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Abstract

An ordered set S of vertices in a graph G is said to resolve G if every vertex in
G is uniquely determined by its vector of distances to the vertices in S. The metric
dimension of G is the minimum cardinality of a resolving set of G. In this paper we
introduce the study of the fault-tolerant metric dimension of a graph. A resolving
set S for G is fault-tolerant if S \ {v} is also a resolving set, for each v in S, and
the fault-tolerant metric dimension of G is the minimum cardinality of such a set. In
this paper we characterize the fault-tolerant resolving sets in a tree T . We show that
the fault-tolerant metric dimension values are bounded by a function of the metric
dimension values independent of any graphs.

1 Introduction

For a graph G with vertex set V (G) and edge set E(G), the distance between two vertices
u and v in V (G) is the minimum number of edges in a u − v path and is denoted by
dG(u, v) or simply d(u, v) if the graph G is clear. A vertex x resolves two vertices u and
v if d(x, u) 6= d(x, v). A vertex set S ⊆ V (G) is said to be resolving for G if for every
two distinct vertices u and v in V (G) there is a vertex x in S that resolves u and v. The
minimum cardinality of a resolving set of G is called the metric dimension of G and is
denoted by β(G). A resolving set of order β(G) is called a metric basis of G.
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Equivalently, for an ordered subset S = (v1, v2, . . . , vk) of vertices in V (G) the
S-coordinates of a vertex x in V (G) are fS(x) = (d(x, v1), d(x, v2), . . . , d(x, vk)). Then
S is a resolving set if for every two vertices x and y in V (G) we have fS(x) 6= fS(y).

These concepts were introduced for general graphs independently by Slater [6] and
by Harary and Melter [4]. Resolving sets have since been widely investigated. (See the
bibliographies of [1] and [3].)

As described in Slater [6], each vi in S can be thought of as the site for a sonar or
loran station, and each vertex location must be uniquely determined by its distances to
the sites in S. In this paper we consider (single) fault-tolerant resolving sets S for which
the failure of any single station at vertex location v in S leaves us with a set that still is
a resolving set.

A resolving set S for a graph G is fault-tolerant if S \{v} is also resolving for each v in
S. The fault-tolerant metric dimension of G is the minimum cardinality of a fault-tolerant
resolving set, and it will be denoted by β′(G). A fault-tolerant resolving set of order β′(G)
is called a fault-tolerant metric basis.

We consider fault-tolerant resolving sets for trees in section 2. In section 3 we show
that the fault-tolerant metric dimension values are bounded by a function of the metric
dimension values independent of any given graph.

2 Fault-tolerant resolving sets for trees

Consider the tree T ′ in Figure 1. It will be seen below that β(T ′) = 10 and that
S = (1, 2, . . . , 10) is a metric basis. We have, for example, that

fS(x) = (11, 11, 11, 11, 10, 10, 10, 10, 1, 4) ,

fS(y) = (11, 11, 11, 11, 10, 10, 10, 10, 3, 4) ,

fS(v) = (8, 8, 8, 8, 3, 3, 7, 7, 8, 9) ,

fS(t) = (8, 8, 8, 8, 1, 3, 7, 7, 8, 9) .

Note that fS(x) and fS(y) agree everywhere except for the ninth component, that is,
the only vertex in S that resolves vertices x and y is vertex 9. Likewise, only vertex 5
resolves vertices v and t. We will see that β′(T ′) = 14 and that S ∪ {y, v, r, s} is one
example of a fault-tolerant metric basis of T ′.

It is easy to see that for the path Pn on n ≥ 2 vertices we have β(Pn) = 1 and
β′(Pn) = 2. Observe that the unique fault-tolerant metric basis of Pn is formed by the
two endpoints.

Henceforth we will only be concerned with trees T that have maximum degree ∆(T ) ≥ 3.
The degree of vertex v is denoted by deg(v).
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Figure 1: Tree T ′ with β(T ′)=10 and β′(T ′) = 14

A branch of a tree T at a vertex v is the subgraph induced by v and one of the
components of T \ {v}. Note that each v ∈ V (T ) has deg(v) branches. A branch B of T
at v which is a path will be called a branch path when deg(v) ≥ 3. Tree T ′ (see Figure 1)
has sixteen branch paths. The vertex v in a branch path with deg(v) ≥ 3 will be called
a stem of the branch path. Tree T ′ has six stems: s1, . . . , s6. We let L1, . . . , Lk be the
components of the subtree induced by the set of all branch paths. Thus k is the number
of stems, and each Li can be obtained by subdividing edges starting with a star. For T ′

we have k = 6 and subdivisions: one K1,5, three K1,3 and two K1,1.

Theorem 2.1 ([6]) Let T be a tree of order n ≥ 3. Vertex set S is a resolving set if and
only if for each vertex u there are vertices from S on at least deg(u) − 1 of the deg(u)
components of T \ {u}.

