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Abstract. Given a fixed graph H that embeds in a surface Σ, what is the maximum
number of copies of H in an n-vertex graph G that embeds in Σ? We show that the
answer is Θ(nf (H)), where f (H) is a graph invariant called the ‘flap-number’ of H, which
is independent of Σ. This simultaneously answers two open problems posed by Eppstein
(1993). The same proof also answers the question for minor-closed classes. That is, if
H is a K3,t minor-free graph, then the maximum number of copies of H in an n-vertex
K3,t minor-free graph G is Θ(nf

′(H)), where f ′(H) is a graph invariant closely related to
the flap-number of H. Finally, when H is a complete graph we give more precise answers.

1. Introduction

All graphs in this paper are undirected, finite, and simple, unless stated otherwise. Many
classical theorems in extremal graph theory concern the maximum number of copies of
a fixed graph H in an n-vertex graph in some class G. Here, a copy means a subgraph
isomorphic to H. For example, Turán’s Theorem determines the maximum number of
copies of K2 (that is, edges) in an n-vertex Kt-free graph [63]. More generally, Zykov’s
Theorem determines the maximum number of copies of a given complete graph Ks
in an n-vertex Kt-free graph [67]. The excluded graph need not be complete. The
Erdős–Stone Theorem [19] determines, for every non-bipartite graph X, the asymptotic
maximum number of copies of K2 in an n-vertex graph with no X-subgraph. Analogues
of the Erdős–Stone Theorem for copies of Ks have recently been studied by Alon and
Shikhelman [4, 5]. See [3, 20, 23–26, 32, 45, 46, 51, 62] for recent related results.

This paper studies similar questions when the class G consists of the graphs that embed1

in a given surface Σ (rather than being defined by an excluded subgraph). For graphs H
and G, let C(H,G) be the number of copies of H in G. For a surface Σ, let C(H,Σ, n)

be the maximum of C(H,G), where the maximum is taken over all n-vertex graphs G

Date: March 23, 2021.
G. Joret is supported by an ARC grant from the Wallonia-Brussels Federation of Belgium and a CDR

grant from the National Fund for Scientific Research (FNRS)..
All three authors are supported by the Australian Research Council.
1See [49] for background about graphs embedded in surfaces. For h > 0, let Sh be the sphere with h

handles. For c > 0, let Nc be the sphere with c cross-caps. Every surface is homeomorphic to Sh or Nc .
The Euler genus of Sh is 2h. The Euler genus of Nc is c . A graph H is a minor of a graph G if a graph
isomorphic to H can be obtained from a subgraph of G by contracting edges. If G embeds in a surface
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that embeds in Σ. This paper determines the asymptotic behaviour of C(H,Σ, n) as
n →∞ for any fixed surface Σ and any fixed graph H.

Before stating our theorem, we mention some related results that determine C(H,S0, n)

for specific planar graphs H where the surface is the sphere S0. Alon and Caro [2]
determined C(H,S0, n) precisely if H is either a complete bipartite graph or a trian-
gulation without non-facial triangles. Hakimi and Schmeichel [33] studied C(Ck ,S0, n)

where Ck is the k-vertex cycle; they proved that C(C3,S0, n) = 3n−8 and C(C4,S0, n) =
1
2

(n2+3n−22). See [34, 35] for more results on C(C3,S0, n) and see [1] for more results
on C(C4,S0, n). Győri et al. [29] proved that C(C5,S0, n) = 2n2 − 10n+ 12 (except for
n ∈ {5, 7}). Győri et al. [30] determined C(P4,S0, n) precisely, where Pk is the k-vertex
path. Alon and Caro [2] and independently Wood [64] proved that C(K4,S0, n) = n−3.
More generally, Perles (see [2]) conjectured that if H is a fixed 3-connected planar graph,
then C(H,S0, n) = O(n). Perles noted the converse: If H is planar, not 3-connected and
|V (H)| > 4, then C(H,S0, n) > Ω(n2). Perles’ conjecture was proved by Wormald [66]
and independently by Eppstein [17], who asked the following two open problems:

• Characterise the subgraphs occurring O(n) times in graphs of given genus.
• Characterise the subgraphs occurring a number of times which is a nonlinear
function of n.

This paper answers both these questions (and more).

We start with the following natural question: when is C(H,Σ, n) bounded by a constant
depending only on H and Σ (and independent of n)? We prove that H being 3-connected
and non-planar is a sufficient condition. In fact we prove a stronger result that completely
answers the question. We need the following standard definitions. A k-separation of
a graph H is a pair (H1, H2) of edge-disjoint subgraphs of H such that H1 ∪ H2 = H,
V (H1) \ V (H2) 6= ∅, V (H2) \ V (H1) 6= ∅, and |V (H1 ∩ H2)| = k . A k ′-separation
for some k ′ 6 k is called a (6 k)-separation. If (H1, H2) is a separation of H with
X = V (H1) ∩ V (H2), then let H−i and H+i be the simple graphs obtained from Hi by
removing and adding all edges between vertices in X, respectively.

A graph H is strongly non-planar if H is non-planar and for every (6 2)-separation
(H1, H2) of H, both H+1 and H+2 are non-planar. Note that every 3-connected non-
planar graph is strongly non-planar. The following is our first contribution. It says that
C(H,Σ, n) is bounded if and only if H is strongly non-planar.

Theorem 1.1. There exists a function c1.1(h, g) such that for every strongly non-planar
graph H with h vertices and every surface Σ of Euler genus g,

C(H,Σ, n) 6 c1.1(h, g).

Conversely, for every graph H that is not strongly non-planar and for every surface Σ

in which H embeds, there is a constant c > 0 such that for all n > 4|V (H)|, there
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is an n-vertex graph that embeds in Σ and contains at least cn copies of H; that is,
C(H,Σ, n) > cn.

There are two important observations about Theorem 1.1. First, the characterisation
of graphs H does not depend on the surface Σ. Indeed, the only dependence on Σ is in
the constants. Second, Theorem 1.1 shows that C(H,Σ, n) is either bounded or Ω(n).

Theorem 1.1 is in fact a special case of the following more general theorem. The next
definition is a key to describing our results. A flap in a graph H is a (6 2)-separation
(A,B) such that A+ is planar. Separations (A,B) and (C,D) of H are independent if
E(A−) ∩ E(C−) = ∅ and (V (A) \ V (B)) ∩ (V (C) \ V (D)) = ∅.2 If H is planar and
with no (6 2)-separation, then the flap-number of H is defined to be 1. Otherwise, the
flap-number of H is defined to be the maximum number of pairwise independent flaps
in H. Let f (H) denote the flap-number of H.

The following is our main theorem.

Theorem 1.2. For every graph H and every surface Σ in which H embeds,

C(H,Σ, n) = Θ(nf (H)).

It is immediate from the definitions that f (H) = 0 if and only if H is strongly non-planar.
So Theorem 1.1 follows from the f (H) 6 1 cases of Theorem 1.2.

As an aside, note that Theorem 1.2 can be restated as follows: for every graph H and
every surface Σ in which H embeds,

lim
n→∞

logC(H,Σ, n)

log n
= f (H).

The above limit is sometimes referred to as the asymptotic logarithmic density of H in
Σ. A related result of Nešetřil and Ossona de Mendez [51], shows that the asymptotic
logarithmic density of the number of induced copies of a fixed graph H in an infinite
nowhere dense hereditary graph class G is an integer that is at most α(H) (the size
of a maximum stable set in H). Our results (in the case that G is the class of graphs
embeddable in a fixed surface) imply this result (since the number of induced copies
of H in G is at most C(H,G)). Moreover, our bounds are often more precise since
f (H) can be significantly less than α(H). For example, for all n > 3, f (Kn,n) = 0, but
α(Kn,n) = n.

The lower bound in Theorem 1.2 is proved in Section 2. Section 3 introduces some
tools from the literature that are used in the proof of the upper bound. Theorem 1.1

2It is worth noticing that neither condition implies the other. If G is a 4-cycle abcd , then the two
2-separations (A,B) and (C,D) obtained by considering respectively the cutsets {b, d} and {a, c} satisfy
the second condition but not the first. If G consists of 5 non-adjacent vertices a, b, c, d, e then the
two 2-separations (A,B) and (C,D) with V (A) = {a, b, c, e}, V (B) = {b, c, d}, V (C) = {b, c, d, e},
V (D) = {a, b, c} satisfy the first condition but not the second.
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is proved in Section 4. The upper bound in Theorem 1.2 is then proved in Section 5.
Section 6 presents more precise bounds on C(H,Σ, n) when H is a complete graph Ks .
Section 7 considers the maximum number of copies of a graph H in an n-vertex graph in
a given minor-closed class. Section 8 reinterprets our results in terms of homomorphism
inequalities, and presents some open problems that arise from this viewpoint.

Before continuing, to give the reader some more intuition about Theorem 1.2, we now
asymptotically determine C(T,Σ, n) for a tree T .

Corollary 1.3. For every fixed tree T , let β(T ) be the size of a maximum stable set in
the subforest F of T induced by the vertices with degree at most 2. Then for every
fixed surface Σ,

C(T,Σ, n) = Θ(n β(T )).

Proof. By Theorem 1.2, it suffices to show that β(T ) = f (T ).

Let I = {v1, . . . , vβ(T )} be a maximum stable set in F . Let xi (and possibly yi) be the
neighbours of vi . Let Ai := T [{vi , xi , yi}] and Bi := T − vi . Then (Ai , Bi) is a flap of T .
Since I is a stable set, for each vi ∈ I neither xi nor yi are in I, implying that E(A−i ) ∩
E(A−j ) = ∅ for distinct i , j ∈ [β(T )]. Moreover, V (Ai) \ V (Bi) = {vi}, so (V (Ai) \
V (Bi)) ∩ (V (Aj) \ V (Bj)) = ∅ for all distinct i , j . Hence (A1, B1), . . . , (Aβ(T ), Bβ(T ))

are pairwise independent flaps in T . Thus β(T ) 6 f (T ). Theorem 1.2 then implies
that C(T,Σ, n) = Ω(n β(T )). This lower bound is particularly easy to see when T is a
tree. Let G be the graph obtained from T by replacing each vertex vi ∈ I by bn−|V (T )|β(T )

c
vertices with the same neighbourhood as vi , as illustrated in Corollary 1.3. Then G is
planar with at most n vertices and at least (n−|V (T )|

β(T )
)β(T ) copies of T . Thus C(T,Σ, n) >

C(T, S0, n) = Ω(nβ(T )) for fixed T .

