 3, 4, or 5 hold with an upper bound of 10100t
instead of t. Finally, the following apparent weakening of Hadwiger’s Conjecture
(and strengthening of Conjecture 5) is actually equivalent to Hadwiger’s Conjecture.
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Conjecture 6. If G is a graph without a Kt+1-minor, then χ(NG[v]) ≤ t for all
v ∈V (G).

Proof (Proof of equivalence to Hadwiger’s Conjecture). Clearly, Hadwiger’s
Conjecture implies Conjecture 6. For the converse, let G be a graph without a Kt+1-
minor. Let G+ be the graph obtained from G by adding a new vertex v adjacent to all
vertices of G. Since G+ has no Kt+2-minor, Conjecture 6 yields χ(NG+[v])≤ t +1.
Since χ(NG+[v]) = χ(G)+1, we have χ(G)≤ t, as required.

4 K5-minor-free graphs

As evidence that Conjecture 3 may be more tractable than Hadwiger’s Conjecture,
we now prove it for K5-minor-free graphs without using the Four Colour Theorem.
We begin with the planar case.

Theorem 4. For every planar graph G, tree-χ(G)≤ 4.

Proof. We use the same tree-decomposition previously used by Eppstein [5] and
Dujmović, Morin, and Wood [4].

Say G has n vertices. We may assume that n ≥ 3 and that G is a plane
triangulation. Let F(G) be the set of faces of G. By Euler’s formula, |F(G)|= 2n−4
and |E(G)|= 3n−6. Let r be a vertex of G. Let (V0,V1, . . . ,Vt) be the bfs layering of
G starting from r. Let T be a bfs tree of G rooted at r. Let T ∗ be the subgraph of the
dual G∗ with vertex set F(G), where two vertices are adjacent if the corresponding
faces share an edge not in T . Thus

|E(T ∗)|= |E(G)|−|E(T )|=(3n−6)−(n−1)= 2n−5= |F(G)|−1= |V (T ∗)|−1.

By the Jordan Curve Theorem, T ∗ is connected. Thus T ∗ is a tree.
For each vertex u of T ∗, if u corresponds to the face xyz of G, let Cu :=Px∪Py∪Pz,

where Pv is the vertex set of the vr-path in T , for each v ∈ V (G). See [5, 4] for a
proof that (T ∗,{Cu : u ∈V (T ∗)}) is a tree-decomposition of G.

We now prove that G[Cu] is 4-colourable. Let � be the largest index such that
{x,y,z} ∩V� �= /0. For each k ∈ {0, . . . , �}, let Gk = G[Cu ∩ (

⋃k
j=0 Vj)]. Note that

G� = G[Cu]. We prove by induction on k that Gk is 4-colourable. This clearly holds
for k ∈ {0,1}, since |V (G1)| ≤ 4.

For the inductive step, let k ≥ 2. For each i ∈ {0, . . . , �}, let Wi = Cu ∩Vi. Since
Wi contains at most one vertex from each of Px,Py, and Pz, |Wi| ≤ 3.

First suppose |Wi| ≤ 2 for all i ≤ k. Since all edges of G are between consecutive
layers or within a layer, we can 4-colour Gk by using the colours {1,2} on the even
layers and {3,4} on the odd layers.

Next suppose |Wk| ≤ 2. We are done by the previous case unless k = �, |W�| ∈
{1,2}, and |W�−1|= 3. By induction, let φ ′ : V (G�−2)→ [4] and φ : V (G�−1)→ [4]
be 4-colourings of G�−2 and G�−1, respectively. If |W�| = 1, then clearly we can
extend φ to a 4-colouring of G�. So, we may assume |W�|= 2.
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Note that φ extends to a 4-colouring of G� unless every vertex of W�−1 is adjacent
to every vertex of W� and the two vertices of W� are adjacent. If G[W�−1] is a triangle,
then G[W�−1 ∪W�] = K5, which contradicts planarity. If G[W�−1] is a path, say abc,
then we obtain a K5-minor in G by contracting all but one edge of the a–c path in
T . If W�−1 is a stable set, then φ ′ can be extended to a 4-colouring of G�−1 such that
all vertices in W�−1 are the same colour. This colouring can clearly be extended to
a 4-colouring of G�. The remaining case is if G[W�−1] is an edge ab together with
an isolated vertex c. It suffices to show that there is a colouring of G�−1 that uses at
most two colours on W�−1, since such a colouring can be extended to a 4-colouring
of G�. Note that φ ′ can be extended to such a colouring unless φ ′ uses three colours
on W�−2 and a and b are adjacent to all vertices of W�−2. Since φ is a 4-colouring,
this implies that φ uses at most two colours on W�−2. Thus we may recolour φ so
that only two colours are used on W�−1, as required.