Theorem 2.2 ([6]) Let T be a tree with set L of endpoints with |L| ≥ 3. Let L1, . . . , Lk

be the components of the subtree induced by the set of all branch paths, and let ei be the
number of branch paths in T that are in Li. Then β(T ) = |L| − k, and S is a metric basis
if and only if it consists of exactly one vertex from each of exactly ei − 1 of the branch
paths of Li, for each Li, 1 ≤ i ≤ k.

Assume that S is a fault-tolerant resolving set for tree T . For each v in S, the set
S \{v} is a resolving set. By Theorem 2.1, for any v ∈ S∩Li, the set S \{v} must contain
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a vertex from each of ei− 1 of the branch paths of Li. Thus, |S ∩Li| ≥ ei when ei ≥ 2. If
L is the set of endpoints and E1 is the set of endpoints to branch paths where ei = 1, then,
by Theorem 2.1 , L \E1 is a fault-tolerant resolving set. This implies the next theorem.

Theorem 2.3 Let T be a tree with set L of endpoints with |L| ≥ 3. Let L1, . . . , Lk be the
components of the subtree induced by the set of all branch paths, and let ei be the number
of branch paths in T that are in Li. Let E1 be the set of endpoints corresponding to branch
paths where ei = 1. Then β′(T ) = |L \ E1| and L \ E1 is a fault-tolerant metric basis.

Remark 2.4 If S is a fault-tolerant metric basis for T and si is the stem vertex of Li,
then ei ≥ 3 implies that S∩Li will consist of exactly one vertex from each path of Li\{si},
and, if ei = 2, then S ∩ Li can be any two vertices of Li \ {si}.

In particular, for the tree T ′ of Figure 1, β′(T ′) = 14 and (1, 2, 3, . . . , 10, y, v, r, s)
is one example of a fault-tolerant metric basis.

3 Relation between β′(G) and β(G).

In this section we prove that fault-tolerant metric dimension is bounded by a function of
metric dimension (independent of the graph). As usual, N(v) and N [v] denote vertex v’s
open and closed neighborhoods, respectively.

Lemma 3.1 Let S be a resolving set of G. For each vertex v ∈ S, let T (v) := {x ∈ V (G) :
N(v) ⊆ N(x)}. Then S′ := ∪v∈S(N [v] ∪ T (v)) is a fault-tolerant resolving set of G.

Proof. Consider a vertex v ∈ S′. If v 6∈ S then S′ \ {v} resolves G since S ⊆ S′ \ {v}.
Now assume that v ∈ S.

Let p and q be distinct vertices of G. We must show that p and q are resolved by some
vertex in S′ \ {v}. If not, then v must resolve p and q since S resolves p and q. Without
loss of generality d(v, p) ≤ d(v, q)− 1.

First suppose that p 6= v. Let w be the neighbour of v on a shortest path between v
and p. Then w ∈ S′ \ {v} and d(v, p) = d(w, p) + 1. Thus d(w, p) + 1 ≤ d(v, q)− 1. Now
d(v, q)− 1 ≤ d(w, q). Hence d(w, p) + 1 ≤ d(w, q). Thus w resolves p and q.

Now assume that p = v. If q ∈ S′ then q ∈ S′ \ {v} and q resolves p and q. Otherwise
d(v, q) ≥ 2 and q is not adjacent to some neighbour w of v. Then d(v, w) = 1 and
d(q, w) ≥ 2. Thus w ∈ S′ \ {v} resolves v (= p) and q.

Hence S′ is a fault-tolerant resolving set of G. 2

The following lemma is implicit in [2, 5]. We include the proof for completeness.
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Lemma 3.2 Let S be a resolving set in a graph G. Then for each vertex v ∈ S, the
number of vertices of G at distance at most k from v is at most 1 + k(2k + 1)|S|−1.

Proof. Say 1 ≤ d(v, w) ≤ k. For every vertex u ∈ S with u 6= v, we have |d(w, u) −
d(w, v)| ≤ k. Thus there are 2k + 1 possible values for d(w, u), and there are at most k
possible values for d(w, v). Thus the vector of distances from w to S has k(2k + 1)|S|−1

possible values. The result follows, since the vertices at distance at most k are resolved
by S. 2

Theorem 3.3 Fault-tolerant metric dimension is bounded by a function of the metric
dimension (independent of the graph). In particular, β′(G) ≤ β(G)(1 + 2 · 5β(G)−1) for
every graph G.

Proof. Let S be a metric basis for a graph G. Lemma 3.2 with k = 2 implies that
|N [v]∪T (v)| ≤ 1 + 2 · 5β(G)−1 for each vertex v ∈ S. Thus |S′| ≤ β(G)(1 + 2 · 5β(G)−1). 2
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