For the converse, let (A1, B1), . . . , (Af (T ), Bf (T )) be pairwise independent flaps in T .
Choose (A1, B1), . . . , (Af (T ), Bf (T )) to minimise

∑f (T )
i=1 |V (Ai)|. A simple case-analysis

shows that |V (Ai) \ V (Bi)| = 1, and if vi is the vertex in V (Ai) \ V (Bi), then N(vi) =

V (Ai) ∩ V (Bi), implying vi has degree 1 or 2 in T . Moreover, vivj 6∈ E(T ) for distinct
i , j ∈ [f (T )] as otherwise E(A−i ) ∩ E(A−j ) 6= ∅. Hence {v1, . . . , vf (T )} is a stable set of
vertices in T all with degree at most 2. Hence β(T ) > f (T ). �

2. Lower Bound

Now we prove the lower bound in Theorem 1.2. Let H be an h-vertex graph with flap-
number k . Let Σ be a surface in which H embeds. Our goal is to show that C(H,Σ, n) =

Ω(nk) for all n > 4|V (H)|. We may assume that k > 2 and H is connected. Let
(A1, B1), . . . , (Ak , Bk) be pairwise independent flaps in H. If (Ai , Bi) is a 1-separation,
then let vi be the vertex in Ai ∩Bi . If (Ai , Bi) is a 2-separation, then let vi and wi be the
two vertices in Ai∩Bi . Let H′ be obtained from H as follows: if (Ai , Bi) is a 2-separation,



SUBGRAPH DENSITIES IN A SURFACE 5
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Figure 1. (a) A tree T with β(T ) = 5. (b) A planar graph with Ω(n5)

copies of T .

then delete Ai−V (Bi) from H, and add the edge viwi (if it does not already exist). Note
that H′ is a minor of H, since we may assume that whenever (Ai , Bi) is a 2-separation,
there is a viwi -path in Ai (otherwise (Ai , Bi) can be replaced by a (6 1)-separation).
Since H embeds in Σ, so does H′. By assumption, A+i is planar for each i . Fix an
embedding of A+i with vi and wi (if it exists) on the outerface (which exists since viwi
is an edge of A+i in the case of a 2-separation). Let G be the graph obtained from an
embedding of H′ in Σ by pasting q := b n

|V (H)| − 1c copies of A+i onto vi (if (Ai , Bi) is a
1-separation) and onto viwi (if (Ai , Bi) is a 2-separation). These copies of A+i can be
embedded into a face of H′, as illustrated in Figure 2.

Since (V (Ai) \ V (Bi)) ∩ (V (Aj) \ V (Bj)) = ∅ for distinct i , j ∈ [k ],

|V (G)| = |V (H)|+ q
∑
i

|V (Ai) \ V (Bi)| 6 (q + 1)|V (H)| 6 n.

By construction, G has at least qk > ( n
|V (H)| − 2)k copies of H. Hence C(H,Σ, n) =

Ω(nk).

A1 A2 A1bbbA1 A2 b b b A2

(a) (b)

Figure 2. (a) A graph H with flap-number 2. (b) A graph with Ω(n2)

copies of H.

3. Tools

In Sections 3–5 of this paper we work in the following setting. For graphs G and H, an
image of H in G is an injection φ : V (H) → V (G) such that φ(u)φ(v) ∈ E(G) for all
uv ∈ E(H). Let I(H,G) be the number of images of H in G, and let I(H,Σ, n) be the
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maximum of I(H,G) taken over all n-vertex graphs G that embed in Σ. If H is fixed
then C(H,G) and I(H,G) differ by a constant factor. In particular, if |V (H)| = h then

C(H,G) 6 I(H,G) 6 h!C(H,G).

C(H,Σ, n) 6 I(H,Σ, n) 6 h!C(H,Σ, n).

So to prove our main theorems, it suffices to work with images rather than copies.

To prove the upper bound in Theorem 1.2 we need several tools from the literature. The
first two were proved by Eppstein [17]. To state the first result we need the following
definition. A collection H of images of H in G is coherent if for all images φ1, φ2 ∈ H
and for all distinct vertices x, y ∈ V (H), we have φ1(x) 6= φ2(y).

Lemma 3.1 ([17]). Let H be a graph with h vertices and G be a graph. Every collection
of at least c3.1(h, t) := h!2th images of H in G contains a coherent subcollection of size
at least t.

Theorem 3.2 ([17]). There exists a function c3.2(h, g) such that for every planar graph
H with h vertices and no (6 2)-separation, and every surface Σ of Euler genus g,

I(H,Σ, n) 6 c3.2(h, g)n.

The next key tool is the following result by Miller [48] and Archdeacon [7].

Theorem 3.3 (Additivity of Euler genus [7, 48]). For all graphs G1 and G2, if |V (G1) ∩
V (G2)| 6 2 then the Euler genus of G1 ∪ G2 is at least the Euler genus of G1 plus the
Euler genus of G2.

We also use the following result of Erdős and Rado [18]; see [6] for a recent quantitative
improvement. A t-sunflower is a collection S of t sets for which there exists a set R
such that X ∩ Y = R for all distinct X, Y ∈ S. The set R is called the kernel of S.

Lemma 3.4 (Sunflower Lemma [18]). There exists a function c3.4(h, t) such that every
collection of c3.4(h, t) many h-subsets of a set contains a t-sunflower.

Finally, we mention some well-known corollaries of Euler’s Formula that we use implicitly.
Every graph with n > 3 vertices and Euler genus g has at most 3(n + g − 2) edges.
Moreover, for bipartite graphs the above bound is 2(n+g−2). For example, this implies
that the complete bipartite graph K3,2g+3 has Euler genus greater than g.

4. Strongly Non-Planar Graphs

We begin by proving a quantitative version of the upper bound in Theorem 1.1. In fact,
we will prove that Theorem 1.1 holds more generally for what we call ‘partially subdivided
graphs’. A partially subdivided graph is a pair (H,P), where H is a graph and P is a
collection of internally disjoint paths in H such that the two ends of each path in P are
not adjacent in H, and every internal vertex of each path in P has degree 2 in H. Let
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H − P be the graph obtained from H by deleting every internal vertex of each path in
P. Finally, let H/P be the minor of H obtained by contracting all but one edge from
each path in P.

Theorem 4.1. Let c4.1(h, g) := c3.1(h, c3.4(h, 2g + 3)). Then for every partially sub-
divided graph (H,P) such that H/P is strongly non-planar and |V (H)| = h, for every
surface Σ with Euler genus g, and for every graph G embedded in Σ, there are at most
c4.1(h, g) images of H − P in G that extend to an image of H in G.

Proof. Assume for the sake of contradiction, that there is a collection H of more than
c4.1(h, g) images of H in G, such that all restrictions of these images to H−P are distinct.
By Lemma 3.1, H contains a coherent subfamily H0 of size at least c3.4(h, 2g+ 3). Let
V be the collection of vertex sets of the images of H in H0. By coherence, |V| = |H0| >
c3.4(h, 2g + 3).

By the Sunflower Lemma, V contains a (2g+3)-sunflower F . (Abusing notations slightly,
we equate sets in F with the corresponding images of H in H0.) Let Z be the kernel of
F . Thus F ∩F ′ = Z for all F, F ′ ∈ F . Let I be the set of internal vertices of all P ∈ P.
Since the restrictions of the images of H in F to H−P are all distinct, for each F ∈ F
there exists a vertex wF ∈ F \ Z such that wF is the image of a vertex in V (H) \ I. By
coherence, we may assume that every wF is the image of the same vertex of V (H) \ I.
For each F ∈ F , let CF be the component of F − Z which contains wF and let NF be
the vertices of Z with at least one neighbour in V (CF ). By coherence, NF is the same
for all F ∈ F . Therefore, we obtain a K|NF |,|F| minor in G by contracting each CF to a
vertex. Since |F| = 2g + 3 and K3,2g+3 does not embed in Σ, we must have |NF | 6 2.

For each F ∈ F , consider the pair of subgraphs (F1, F2) := (F [Z], F [(V (F ) \Z)∪NF ])

of F . Since |NF | 6 2, either (F1, F2) is a (6 2)-separation of F or F2 = F . Let
F/P and (F1/P, F2/P) be obtained from F and (F1, F2) respectively, by contracting all
but one edge from the image of each P ∈ P. When performing these contractions,
we may assume that no edge of F incident to wF is contracted. Therefore, since
wF ∈ V (F2) \ V (F1), it follows that either (F1/P, F2/P) is a (6 2)-separation of F/P
or F2/P = F/P. Since F/P ∼= H/P and H/P is strongly non-planar, either (F2/P)+

is non-planar or F2/P = F/P. In the first case, F+2 is also non-planar since (F2/P)+

is a minor of F+2 . In the second case, F2 = F is also non-planar. Let F ′2 := F+2 if the
first case holds, and F ′2 = F if the second case holds. If NF := {x, y} and xy /∈ E(F ),
let Σ′ be obtained from Σ by adding a handle and using the handle to draw the edge
xy , and let G ′ := G ∪ {xy}. Otherwise, let Σ′ := Σ and G ′ := G. We conclude by
noting that the family of subgraphs {F ′2 | F ∈ F} of G ′ contradicts the Additivity of
Euler genus (Theorem 3.3), since they each have Euler genus at least 1, they pairwise
intersect only in NF , are drawn on a surface Σ′ of Euler genus at most g + 2, and
|F| = 2g + 3 > g + 2. �
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Note that if H is a strongly non-planar graph, then we recover Theorem 1.1 by applying
Theorem 4.1 to the partially subdivided graph (H, ∅). We need the stronger statement
in Theorem 4.1 for the proof of Theorem 5.9 to come.

5. Proof of Main Theorem

The proof of our main theorem uses a variant of the SPQR tree, which we now introduce.

5.1. SPQRK Trees. The SPQR tree of a 2-connected graph G is a tree that displays
all the 2-separations of G. Since we need to consider graphs which are not necessarily
2-connected, we use a variant of the SPQR tree which we call the SPQRK tree.

Let G be a connected graph. The SPQRK tree TG of G is a tree, where each node
a ∈ V (TG) is associated with a multigraph Ha which is a minor of G. Each vertex
x ∈ V (Ha) is a vertex of G, that is, V (Ha) ⊆ V (G). Each edge e ∈ E(Ha) is classified
either as a real or virtual edge. By the construction of an SPQRK tree each edge
e ∈ E(G) appears in exactly one minor Ha as a real edge, and each edge e ∈ E(Ha)

which is classified real is an edge of G. The SPQRK tree TG is defined recursively as
follows.

(1) If G is 3-connected, then TG consists of a single R-node a with Ha := G. All
edges of Ha are real in this case.

(2) If G is a cycle, then TG consists of a single S-node a with Ha := G. Again, all
edges of Ha are real in this case.

(3) If G is isomorphic to K1 or K2, then TG consists of a single K-node a with
Ha := G. Again, all edges of Ha are real in this case.