Henceforth, we may assume |Wk| = 3. By induction, let φ : V (Gk−1)→ [4] be a
4-colouring of Gk−1. Let φk−1 = φ(Wk−1).

If |φk−1|= 1, then we can extend φ to a 4-colouring of Gk by using [4]\φk−1 to
3-colour Wk.

Suppose |φk−1|= 2. By induction, Gk−2 has a 4-colouring φ ′. If Wk−1 is a stable
set, then we can extend φ ′ to a 4-colouring of Gk−1 such that all vertices of Wk−1
are the same colour. Thus, |φ ′

k−1| = 1, and we are done by the previous case. Let
a,b ∈Wk−1 such that ab ∈ E(Gk−1). Let c be the other vertex of Wk−1 (if it exists).
By relabeling, we may assume that φ(a) = 1,φ(b) = 2, and φ(c) = 2. Let N(a)
be the set of neighbours of a in Wk and N(b,c) be the set of neighbours of {b,c}
in Wk. Observe that φ extends to a 4-colouring of Gk unless N(a) = N(b,c) = Wk.
However, if, N(a) = N(b,c) = Wk, then we obtain a K5-minor in G by using T to
contract Wk onto {x,y,z} and c onto b (if c exists). This contradicts planarity.

The remaining case is |φk−1|= 3. In this case, φ extends to a 4-colouring of Gk,
unless there exist distinct vertices a,b ∈Wk−1 such that a and b are both adjacent to
all vertices of Wk. Again we obtain a K5-minor in G by using T to contract Wk onto
{x,y,z} and contracting all but one edge of the a–b path in T .

We finish the proof by using Wagner’s characterization of K5-minor-free
graphs [19], which we now describe. Let G1 and G2 be two graphs with V (G1)∩
V (G2) = K, where K is a clique of size k in both G1 and G2. The k-sum of G1
and G2 (along K) is the graph obtained by gluing G1 and G2 together along K (and
keeping all edges of K). The Wagner graph V8 is the graph obtained from an 8-cycle
by adding an edge between each pair of antipodal vertices.

Theorem 5 (Wagner’s Theorem [19]). Every edge-maximal K5-minor-free graph
can be obtained from 1-, 2-, and 3-sums of planar graphs and V8.

Theorem 6. For every K5-minor-free graph G, tree-χ(G)≤ 4.

Proof. Let G be a K5-minor-free graph. We proceed by induction on |V (G)|. We
may assume that G is edge-maximal. First note that if G = V8, then tree-χ(G) ≤
χ(G) = 4. Next, if G is planar, then tree-χ(G) ≤ 4 by Theorem 4 (whose proof
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avoids the Four Colour Theorem). By Theorem 5, we may assume that G is a k-sum
of two graphs G1 and G2, for some k ∈ [3]. Let K be the clique in V (G1)∩V (G2)
along which the k-sum is performed. Since G1 and G2 are both K5-minor-free graphs
with |V (G1)|, |V (G2)| < |V (G)|, we have tree-χ(G1) ≤ 4 and tree-χ(G2) ≤ 4 by
induction. For i ∈ [2], let (T i,{Bi

t | t ∈ V (T i)}) be a tree-decomposition of Gi with
chromatic number at most 4. Since K is a clique in Gi, K ⊆ B1

x ∩B2
y for some x ∈

V (T 1) and y ∈V (T 2). Let T be the tree obtained from the disjoint union of T 1 and
T 2 by adding an edge between x and y. Then (T,{B1

t | t ∈V (T 1)}∪{B2
t | t ∈V (T 2)})

is a tree-decomposition of G with chromatic number at most 4.