(4) If G is 2-connected and has a cutset {x, y} such that the vertices x and y have
degree at least 3, we construct TG inductively as follows. Let C1, . . . , Cr (r > 2)
be the connected components of G − {x, y}. First add a P -node a to TG, for
which Ha is the graph with V (Ha) := {x, y} consisting of r parallel virtual edges
and one additional real edge if xy is an edge of G.
Next let Gi be the graph G[V (Ci) ∪ {x, y}] with the additional edge xy if it

is not already there. Since we include the edge xy , each Gi is 2-connected and
we can construct the corresponding SPQRK tree TGi by induction. Let ai be the
(unique) node in TGi for which xy is a real edge in Hai . In order to construct TG,
we make xy a virtual edge in the node ai , and connect ai to a in TG.

(5) If G has a cut-vertex x and C1, . . . , Cs (s > 2) are the connected components
of G− x , then construct TG inductively as follows. First, add a Q-node a to TG,
for which Ha is the graph consisting of the single vertex x . For each i ∈ [s], let
Gi := G[V (Ci)∪{x}]. Since Gi is connected, we can construct the corresponding
SPQRK tree TGi by induction. If there is a unique node bi ∈ V (TGi ) such that
x ∈ V (Hbi ), then make a adjacent to bi in TG. If x is in at least two nodes of
V (TGi ), then x ∈ V (C) ∩ V (D) for some (6 2)-separation (C,D) of Gi . Since
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Gi − x is connected, there must be a P -node bi in TGi such that x ∈ V (Hbi ).
Note that bi is not necessarily unique. Choose one such bi and make a adjacent
to bi in TG.

As a side remark, note that the SPQRK tree TG of G is in fact not unique—there is some
freedom in choosing bi in the last point in the definition above—however, for our purposes
we do not need uniqueness, we only need that TG displays all the (6 2)-separations of
G.

The next lemma is the crux of the proof. Let J and G be graphs and X and Y be cliques
in J and G respectively, with |X| = |Y |. Let φ : V (J) → V (G) be an image of J in G.
We say that φ fixes X at Y if φ(X) = Y . Let (J ′,P) be a partially subdivided graph
such that J = J ′/P. We call uv ∈ E(J) a fake edge if u and v are the set of ends of
some P ∈ P. Otherwise, uv is a true edge.

Lemma 5.1. Let c5.1(j, g) := 12(g+1)c3.1(j, c3.4(j, 2g+3)). Let Σ be a surface of Euler
genus g. Let (J ′,P) be a connected, partially subdivided planar graph with |V (J ′)| = j

and let J := J ′/P.

Let X be a clique in J such that:

(1) there do not exist independent flaps (A,B) and (C,D) of J with X ⊆ V (B∩D),
(2) |X| ∈ {1, 2}, and if |X| = 2, then X is a true edge,
(3) if |X| = 1 and J ∼= P3, then e is a true edge, where e is the unique edge of J

not incident to X,
(4) if |X| = 1 and J ∼= C3, then e is a true edge, where e is the unique edge of J

not incident to X,
(5) if X = 2 and J ∼= C4, then e is a true edge, where e is the unique edge of J not

incident to a vertex of X,
(6) if J is 3-connected, then all edges of J with neither end in X are true,
(7) if (A,B) is a flap of J, with X ⊆ V (B), |V (A ∩ B)| = 1, and A ∼= P3, then e is

a true edge, where e is the unique edge of A not incident to V (A ∩ B),
(8) if (A,B) is a flap of J, with X ⊆ V (B), |V (A ∩ B)| = 1, and A ∼= C3, then e is

a true edge, where e is the unique edge of A not incident to V (A ∩ B),
(9) if (A,B) is a flap of J, with X ⊆ V (B), |V (A ∩ B)| = 2, and A+ ∼= C3, then at

least one e or f is a true edge, where e and f are the two edges of A with an
end not on V (A ∩ B).

(10) if (A,B) is a flap of J, with X ⊆ V (B), |V (A∩B)| = 2, and A+ ∼= C4, then e is
a true edge, where e is the unique edge of A not incident to V (A ∩ B),

(11) if (A,B) is a flap of J such that A+ is 3-connected, then all edges of A with
neither end in V (A ∩ B) are true.

Then for every n-vertex graph G embeddable in Σ and every clique Y in G with |Y | = |X|,
there are at most c5.1(j, g)n images of J ′ − P in G with X fixed at Y which extend to
an image of J ′ in G.
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Proof of Lemma 5.1. Let G be an n-vertex graph embedded in a surface Σ of Euler
genus g and Y be a clique in G with |Y | = |X|. We begin by proving the lemma when
J is small. The lemma clearly holds if |V (J)| = 1 or |V (J)| = 2 = |X|. If |V (J)| = 2

and |X|=1, let y be the vertex of J not in X. Since there are at most n − 1 vertices
of G to send y to, we are done. Similarly, we are done if J ∈ {P3, C3} and |X| = 2. If
J ∈ {P3, C3} and |X| = 1 let e be the unique edge of J not incident to X. Note that e
exists in the case that J ∼= P3, since the vertex in X cannot be the middle vertex of J by
(1). By (3) and (4), e is a true edge, so there are at most |E(G)| 6 3(g+ 1)n edges of
G to send e to. Each edge gives at most two images of J ′ −P with X fixed at Y in G,
so there are at most 6(g + 1)n such images. Suppose |V (J)| = 4. Note that J 6∼= P4,
by (1). If J ∼= C4, then |X| = 2 by (1). Let e be the unique edge of J not incident to
a vertex of X. By (5), e is a true edge, so again there are at most 3(g + 1)n edges of
G to send e to. Each edge gives at most four images of J ′ −P with X fixed at Y in G,
so there are at most 12(g + 1)n such images.

In summary, by the above discussion we may assume that |V (J)| > 4, and J 6∼= P4, C4 in
case |V (J)| = 4.

Let TJ be the SPQRK tree of J. Suppose V (TJ) = {a}. If a is a K-node, then we are
done since |V (J)| 6 2. If a is an S-node, then by (1), J ∼= C3 or J ∼= C4, so we are
done. By the preceding remarks, we may assume that J is 3-connected, or |V (J)| > 4

and |V (TJ)| > 2. A clique X ′ of J is a true clique if |X ′| = 1, or |X ′| = 2 and the edge
of X ′ is a true edge. If J is 3-connected, we have the following easy claim.

Claim 5.2. If J is 3-connected, then there exists a true clique X ′ in J such that for all
w ∈ V (J) \ (X ∪ X ′), there are three internally disjoint paths in J from w to X ∪ X ′,
whose ends in X ∪X ′ are distinct.

Proof. Let X ′ be an edge of J with neither end in X. By (6), X ′ is a true edge. Since
J is 3-connected, we are done by Menger’s theorem. �

We now suppose that |V (J)| > 4 and |V (TJ)| > 2, and we prove that Claim 5.2 also
holds in this case. Let W be the set of K-, S-, and R-nodes of V (TJ). If U is a
non-empty proper subset of W , we define HU :=

⋃
a∈U Ha, bd(U) := V (HU ∩ HW\U),

λ(U) := | bd(HU)|, and sep(U) := (HU, HW\U). The next two claims follow from (1).

Claim 5.3. TJ is a path and there is a leaf ` of TJ such that X ⊆ V (H`) and X\bd({`}) 6=
∅.

Claim 5.4. Let r be the other leaf of TJ. Then for all non-empty U ⊆ W \ {`, r} such
that U is not a single K-node, λ(U) > 3.

The next claim also follows from (1). For completeness, we include the proof.
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Claim 5.5. Let S := {s ∈ V (J) \ X | degJ(s) 6 2}. Then |S| 6 2, S ⊆ V (Hr), and if
|S| = 2, then the two vertices in S are adjacent in J.

Proof. Since |V (J)| > 4, for each s ∈ S, (δ(s), J − s) is a flap with X ⊆ V (J − s),
where δ(s) is the subgraph of J induced by the edges incident to s. Thus, by (1), S is
a clique in J, and therefore |S| 6 3. Moreover, |S| = 3 is impossible, since |V (J)| > 4

and J is connected. Thus, |S| 6 2. Since (A,B) = sep({r}) is a flap with X ⊆ V (B),
(1) also implies S ⊆ V (Hr). �

Claim 5.6. J has at most two cut-vertices. Moreover, if J has two cut-vertices, then
they are the vertex set of some K-node of TJ.

Proof. Suppose c and d are distinct cut-vertices of J. Let Wcd ⊆ W be the set of
K-, S-, and R-nodes of V (TJ) strictly between the Q-nodes corresponding to c and d
in TJ. Note that sep(Wcd) is a 2-separation of J, unless Wcd is just a single K-node.
Moreover, if Wcd is not a single K-node, then sep({r}) and sep(Wcd) would contradict
(1). It follows that J has at most two cut-vertices, and that {c, d} is the vertex set of
some K-node of TJ. �

Claim 5.7. There exists a true clique X ′ in J such that for all w ∈ V (J) \ (X ∪ X ′),
there are three internally disjoint paths in J from w to X ∪ X ′, whose ends in X ∪ X ′
are distinct.

Proof. If r is an R-node, then all edges of H−r are true by (11). In this case we let X ′

be any edge of H−r such that X ′ ∩ bd({r}) = ∅. If r is an S-node, then by (1), either
Hr ∼= C3, or Hr ∼= C4 and | bd({r})| = 2. In either case, by (8), (9), and (10), we can
choose X ′ to be a true edge such that V (Hr) \ (X ′ ∪ bd({r})) = ∅. Lastly, suppose r is
a K-node. Then Hr ∼= K2, say Hr consists of the edge uv with v ∈ bd({r}). If v /∈ S,
we let X ′ := {u}. If v ∈ S, we let X ′ := {u, v}; note that uv is a true edge by (7) in
this case.

Suppose the claim is false for the above choice of X ′ for some vertex w ∈ V (J)\(X∪X ′),
and let X+ := X ∪ X ′. Note that |X+| > 3 by our choice of X ′, since if |X| = 1 then J
is 2-connected by (1). (Indeed, if J is not 2-connected then J has a flap (A,B) which is
a 1-separation with X ⊆ B, but then (B,A∪X) is also a flap, contradicting (1).) Thus,
by Menger’s theorem, there is a (6 2)-separation (J1, J2) of J with w ∈ V (J1) \ V (J2)

and X+ := X ∪X ′ ⊆ V (J2).

Let a be an S-node of TJ. Observe that every 2-separation of the cycle Ha lifts to a
2-separation of J. We say that a 2-separation of J is rooted at a if it is a lift of a
2-separation of Ha. Since the SPQRK tree TJ of J ‘displays’ all the (6 2)-separations
of J, every (6 2)-separation (A,B) of J

• is equal to sep(U) for some U ⊆ W , or
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• is rooted at some S-node a of TJ, or
• is obtained from a 1-separation (A′, B′) by adding an isolated vertex to A′ or B′

(which is thus in A ∩ B).

Suppose (J1, J2) = sep(U) for some U ⊆ W . Since X+ ⊆ V (J2), X \ bd({`}) 6= ∅, and
X ′ \ bd({r}) 6= ∅, we have U ⊆ W \ {`, r}. This is a contradiction since λ(U) > 3 by
Claim 5.4. Similarly, (J1, J2) cannot be rooted at an S-node, unless degJ(x) = 2 for
some x ∈ V (J1) \ V (J2). However, by Claim 5.5 and our choice of X ′, degJ(x) > 3, for
all x ∈ V (J) \X+, so this is also impossible.

Finally, suppose the third possibility holds for some 1-separation (A′, B′) of J. Observe
that every 1-separation (A,B) of J has X ′ ⊆ V (A) and X ⊆ V (B); or X ⊆ V (A) and
X ′ ⊆ V (B). By swapping the order of (A′, B′) we may assume that X ′ ⊆ V (A′) and
X ⊆ V (B′). Moreover, (A′, B′ ∪ {a}) ∈ {(J1, J2), (J2, J1)} for some a ∈ V (A′) \ V (B′);
or (A′ ∪ {b}, B′) ∈ {(J1, J2), (J2, J1)} for some b ∈ V (B′) \ V (A′). If (A′ ∪ {b}, B′) =

(J1, J2), then (A′, B′) is a 1-separation of J such that X ∪ X ′ ⊆ V (B′). However, no
such separation exists (by the proof that (J1, J2) 6= sep(U) for all U ⊆ W ). Similarly,
(A′, B′ ∪ {a}) = (J2, J1) is impossible. If (A′ ∪ {b}, B′) = (J2, J1), then (A′, B′) and
(B′, A′ ∪ {b}) contradict (1). The remaining case is (A′, B′ ∪ {a}) = (J1, J2). Let c be
the unique vertex in V (A′)∩ V (B′). Recall that by the choice of X ′, if r is an R-node or
an S-node, then |X ′| = 2 and c /∈ X ′. However, this contradicts X ′ ⊆ V (J2). Thus, r is
a K-node. Note that (A′, B′) = sep({r}) is impossible, because V (A′) \ (V (B′ ∪ {a}))

would be empty, and hence (A′, B′ ∪ {a}) is not a 2-separation. Thus c /∈ V (Hr). Let
v be the cut-vertex of J in V (Hr). By Claim 5.6, c and v are adjacent and v ∈ S =

{s ∈ V (J) \ X | degJ(s) 6 2}. In this case, by our choice of X ′, we have |X ′| = 2 and
c /∈ X ′, so we again have a contradiction. �

Let X ′ be the true clique of J given by Claim 5.2 or by Claim 5.7, depending whether J
is 3-connected, or |V (J)| > 4 and |V (TJ)| > 2. Suppose |X ′| = 1. For each y ∈ V (G)

we let cy be the number of images of J ′ − P in G with X fixed at Y and X ′ fixed at y ,
which extend to an image of J ′ in G. Suppose |X ′| = 2. For each f ∈ E(G) we let cf be
the number of images of J ′ −P in G with X fixed at Y and X ′ fixed at f , which extend
to an image of J ′ in G.

We claim that if |X ′| = 1 then cy 6 c3.1(j, c3.4(j, 2g + 3)) for all y ∈ V (G), if |X ′| = 2

then cf 6 c3.1(j, c3.4(j, 2g + 3)) for all f ∈ E(G). We will prove both inequalities
simultaneously, since the proof is the same. Arguing by contradiction, suppose y or
f := uv is a counterexample, and set Y + = Y ∪ {y} if |X ′| = 1 and Y + = Y ∪ {u, v} if
|X ′| = 2. Then, there exists a collection J1 of more than c3.1(j, c3.4(j, 2g + 3)) images
of J ′ in G with X fixed at Y and X ′ fixed at y (respectively, X ′ fixed at f ) such that the
restrictions of these images to J ′ − P are all distinct.

By Lemma 3.1, J1 contains a coherent subfamily J2 of size at least c3.4(j, 2g + 3).
Let V be the collection of vertex sets of J2. Note that by coherence, |V| = |J2| >
c3.4(j, 2g + 3). By Lemma 3.4, V contains an s-sunflower F , where s > 2g + 3. Let Z
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be the kernel of F . By construction, Y + ⊆ Z. Let I be the set of internal vertices of
all P ∈ P. Since the restrictions of each copy of J ′ in F to J ′ − P are all distinct, for
all F ∈ F there must be a vertex wF ∈ F \ Z such that wF is the image of a vertex in
V (J ′) \ I. By coherence, we may assume that each wF corresponds to the same vertex
in V (J ′) \ I. By Claim 5.2 and Claim 5.7, there are three internally disjoint paths from
wF to Y + in G[F ] whose ends in Y + are distinct. For each F ∈ F , let ZF be the set
consisting of the first vertices of Z on each of these three paths. By coherence, we
may assume ZF is the same for all F ∈ F . Thus, G contains a subdivision of K3,2g+3.
However, this is impossible, since K3,2g+3 does not embed in Σ.

It follows that cy , cf 6 c3.1(j, c3.4(j, 2g + 3)) for all y ∈ V (G) and f ∈ E(G). The proof
is complete by summing over all possible y ∈ V (G) if |X ′| = 1, and summing over all
possible f ∈ E(G) if |X ′| = 2. �

The final ingredient we need is the following ‘flap reduction’ lemma.

Lemma 5.8. Let H be a connected graph with flap-number k > 1. Let A be a subgraph
of H which is maximal (under the subgraph relation) subject to the following conditions:

• A has no isolated vertices, and
• there exists a flap (A,B) of H and a set F of k independent flaps in H with

(A,B) ∈ F .

Then B+ has flap-number k − 1. Moreover, A is connected and A+ does not contain
independent flaps (C,D) and (C ′, D′) such that V (A ∩ B) ⊆ V (D ∩D′).

Proof. We first show that B+ has flap-number at least k − 1. To see this, let F be a
set of k independent flaps in H such that (A,B) ∈ F . Every flap (C,D) ∈ F \ {(A,B)}
corresponds to a flap (C,D′) in B+, unless k = 2, H is planar, and F = {(A,B), (B,A)}.
In either case, B+ has flap-number at least k − 1.

We now prove the upper bound. Towards a contradiction, let (C1, D1), . . . , (Ck , Dk)

be independent flaps in B+. Let X := V (A ∩ B). If X ⊆ V (S) for a subgraph S of
B+, we let S +X A be the subgraph of H obtained by gluing A to S along X, and
deleting the edge between the ends of X in B+ if the edge does not exist in H. If X
is contained in V (D`) for every ` ∈ [k ], then (A,B), (C1, D1 +X A), . . . , (Ck , Dk +X A)

are k + 1 pairwise independent flaps in H. Thus X is not contained in V (D`) for some
` ∈ [k ]. By relabelling, we may assume ` = 1. Since (V (C1) \ V (D1)) ∩ X 6= ∅ and
(V (C1) \ V (D1)) ∩ (V (Ci) \ V (Di)) = ∅ for all i > 1, we have X ⊆ V (Di) for all i > 1.
Then, (C1 +X A,D1), (C2, D2 +X A), . . . (Ck , Dk +X A) are k independent flaps in H.
Since A is a proper subgraph of C1 +X A, this contradicts the maximality of A.

Finally, we show that the last sentence of the lemma holds. Suppose A is disconnected
and A1, . . . , Ac are the connected components of A. Since H is connected, Ai contains
a vertex of V (A ∩ B) for all i ∈ [c ]. Thus, c = 2 and A1 and A2 each contain exactly



14 T. HUYNH, G. JORET, AND D.R. WOOD

one vertex of V (A∩B). Since neither A1 nor A2 is an isolated vertex, there exist B1 and
B2 such that (A1, B1) and (A2, B2) are independent flaps of H. Thus, F \ {(A,B)} ∪
{(A1, B1), (A2, B2)} is a set of k + 1 independent flaps of H, which contradicts that H
has flap-number k . Similarly, A+ does not contain independent flaps (C,D) and (C ′, D′)

such that V (A ∩ B) ⊆ V (D ∩D′). �

We call a subgraph A of H a half-flap if (A,B) is a flap of H for some B. Two half-
flaps A and C are independent if there exist B and D such that (A,B) and (C,D)

are independent flaps. We say that A is a full-half-flap if A satisfies the conditions of
Lemma 5.8.

We now complete the proof of the upper bound in Theorem 1.2.

Theorem 5.9. Let c5.9(h, g) := 6(g+1)c4.1(h, g)c3.2(h, g)c5.1(h, g+2)h. Then for every
graph H with h vertices and every surface Σ of Euler genus g in which H embeds,

C(H,Σ, n) 6 I(H,Σ, n) 6 c5.9(h, g)nf (H).

Proof. Let k := f (H). Since c5.9(h1, g) · c5.9(h2, g) 6 c5.9(h, g) whenever h1 + h2 = h,
we may assume that H is connected by induction on |V (H)|. A reduction sequence of
H is a sequence of graphs Hk , . . . , Hj for some j 6 k , where Hk := H, and for all i > j ,
Hi−1 := B+i , where (Ai , Bi) is a flap in Hi satisfying the conditions of Lemma 5.8. By
Lemma 5.8, every reduction sequence satisfies the following properties.

Claim 5.10. Let Hk , . . . , Hj be a reduction sequence of H, with corresponding flaps
(A`, B`) in H`. Then for all ` ∈ {k, . . . , j + 1}, A` is connected and A+` does not
contain independent flaps (C,D) and (C ′, D′) such that V (A`)∩V (B`) ⊆ V (D)∩V (D′).
Moreover, for all ` ∈ {k, . . . , j}, H` has flap-number `.

We now establish further properties of reduction sequences. Let Hk , . . . , Hj be a reduc-
tion sequence of H, with corresponding flaps (A`, B`) in H`. If V (A`)∩ V (B`) := {u, v}
and uv /∈ E(H`), we declare uv to be a fake edge of H`−1. An edge of H` is a fake edge
if it is a fake edge of H`′ for some `′ > `, and it is a true edge if it is not a fake edge.

Claim 5.11. Let Hk , . . . , Hj be a reduction sequence of H, with corresponding flaps
(A`, B`) in H`. Then for all ` ∈ {k, . . . , j}, if (C,D) is a flap in H` such that C+ is
3-connected, then all edges of C with neither end in V (C ∩D) are true.