5 Computing tree-χ and path-χ

We finish by showing some hardness results for computing tree-χ and path-χ . We
need some preliminary results. For a graph G, let KG

t be the graph consisting of t
disjoint copies of G and all edges between distinct copies of G.

Lemma 5. For all t ∈ N and all graphs G without isolated vertices,

(t −1)χ(G)+2 ≤ tree-χ(KG
t )≤ path-χ(KG

t )≤ t χ(G).

Proof. Let (T,{Bt | t ∈V (T )}) be a tree-χ-optimal tree-decomposition of K := KG
t ,

with |V (T )| minimal. By Lemma 4, there exists � ∈ V (T ) and v ∈ V (K) such that
NK [v]⊆ B�. Since G has no isolated vertices, v has a neighbour in the same copy of
G in which it belongs. Therefore,

tree-χ(K)≥ χ(B�)≥ χ(NK [v])≥ 2+(t −1)χ(G).

For the other inequalities, tree-χ(K)≤ path-χ(K)≤ χ(K) = t χ(G).

We also require the following hardness result of Lund and Yannakakis [12].

Theorem 7 ([12]). There exists ε > 0, such that it is NP-hard to correctly determine
χ(G) within a multiplicative factor of nε for every n-vertex graph G.

Our first theorem is a hardness result for approximating tree-χ and path-χ .

Theorem 8. There exists ε ′ > 0, such that it is NP-hard to correctly determine
tree-χ(G) within a multiplicative factor of nε ′ for every n-vertex graph G. The same
hardness result holds for path-χ with the same ε ′.

Proof. We show the proof for tree-χ . The proof for path-χ is identical. Let ε ′ = ε
3 ,

where ε is the constant from Theorem 7. Let G be an n-vertex graph.
Note that KG

n has n2 vertices, and (n2)ε ′ = n
2ε
3 . If k ∈ [ tree-χ(KG

n )

n
2ε
3

,n
2ε
3 tree-χ(KG

n )],

then k
n ∈ [ χ(G)

nε ,nε χ(G)] by Lemma 5. Therefore, if we can approximate tree-χ(KG
n )

within a factor of (n2)ε ′ , then we can approximate χ(G) within a factor of nε .
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For the decision problem, we use the following hardness result of Khanna, Linial,
and Safra [11].

Theorem 9 ([11]). Given an input graph G with χ(G) �= 4, it is NP-complete to
decide if χ(G)≤ 3 or χ(G)≥ 5.

As a corollary of Theorem 9, we obtain the following.

Theorem 10. It is NP-complete to decide if tree-χ(G) ≤ 6. It is also NP-complete
to decide if path-χ(G)≤ 6.

Proof. Let G be a graph without isolated vertices and χ(G) �= 4. By Lemma 5, if
tree-χ(KG

2 ) ≤ 6, then χ(G) ≤ 3 and if tree-χ(KG
2 ) ≥ 7, then χ(G) ≥ 5. Same for

path-χ . Finally, a tree- or path-decomposition and a 6-colouring of each bag is a
certificate that tree-χ(G)≤ 6 or path-χ(G)≤ 6.

Combining the standard O(2n)-time dynamic programming for computing
pathwidth exactly (see Section 3 of [18]) and the 2nnO(1)-time algorithm of
Björklund, Husfeldt, and Koivisto [2] for deciding if χ(G) ≤ k, yields a 4nnO(1)-
time algorithm to decide to path-χ(G) ≤ k. As far as we know, there is no faster
algorithm for deciding path-χ(G) ≤ k (except for small values of k, where faster
algorithms for deciding k-colourability can be used instead of [2]).

Finally, unlike for χ(G), we conjecture that it is still NP-complete to decide if
tree-χ(G)≤ 2.

Conjecture 7. It is NP-complete to decide if tree-χ(G) ≤ 2. It is also NP-complete
to decide if path-χ(G)≤ 2.

References
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