Proof. Let (C,D) be a flap of H` which is a counterexample with |E(C)| − |V (D)|
maximum. Let X := V (C ∩ D). By the maximality of |E(C)| − |V (D)|, note that if
H` contains an edge f whose ends are X, then f ∈ E(C). We claim that each x ∈ X
is incident to an edge of D. If not, then x must be an isolated vertex of D. But now,
(C,D− x) contradicts the maximality of |E(C)| − |V (D)|. For all i ∈ {k, . . . , `+ 1} set
Xi := V (Ai ∩Bi). Let I be the set of indices i ∈ {k, . . . , `+ 1} such that Xi is the set of
ends of a fake edge of C−. Let s be the smallest index in I and e be the corresponding



SUBGRAPH DENSITIES IN A SURFACE 15

fake edge. Since Hk , . . . , Hj is a reduction sequence, we can choose a collection Fs of
s independent flaps of Hs such that (As , Bs) ∈ Fs and

∑
(A′,B′)∈Fs |V (A′)| + |E(A′)| is

minimum. Let (A,B) be an arbitrary flap in Fs \ {(As , Bs)}.

Suppose V (A) is a proper subset of V (C). Since C+ is 3-connected and V (C)\V (A) 6= ∅,
for some Y ∈ {Xs , X}, one vertex y of Y is in V (A)\V (B) and the other vertex of Y is in
V (B)\V (A). Observe that V (As) ⊆ V (B) because (As , Bs) and (A,B) are independent
flaps of Hs . In particular, Xs ⊆ V (B). By the minimality of

∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)|,

if Hs contains an edge f whose ends are X, then f ∈ E(B). Since V (A) is a proper
subset of V (C) and each x ∈ X is incident to an edge of D, this implies X ⊆ V (B).
Therefore, for either choice of Y , we have y ∈ V (B). Thus, y ∈ V (A ∩ B), which
contradicts that y ∈ V (A) \ V (B).

Suppose V (A) = V (C) and |Xs ∪ X| > 3. Observe that Xs ∪ X ⊆ V (A). Since
V (As) ⊆ V (B), Xs ⊆ V (B). Moreover, since V (D) ⊆ V (B), X ⊆ V (B). Therefore,
Xs ∪ X ⊆ V (A ∩ B). Since |Xs ∪ X| > 3, this implies that (A,B) is a (> 3)-separation
of Hs , which contradicts that (A,B) is a flap.

Suppose A ∩ C = S, where S is a stable set and S contains a vertex x /∈ X. If
x /∈ Xs , then x is an isolated vertex of A. If x ∈ Xs , then since (A,B) and (As , Bs)

are independent flaps, V (A ∩ As) \ Xs = ∅. Thus, x is an isolated vertex of A in this
case as well. But now, replacing (A,B) by (A − x, B) contradicts the minimality of∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)|.

Suppose A∩C consists of just a single edge xy . Since C+ is 3-connected, degC+(x) > 3

and degC+(y) > 3. For z ∈ {x, y}, let d(z) be the number of Y ∈ {Xs , X}\{{x, y}} such
that z ∈ Y . Observe that degC+(z) 6 degA∩C(z)+degB∩C(z)+d(z) for both z ∈ {x, y}.
Since degA∩C(z) = 1 for both z ∈ {x, y}, this yields degB∩C(z) > 2 − d(z) for both
z ∈ {x, y}. If {x, y} ⊆ X ∪Xs , then d(x) 6 1 and d(y) 6 1. Therefore, degB∩C(x) > 1

and degB∩C(y) > 1, which implies {x, y} ⊆ V (A∩B). But now, (A− xy , B∪{xy}) is a
(6 2)-separation, which contradicts the minimality of

∑
(A′,B′)∈Fs |V (A′)| + |E(A′)|. By

symmetry, we may assume y /∈ Xs ∪X. Thus, d(y) = 0, which gives degB∩C(y) > 2. In
particular, y ∈ V (A ∩ B). Moreover, since y /∈ Xs ∪ X, we have y ∈ V (C) \ V (D), and
thus degA(y) = degA∩C(y) = 1. Observe that |V (A − y) ∩ V (B ∪ {xy})| 6 2 because
V (A− y) ∩ V (B ∪ {xy}) ⊆ (V (A ∩ B) \ {y}) ∪ {x}. Therefore (A− y , B ∪ {xy}) is a
(6 2)-separation. But now A − y is a half-flap contained in A, which contradicts the
minimality of

∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)|.

Suppose V (C) is a proper subset of V (A). Clearly, Xs ⊆ V (A). Also, Xs ⊆ V (B) since
(A,B) and (As , Bs) are independent flaps. Therefore, V (A ∩ B) = Xs , since |Xs | = 2.
Moreover, A ∩ D contains at least one vertex not in X, since V (C) is a proper subset
of V (A). If A ∩ D meets B ∩ D at a vertex x /∈ X, then x /∈ Xs and x ∈ V (A ∩ B),
which contradicts that V (A ∩ B) = Xs . Thus, V (A ∩ D) ∩ V (B ∩ D) ⊆ X. It follows
that A ∩ D is a half-flap, since |X| 6 2. However, this contradicts the minimality of∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)| since |V (A ∩D)| < |V (A)|.
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Suppose 3 6 |V (A ∩ C)| < |V (C)| and V (A) \ V (C) 6= ∅. Since C+ is 3-connected,
for some Y ∈ {Xs , X}, one vertex y of Y is in V (A) \ V (B) and the other vertex of Y
is in V (B) \ V (A). Since (A,B) and (As , Bs) are independent flaps, we have As ⊆ B.
Thus, Xs ⊆ V (B), and so Y = X. Let B∗ be obtained from B by replacing As by an
edge whose ends are Xs , and adding the edge with ends X. Since C+ is 3-connected,
(C+ ∩A,C+ ∩B∗) is a (> 3)-separation of C+. It follows that A∩C meets B ∩C in at
least two vertices of V (C) \X, and thus exactly two since |V (A∩B)| 6 2. In particular,
V (A∩B) ⊆ V (C) \X, and hence V (A∩D)∩ V (B ∩D) = ∅. It follows that A∩D is a
half-flap. However, this contradicts the minimality of

∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)| since

|V (A ∩D)| < |V (A)|.

By the previous cases, there are only two cases left to consider for (A,B), namely (1)
V (A ∩ C) ⊆ X and A ∩ C has no edges, or (2) V (A) = V (C) and |Xs ∪ X| 6 2. Since
(A,B) is an arbitrary flap of Fs \ {(As , Bs)}, we may assume that either V (A′ ∩C) ⊆ X
and A′ ∩ C has no edges for all (A′, B′) ∈ Fs \ {(As , Bs)}; or that V (A) = V (C) and
|Xs ∪X| 6 2.

Suppose V (A′ ∩ C) ⊆ X and A′ ∩ C has no edges for all (A′, B′) ∈ Fs \ {(As , Bs)}.
By replacing (As , Bs) by (As +Xs C,Bs − (V (C) \ X)) in Fs , we contradict that As is a
full-half-flap.

The last case is V (A) = V (C) and |Xs∪X| 6 2. Since Xs is the set of ends of a fake edge
of C−, this implies that Xs 6= X. Thus, we must have |X| = 1 and X ⊆ Xs . Let t be the
smallest index in I which is larger than s and let f be the corresponding fake edge. Note
that t exists since C− contains a fake edge with neither end in X. Let Ft be a collection
of t independent flaps of Ht such that (At , Bt) ∈ Ft and

∑
(A′,B′)∈Ft |V (A′)|+ |E(A′)| is

minimum. Let (A∗, B∗) be an arbitrary flap in Ft \ {(At , Bt)}. Let A∗s ⊆ Ht be obtained
from As by reversing all the flap reductions for all j ∈ [s, t]. The remainder of the proof
is essentially the same as the previous cases with (A∗, B∗) taking the role of (A,B) and
{Xs , Xt} taking the role of {Xs , X}. For completeness, we include all the details.

Suppose V (A∗) is a proper subset of V (C). Since C is 3-connected, for some Y ∈
{Xs , Xt}, V (A∗) \ V (B∗) contains one vertex y of Y and V (B∗) \ V (A∗) contains the
other vertex of Y . By Lemma 5.8, A∗s and At are both connected. Since V (A∗) ⊆ V (C),
this implies Xs ∪ Xt ⊆ V (B∗). Thus, for either choice of Y , we have y ∈ V (A∗ ∩ B∗),
which contradicts that y ∈ V (A∗) \ V (B∗).

Suppose V (A∗) = V (C). Clearly, Xs ∪ Xt ⊆ V (C) = V (A∗). Since A∗s and At are both
connnected by Lemma 5.8, Xs ∪Xt ⊆ V (B∗). Therefore, Xs ∪Xt ⊆ V (A∗ ∩B∗). Since
|Xs ∪ Xt | > 3, this implies that (A∗, B∗) is a (> 3)-separation of Ht , which contradicts
that (A∗, B∗) is a flap.

Suppose A∗ ∩ C = S, where S is a stable set and S contains a vertex x /∈ Xs . If
x /∈ Xt , then x is an isolated vertex of A. If x ∈ Xt , then since (A∗, B∗) and (At , Bt)

are independent flaps, V (A∗ ∩ At) \ Xt = ∅. Thus, x is an isolated vertex of A∗ in this
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case as well. But now, replacing (A∗, B∗) by (A∗ − x, B∗) contradicts the minimality of∑
(A′,B′)∈Ft |V (A′)|+ |E(A′)|.

Suppose A∗ ∩ C consists of just a single edge xy . Since C is 3-connected, degC(x) > 3

and degC(y) > 3. For z ∈ {x, y}, let d(z) be the number of Y ∈ {Xs , Xt}\{{x, y}} such
that z ∈ Y . Observe that degC(z) 6 degA∗∩C(z)+degB∗∩C(z)+d(z) for both z ∈ {x, y}.
Since degA∗∩C(z) = 1 for both z ∈ {x, y}, this yields degB∗∩C(z) > 2 − d(z) for both
z ∈ {x, y}. If {x, y} ⊆ Xs∪Xt , then d(x) 6 1 and d(y) 6 1. Therefore, degB∗∩C(x) > 1

and degB∗∩C(y) > 1, which implies {x, y} ⊆ V (A∗∩B∗). But now, (A∗−xy , B∗∪{xy}) is
a (6 2)-separation, which contradicts the minimality of

∑
(A′,B′)∈Ft |V (A′)|+ |E(A′)|. By

symmetry, we may assume y /∈ Xs∪Xt . Thus, d(y) = 0, which gives degB∗∩C(y) > 2. In
particular, y ∈ V (A∗∩B∗). Moreover, since y /∈ Xs ∪Xt , we have y ∈ V (C)\V (D), and
thus degA∗(y) = degA∗∩C(y) = 1. Observe that |V (A∗−y)∩V (B∗∪{xy})| 6 2 because
V (A∗ − y) ∩ V (B∗ ∪ {xy}) ⊆ (V (A∗ ∩B∗) \ {y}) ∪ {x}. Therefore (A∗ − y , B∗ ∪ {xy})
is a (6 2)-separation. But now A∗ − y is a half-flap contained in A∗, which contradicts
the minimality of

∑
(A′,B′)∈Ft |V (A′)|+ |E(A′)|.

Suppose V (C) is a proper subset of V (A∗). Clearly, Xt ⊆ V (A∗). Also, Xt ⊆ V (B∗)

since (A∗, B∗) and (At , Bt) are independent flaps. Therefore, V (A∗ ∩ B∗) = Xt , since
|Xt | = 2. Moreover, A∗ ∩ (D ∪ A∗s) contains at least one vertex not in Xt , since V (C)

is a proper subset of V (A∗). If A∗ ∩ (D ∪ A∗s) meets B∗ ∩ (D ∪ A∗s) at a vertex x /∈ Xs ,
then x ∈ V (A ∩ B), which contradicts that V (A ∩ B) = Xs . Thus, V (A∗ ∩ (D ∪
A∗s)) ∩ V (B∗ ∩ (D ∪ A∗s)) ⊆ Xs . It follows that A∗ ∩ (D ∪ A∗s) is a half-flap, since
|Xs | 6 2. However, this contradicts the minimality of

∑
(A′,B′)∈Ft |V (A′)|+ |E(A′)| since

|V (A∗ ∩ (D ∪ A∗s))| < |V (A)|.

Suppose 3 6 |V (A∗ ∩ C)| < |V (C)| and V (A∗) \ V (C) 6= ∅. Since C is 3-connected, for
some Y ∈ {Xs , Xt}, one vertex y of Y is in V (A∗) \ V (B∗) and the other vertex of Y is
in V (B∗) \ V (A∗). Since (A∗, B∗) and (At , Bt) are independent flaps, we have At ⊆ B∗.
Thus, Xt ⊆ V (B∗), and so Y = Xs . Let β be obtained from B∗ by replacing At by an
edge whose ends are Xt and adding the edge with ends Xs . Since C is 3-connected,
(C ∩A∗, C ∩β) is a (> 3)-separation of C. It follows that A∩C meets B ∩C in at least
two vertices of V (C) \X, and thus exactly two since |V (A ∩ B)| 6 2.

Thus, A∗ ∩ C meets B∗ ∩ C in at least two vertices of V (C) \Xs , and thus exactly two
since V (A∗ ∩ B∗)| 6 2. In particular, V (A∗ ∩ B∗) ⊆ V (C) \Xs , and hence V (A∗ ∩ (D ∪
A∗s)) ∩ V (B∗ ∩ (D ∪ A∗s)) = ∅. It follows that A ∩ (D ∪ A∗s) is a half-flap. However, this
contradicts the minimality of

∑
(A′,B′)∈Fs |V (A′)|+ |E(A′)| since |V (A ∩D)| < |V (A)|.

Since (A∗, B∗) is an arbitrary flap of Ft \ {(At , Bt)}, by the previous cases, we may
assume V (A′ ∩ C) ⊆ Xs and A′ ∩ C has no edges for all (A′, B′) ∈ Ft \ {(At , Bt)}.
Therefore, by replacing (At , Bt) by (At +Xt C,Bt − (V (C) \ Xt)) in Ft , we contradict
that At is a full-half-flap. �
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We will need to pick reduction sequences that satisfy a few additional properties. Let
Hk , . . . , Hj be a reduction sequence of H, with corresponding flaps (A`, B`) in H`. We
say that Hk , . . . , Hj is a good reduction sequence if for all ` ∈ {k, . . . , j}, H` is not a
cycle, and for all ` ∈ {k, . . . , j + 1}

(1) if A` ∼= P3 and V (A`)∩ V (B`) = {x}, then e is a true edge of H`, where e is the
unique edge of A` not incident to x ,

(2) if A` ∼= C3 and V (A`)∩ V (B`) = {x}, then e is a true edge of H`, where e is the
unique edge of A` not incident to x ,

(3) if A` ∼= C4 and V (A`) ∩ V (B`) = {x, y}, then e is a true edge of H`, where e is
the unique edge of A` not incident to either x or y .

Note that, by Lemma 5.8, if A` ∼= P3 and V (A`) ∩ V (B`) = {x} then x cannot be the
center of the P3, hence edge e is well defined in case (1) above. Similarly, if A` ∼= C4
and V (A`) ∩ V (B`) = {x, y}, then x and y cannot be opposite vertices of the C4, and
thus e is also well defined in case (3).

We now give conditions under which a good reduction sequence can be extended to a
longer good reduction sequence. Let H′ be a graph where some edges are fake, and let
u, v ∈ V (H′). A u-culdesac of H′ is a cycle C of H′ such that u ∈ V (C), degH′(u) > 3,
and degH′(w) = 2 for all w ∈ V (C)\{u}. A u-alley of H′ is a path P of H′ such that u is
an end of P , |V (P )| > 2, degH′(u) > 3, and degP (w) = degH′(w) for all w ∈ V (P )\{u}.
A u–v -alley of H′ is a path P in H′ such that u and v are the ends of P , |V (P )| > 3,
degH′(u), degH′(v) > 3, and degH′(w) = 2 for all w ∈ V (P ) \ {u, v}.

Claim 5.12. Let C be a u-culdesac of H′ with |V (C)| > 4, and let e := uv be an edge
of C incident to u. Let P and Q be the 3- and 4-vertex paths of C containing e and
ending at u, respectively. If |V (C)| is even, then P is a full-half flap of H′, and if |V (C)|
is odd, then Q is a full-half-flap.

Proof. Let F be a collection of f (H′) independent flaps in H′, and let F ′ be the collection
of flaps (F1, F

′
1) ∈ F such that E(F1 ∩ C) 6= ∅. Since C contains a set of m := b |V (C)|

2
c

independent half-flaps of H′, we must have |F ′| > m; otherwise, |F| is not maximum.
If F ′ contains a flap (F1, F

′
1) such that F1 ∩ C = uv , then we replace (F1, F

′
1) by

(F1−v , F ′1∪{uv}). Similarly, we may assume that F ′ does not contain a flap (F1, F
′
1) such

that F1∩C = tu, where t is the other neighbour of u in C. In particular, |E(F1∩C)| > 2

for all (F1, F
′
1) ∈ F ′. This implies that |F ′| 6 m, and hence |F ′| = m. Observe that C

contains a set H of m independent half-flaps with P ∈ H if |V (C)| is even, and Q ∈ H
if |V (C)| is odd. It follows that P can be extended to a full-half-flap P ′ if |V (C)| is even,
and Q can be extended to a full-half-flap Q′ if |V (C)| is odd. Since every collection of
f (H′) independent flaps of H′ must contain at least m flaps which use an edge of C,
and

⋃
F∈H F = C, it follows that C ∩ P ′ = P . If P ′ is not contained in C, then P ′

contains two independent half-flaps, which is a contradiction. Thus, P ′ = P . The same
argument gives Q′ = Q. �
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The same proof also establishes the following claim for u–v -alleys.

Claim 5.13. Let P be a u–v -alley of H′ with |V (P )| > 5. If |V (P )| is even, let P ′ be
the 4-vertex subpath of P ending at u. If |V (P )| is odd, let P ′ be 3-vertex subpath of
P ending at u. Then P ′ is a full-half-flap of H′.

An edge e is distance 2 from a vertex u if e is not incident to u and e is incident to an
edge which is incident to u. Let C be a u-culdesac. We say that C is tame if C has a
real edge which is distance 2 from u. Let P be a u–v -alley. We say that P is tame if P
has a real edge which is distance 2 from u or v . Let P be a u-alley. We say that P is
tame if P has a real edge which is distance 2 from u. Finally, we say that H′ is tame if
for all u, v ∈ V (H′) all u-culdesacs, u-alleys, and u–v -alleys of H′ are tame.

Claim 5.14. Let Hk , . . . , Hj be a good reduction sequence of a planar graph such that
j > 3 and Hj is tame. Then Hk , . . . , Hj can be extended to a good reduction sequence
Hk , . . . , Hj−1 such that Hj−1 is tame.

Proof. Suppose that Hj contains a u-culdesac C with |V (C)| > 4. Since Hj is tame, C
contains a real edge e which is distance 2 from u. If |V (C)| is even (respectively, odd),
let P be the 3-vertex (respectively, 4-vertex) path of C such that one end of P is u and
e /∈ E(P ). By Claim 5.12, P is a full-half-flap of Hj . Letting Hj−1 be obtained from
Hj by applying Lemma 5.8 with A = P , we have that H`, . . . , Hj−1 is a good reduction
sequence and Hj−1 is tame. Thus, we may assume that all culdesacs of Hj are triangles.
By Claim 5.13, we may also assume that for all u, v ∈ V (Hj), all u–v -alleys of Hj have
at most four vertices.

Let (Aj , Bj) be a flap of Hj such that Aj is a full-half-flap and let Hj−1 = B+j . Suppose
Hj−1 is a cycle. If (Aj , Bj) is a 1-separation, then Hj−1 ∼= C3, since all culdesacs of Hj
are triangles. Since f (C3) = 1, this contradicts j > 3. If (Aj , Bj) is a 2-separation,
then Hj−1 ∈ {C3, C4} since all alleys of Hj have at most four vertices. In either case,
f (Hj) = 2, which contradicts j > 3. Thus Hj−1 is not a cycle.

Since Hj is tame, it follows that Hk , . . . , Hj−1 is a good reduction sequence. It only
remains to show that Hj−1 is tame. Towards a contradiction, suppose Hj−1 contains a
u-culdesac C which is not tame. The cases that Hj−1 contains a u-alley which is not
tame, or a u–v -alley which is not tame are similar and are omitted. We assume that
(Aj , Bj) is a 2-separation (the case that (Aj , Bj) is a 1-separation is easier and is omitted).
Since Hj is tame, there must be an edge xy ∈ E(C) such that V (Aj) ∩ V (Bj) = {x, y}.
Let Pxu and Pyu be the x–u and y–u paths in C such that V (Pxu) ∩ V (Pyu) = {u}.
Since all alleys of Hj have at most four vertices, |V (Pxu)|, |V (Pyu)| 6 4. Moreover, if
|V (Pxu)| ∈ {2, 4}, then adding the edge of Pxu incident to x to Aj contradicts that Aj
is a full-half-flap. Thus, |V (Pxu)|, |V (Pyu)| ∈ {1, 3}. In particular, this implies that C is
not a triangle. For each fake edge e ∈ E(C) let `(e) be the smallest index such that
V (A`(e))∩ V (B`(e)) is equal to the set of ends of e. Among all fake edges of C \ {xy} in
Hj−1, let f be such that `(f ) is smallest. Since C is not a triangle, there are two edges
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of C which are distance 2 from u (both of which are fake). Therefore, f exists. Let g be
the unique edge of C such that f ∪ g is Pxu or Pyu. Then adding g to A`(f ) contradicts
that A`(f ) is a full-half flap. �

Observe that if H is nonplanar, then for every reduction sequence Hk , . . . , Hj of H, each
Hi is nonplanar, and in particular cannot be a cycle. Therefore, the previous proof gives
the following result for nonplanar graphs.

Claim 5.15. Let Hk , . . . , Hj be a good reduction sequence of a nonplanar graph such
that j > 1 and Hj is tame. Then Hk , . . . , Hj can be extended to a good reduction
sequence Hk , . . . , Hj−1 such that Hj−1 is tame.

The final ingredient we need is the existence of a certain collection of paths in H. Let
Hk , . . . , Hj be a reduction sequence of H with corresponding flaps (A`, B`) in H`, and
for each ` ∈ {k, . . . , j} let F` be the set of fake edges of H`. For each fake edge e we
define a set of indices I(e) recursively as follows. Let ` be the largest index such that e
is a fake edge of H` and recursively define I(e) = {`+ 1} ∪

⋃
f ∈F`+1∩E(A`+1) I(f ).

Claim 5.16. Let Hk , . . . , Hj be a reduction sequence of H with corresponding flaps
(A`, B`) in H`, and for each ` ∈ {k, . . . , j} let F` be the set of fake edges of H`. Then
for all ` ∈ {k, . . . , j}, there is a collection of paths P` = {Pf | f ∈ F`} in H such
that for all f ∈ F`, Pf has the same ends as f , and Pf ⊆

⋃
i∈I(f ) Ai . Moreover, letting

H′` := (H` \ F`) ∪ P`, we have that (H′`,P`) is a partially subdivided graph, H′` is a
subgraph of H, and H′`/P` is isomorphic to H`.

Proof. We proceed by reverse induction. Since Hk = H does not contain any fake edges,
we may take Pk := ∅. Suppose the claim is true for some ` > j , and consider ` − 1.
If |V (A`) ∩ V (B`)| = 2 then let {a, b} := V (A`) ∩ V (B`). We are done by induction if
|V (A`)∩V (B`)| 6 1 or e := ab is a true edge of H`−1. Thus, we may assume that e is a
fake edge of H`−1. By the final part of Lemma 5.8, there is path P ′e in A` between a and
b. By induction, for each fake edge f in P ′e, there is a path P ′f ⊆

⋃
i∈I(f ) Ai . Moreover,

note that if f1 and f2 are distinct fake edges of H`−1, then I(f1)∩I(f2) = ∅. Therefore,
replacing each fake edge f of P ′e with P

′
f , we obtain a path Pe contained in

⋃
i∈I(e) Ai .

Every other fake edge e ′ of H`−1 is a fake edge of H`′ for some `′ > `. By induction,
for each such fake edge e ′, there is a path Pe ′ contained in

⋃
i∈I(e ′) Ai . Note that Pf1

and Pf2 are internally-disjoint for all distinct f1, f2 ∈ F`−1, since I(f1) ∩ I(f2) = ∅ Thus,
P`−1 := {Pf | f ∈ F`−1} is the required set of paths. �

We now prove the theorem in the case that H is non-planar.

Claim 5.17. Suppose H is non-planar and Hk , . . . , H0 is a good reduction sequence of H
such that H` is tame for all ` ∈ {k, . . . , 0}. For each ` ∈ {0, . . . , k}, let F` be the set of
fake edges of H`. Then for all ` ∈ {0, . . . , k}, there are at most c4.1(h, g)c5.1(h, g+2)`·n`
images of H` \ F` in G which extend to an image of H in G.
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Before proceeding with the proof, we quickly show that Claim 5.17 does indeed prove
Theorem 5.9 when H is nonplanar. First note that Hk , . . . , H0 exist by Claim 5.15. Next,
applying Claim 5.17 for ` = k , we get that there are at most c4.1(h, g)c5.1(h, g+2)k ·nk 6
c5.9(h, g)nk images of H in G.

Proof. We proceed by induction on `. When ` = 0, there are at most c4.1(h, g) images
of H0 \ F0 in G which extend to an image of H in G, by Theorem 4.1. For the inductive
step, suppose there are at most c4.1(h, g)c5.1(h, g+ 2)` · n` images of H` \F` in G which
extend to an image of H in G, and consider `+ 1.

Let φ : V (H` \ F`) → V (G) be a fixed copy of H` \ F` in G which extends to an image
ψ : V (H) → V (G) of H in G. For every subgraph S of H, let Sψ be the subgraph
of G obtained by restricting ψ to S. Let (A`+1, B`+1) be the flap in H`+1 such that
H` = B+`+1, and let FA`+1 be the set of fake edges of H`+1 contained in E(A`+1). By
Claim 5.16, there is a collection of paths Pψ := {Pψf | f ∈ FA`+1} in Hψ such that for
all f ∈ FA`+1, P

ψ
f has the same ends as f ψ and ((A`+1 \ FA`+1)ψ ∪ Pψ,Pψ) is a partially

subdivided subgraph of Hψ.

Let G`+1 be the minor of G obtained by contracting all but one edge from each path
in Pψ. Since ((A`+1 \ FA`+1)ψ ∪ Pψ)/Pψ is isomorphic to A`+1, (A`+1 \ FA`+1)ψ ∪ Pψ
becomes an image of A`+1 in G`+1.

Let X := V (A`+1) ∩ V (B`+1) and Y := φ(X). If X := {a, b} and ab is a fake edge of
H`+1, then add a handle to Σ and use the handle to draw an edge between the vertices in
Y to obtain a graph G ′`+1 ⊃ G`+1 embedded in a surface of Euler genus g+2. Otherwise,
let G ′`+1 := G`+1.

Note that by Claim 5.10, Claim 5.11, goodness of the reduction sequence, and tameness
of H`+1, the conditions of Lemma 5.8 are satisfied, with J = A+`+1. Therefore, by
Lemma 5.1, there are at most c5.1(|V (A+`+1)|, g + 2)n images of A+`+1 with X rooted at
Y in G ′`+1. Hence, there are at most c5.1(|V (A+1 )|, g + 2)n images of H`+1 \ F`+1 in G
which extend φ and also extend to an image of H in G. By induction, there are at most
c4.1(h, g)c5.1(h, g + 2)` · n` possibilities for φ, so there are at most

c5.1(|V (A+1 )|, g + 2) · c4.1(h, g)c5.1(h, g + 2)` · n`+1 6 c4.1(h, g)c5.1(h, g + 2)`+1 · n`+1

images of H`+1 \ F`+1 in G which extend to an image of H in G. �

The case when H is planar is similar, except that we must handle the case when H is a
cycle separately, which we do now. We make a case distinction depending if the cycle
has even or odd length.

Suppose H ∼= C2k . Note that f (C2k) = k . Let M be a perfect matching of C2k . For
each copy φ of C2k in G, let φ(M) be the subset of E(G) that φ maps M to. Since there
are at most

(|E(G)|
k

)
choices for φ(M), and each such choice corresponds to at most 2k

images of C2k in G, there are at most 2k
(|E(G)|

k

)
6 c5.9(2k, g)nk images of C2k in G.
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Suppose H ∼= C2k+1. Note that f (C2k+1) = k . We prove by induction on n = |V (G)|
that there are at most 6k

(
6(g+1)
2

)
(g + 1)k · nk images of C2k+1 in G. For each vertex

a of C2k+1 let NC2k+1(a) be the two neighbours of a, and let Ma be the unique perfect
matching of C2k+1− (NC2k+1(a)∪{a}). Since G is embedded in a surface of Euler genus
g, G has a vertex x of degree at most 6(g+1). For each copy φ of C2k+1 in G containing
x , there are at most

(|E(G−x)|
k−1

)
choices for φ(Mx). Since x has degree at most 6(g + 1)

in G, there are at most
(
6(g+1)
2

)
choices for NC2k+1(x). Each choice of Mx and NC2k+1(x)

yields at most 2k images of C2k+1, so there are at most 2k
(
6(g+1)
2

)(
3(g+1)(n−1)

k−1

)
images

of C2k+1 in G containing x . By induction there are at most 6k
(
6(g+1)
2

)
(g + 1)k · (n− 1)k

images of C2k+1 in G−x . Summing these two bounds, we conclude that there are at most
6k
(
6(g+1)
2

)
(g+1)k ·nk images of C2k+1 in G. Note that 6k

(
6(g+1)
2

)
(g+1)k 6 c5.9(2k+1, g).

If H is planar and f (H) = 1, then there are at most c3.2(h, g)n 6 c5.9(h, g)n images of
H in G. Therefore, the last remaining case is when H is planar, f (H) > 2, and H is not
a cycle. This is handled by the following claim.

Claim 5.18. Suppose H is a planar graph, f (H) > 2, and H is not a cycle. Let Hk , . . . , H2
be a good reduction sequence of H such that H` is tame for all ` ∈ {k, . . . , 2} Let
H1 := uv , where uv is a true edge of H2 such that there do not exist independent flaps
(C,D) and (C ′, D′) of H2 such that {u, v} ⊆ V (D ∩ D′). For all ` ∈ {1, . . . , k}, let
F` be the set of fake edges of H`. Then for each ` ∈ {1, . . . , k}, there exist at most
6(g+ 1)c5.1(h, g+ 2)`−1 · n` images of H` \F` in G which extend to an image of H in G.

Before proceeding with the proof we note that Hk , . . . , H2 exist by Claim 5.14. The true
edge uv exists, by considering a leaf node of the SPQRK tree of H2 and using Claim 5.11
and the tameness of H2. Again, Theorem 5.9 follows by taking ` = k .

Proof. We proceed by induction on `. For ` = 1, H1 = uv is a true edge. Therefore,
there are at most 6(g + 1)n images of H1 in G. For ` = 2, we apply Lemma 5.1,
with J ′ = (H2 \ F2) ∪ P2,P = P2, J = H2, and X = {u, v}, where P2 is defined in
Claim 5.16. Note that conditions (1) and (2) of Lemma 5.1 hold since uv is a true
edge and there do not exist independent flaps (C,D) and (C ′, D′) of H2 such that
{u, v} ⊆ V (D ∩D′). Conditions (3)-(6) hold vacuously. Conditions (7), (9), and (10)
hold by goodness of the reduction sequence. Condition (8) holds since H2 is tame.
Finally, (11) holds by Claim 5.11. Therefore, each of the at most 6(g + 1)n images
of H1 in G extends to an image of J ′ in at most c5.1(h, g)n ways. Therefore, there
are at most 6(g + 1)c5.1(h, g)n2 6 6(g + 1)c5.1(h, g + 2) · n2 images of H2 \ F2 which
extend to an image of H in G. For ` > 3, the inductive step is exactly as in the
nonplanar case. Therefore, we conclude that for each ` ∈ {1, . . . , k} there are at most
6(g + 1)c5.1(h, g + 2)`−1 · n` images of H` \ F` in G which extend to an image of H in
G. �

This completes the proof of Theorem 5.9. �
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6. Copies of Complete Graphs

This section studies the maximum number of copies of a given complete graph Ks in
an n-vertex graph that embeds in a given surface Σ. The flap-number of Ks equals 1

if s 6 4 and equals 0 if s > 5. Thus Theorem 1.2 implies that C(n,Ks ,Σ) = Θ(n) for
s 6 4 and C(n,Ks ,Σ) = Θ(1) for s > 5. The bounds obtained in this section are much
more precise than those given by Theorem 1.2. Our method follows that of Dujmović
et al. [16], who characterised the n-vertex graphs that embed in a given surface Σ and
with the maximum number of complete subgraphs (in total), and then derived an upper
bound on this maximum.

A triangulation of a surface Σ is an embedding of a graph in Σ in which each facial walk
has three vertices and three edges with no repetitions. Let G be a triangulation of Σ. An
edge vw of G is reducible if vw is in exactly two triangles in G. And G is irreducible if no
edge of G is reducible [8, 9, 14, 38–40, 50, 59–61]. Barnette and Edelson [8, 9] proved
that each surface has a finite number of irreducible triangulations. For Sh with h 6 2 and
Nc with c 6 4 the list of all irreducible triangulations is known [39, 40, 59, 61]. In general,
the best known upper bound on the number of vertices in an irreducible triangulation of
a surface with Euler genus g > 1 is 13g − 4, due to Joret and Wood [38].

Let vw be a reducible edge of a triangulation G of Σ. Let vwx and vwy be the two
faces incident to vw in G. As illustrated in Figure 3, let G/vw be the graph obtained
from G by contracting vw ; that is, delete the edges vw,wy, wx , and identify v and w
into v . G/vw is a simple graph since x and y are the only common neighbours of v and
w . Indeed, G/vw is a triangulation of Σ. Conversely, we say that G is obtained from
G/vw by splitting the path xvy at v . If, in addition, xy ∈ E(G), then we say that G
is obtained from G/vw by splitting the triangle xvy at v . Note that xvy need not be
a face of G/vw . In the case that xvy is a face, splitting xvy is equivalent to adding a
new vertex adjacent to each of x, v , y .

v w

y

xG

v

y

x G/vw

contraction

splitting

Figure 3. Contracting a reducible edge.

6.1. Copies of Triangles. In this section we consider C(K3,Σ, n), and define the excess
of a graph G to be C(K3, G)− 3|V (G)|.

Lemma 6.1. For each surface Σ, every graph embeddable in Σ with maximum excess is
a triangulation of Σ.
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Proof. Let G be a graph embedded in Σ that maximises the excess. We claim that G is
a triangulation. Suppose on the contrary that F is a non-triangular facial walk in G.

Suppose that two vertices in F are not adjacent. Then there are vertices v and w at
distance 2 in the subgraph induced by F . Thus adding the edge vw ‘across’ the face
increases the number of triangles and the excess. This contradicts the choice of G. Now
assume that F induces a clique.

Suppose that F has at least four distinct vertices. Let G ′ be the embedded graph
obtained from G by adding one new vertex ‘inside’ the face adjacent to four distinct
vertices of F . Thus G ′ is embeddable in Σ, has |V (G)| + 1 vertices, has at least
C(K3, G) +

(
4
2

)
= C(K3, G) + 6 triangles, and thus has excess at least the excess of G

plus 3. This contradicts the choice of G. Now assume that F has at most three distinct
vertices.

By Lemma 6.2 below, F = (u, v , w, u, v , w). Let G ′ be the graph obtained from G

by adding two new adjacent vertices p and q, where p is adjacent to the first u, v , w
sequence in F , and q is adjacent to the second u, v , w sequence in F . So G ′ is em-
beddable in Σ and has |V (G)| + 2 vertices. If S is a non-empty subset of {p, q} and
T ⊆ {u, v , w} with |S| + |T | = 3, then S ∪ T is a triangle of G ′ but not of G. There
are

(
2
1

)(
3
2

)
+
(
2
2

)(
3
1

)
= 6 + 3 = 9 such triangles. Thus C(K3, G

′) > C(K3, G) + 9 and the
excess of G ′ is at least the excess of G plus 3, which contradicts the choice of G. Hence
no face of G has repeated vertices, and G is a triangulation of Σ. �

Lemma 6.2. Let F be a facial walk in an embedded graph, such that F has exactly three
distinct vertices that are pairwise adjacent. Then F = (u, v , w) or F = (u, v , w, u, v , w).

Proof. Say u, v , w are three consecutive vertices in F . Then u 6= v and v 6= w (since
there are no loops). And u 6= w , since if u = w then deg(v) = 1 (since there are no
parallel edges), which is not possible since v is adjacent to the two other vertices in F .
So any three consecutive vertices in F are pairwise distinct. If F has no repeated vertex,
then F is the 3-cycle (u, v , w). Otherwise, F = (u, v , w, u, . . . ). Again, since any three
consecutive vertices in F are pairwise distinct, F = (u, v , w, u, . . . ). Repeating this
argument, F = (u, v , w, u, v , w, . . . ). Each edge is traversed at most twice; see [49,
Sections 3.2 and 3.3]. Thus F = (u, v , w, u, v , w). �

Theorem 6.3. Let φ be the maximum excess of an irreducible triangulation of Σ. Let
X be the set of irreducible triangulations of Σ with excess φ. Then the excess of every
graph G embeddable in Σ is at most φ. Moreover, the excess of G equals φ if and only
if G is obtained from some graph in X by repeatedly splitting triangles.

Proof. We proceed by induction on |V (G)|. By Lemma 6.1, we may assume that G is
a triangulation of Σ. If G is irreducible, then the claim follows from the definition of X
and φ. Otherwise, some edge vw of G is in exactly two triangles vwx and vwy . By
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induction, the excess of G/vw is at most φ. Moreover, the excess of G/vw equals φ if
and only if G is obtained from some graph H ∈ X by repeatedly splitting triangles.

Observe that every triangle of G that is not in G/vw is in {A∪{w} : A ⊆ {x, v , y}, |A| =

2}. Thus C(K3, G) 6 C(K3, G/vw) + 3. Moreover, equality holds if and only if xvy is
a triangle. It follows from the definition of excess that the excess of G is at most φ. If
the excess of G equals φ, then the excess of G/vw equals φ, and xvy is a triangle and
G is obtained from H by repeatedly splitting triangles.

Conversely, if G is obtained from some H ∈ X by repeatedly splitting triangles, then
xvy is a triangle and G/vw is obtained from H by repeatedly splitting triangles. By
induction, the excess of G/vw equals φ, implying the excess of G equals φ. �

In general, since every irreducible triangulation of a surface Σ with Euler genus g has
O(g) vertices [38, 50], Theorem 6.3 implies that C(K3,Σ, n) 6 3n + O(g3). We now
show that C(K3,Σ, n) = 3n + Θ(g3/2).

The following elementary fact will be useful. For integers s > 2 and m > 2,∑
i>m

1

i s
6
∫ ∞
m−1

i−sdi =
1

(s − 1)(m − 1)s−1
.(1)

Theorem 6.4. For every surface Σ of Euler genus g,

3n + (
√

6− o(1))g3/2 6 C(K3,Σ, n) 6 3n +
21

2
g3/2 +O(g log g),

where the lower bound holds for all n >
√

6g and the upper bound holds for all n.

Proof. First we prove the lower bound. Because of the o(1) term we may assume that
g > 4. Let p := b1

2
(7 +

√
24g + 1)c. Note that p > 8 and p − 5

2
>
√

6g. The Map
Colour Theorem [58] says that Kp embeds in Σ. To obtain a graph with n vertices
embedded in Σ repeat the following step n − p times: choose a face f and add a new
vertex ‘inside’ f adjacent to all the vertices on the boundary of f . Each new vertex
creates at least three new triangles. Thus C(K3,Σ, n) > 3(n−p) +

(
p
3

)
for n > p. Since

p > 8 we have
(
p
3

)
− 3p > 1

6
(p − 5

2
)3 >

√
6g3/2. Thus C(K3,Σ, n) > 3n +

√
6g3/2.

To prove the upper bound, by Lemma 6.1, it suffices to consider an n-vertex triangulation
G of Σ. First suppose that n > 13g. Then G contains an edge e so that G/e is another
triangulation [38]. Then C(K3, G) 6 C(K3, G/e) + 3. Since G/e has n − 1 vertices,
the result follows by induction. Now assume that n 6 13g. Let v1, . . . , vn be a vertex
ordering of G, where vi has minimum degree in Gi := G[{v1, . . . , vi}]. By Euler’s formula,
i · degGi (vi) 6 2|E(Gi)| 6 6(i + g), implying

degGi (vi) 6 6
(

1 +
g

i

)
.

Let m := d3√ge. The number of triangles vavbvi with a < b < i 6 m is at most(
m
3

)
6
(
3
√
g+1
3

)
6 9
2
g3/2. Charge each triangle vavbvi with a < b < i and i > m + 1 to
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vertex vi . For m + 1 6 i 6 n, the number of triangles charged to vi is at most(
degGi (vi)

2

)
< 18

(
1 +

g

i

)2
= 18

(
1 +

2g

i
+
g2

i2

)
.

Thus

C(K3, G) 6
9

2
g3/2 + 18

n∑
i=m+1

(
1 +

2g

i
+
g2

i2

)
6

9

2
g3/2 + 18n + 36g(ln(n) + 1) + 18g2

∑
i>m+1

1

i2
.

By (1) with s = 2,

C(K3, G) 6
9

2
g3/2 + 18n + 36g + 36g ln(n) +

18g2

m
.

Since m > 3
√
g and n 6 13g,

C(K3, G) 6
9

2
g3/2 + 270g + 36g ln(13g) + 6g3/2 =

21

2
g3/2 + 270g + 36g ln(13g). �

6.2. Copies of K4. In this section, we consider the case H = K4, and define the excess
of a graph G to be C(K4, G)− |V (G)|.

Lemma 6.5. For each surface Σ, every graph embeddable in Σ with maximum excess is
a triangulation of Σ.

Proof. Let G be a graph embedded in Σ with maximum excess. We claim that G is a
triangulation.

Suppose that some facial walk F contains non-adjacent vertices v and w . Let G ′ be the
graph obtained from G by adding the edge vw . Thus C(K4, G

′) > C(K4, G). If two
common neighbours of v and w are adjacent, then C(K4, G+vw) > C(K4, G), implying
that the excess of G+ vw is greater than the excess of G, which contradicts the choice
of G. Now assume that no two common neighbours of v and w are adjacent. Let
G ′′ := G ′/vw . Every K4 subgraph in G ′ is also in G ′′. Thus C(K4, G

′′) > C(K4, G
′) >

C(K4, G). Since |V (G ′′)| < |V (G)|, the excess of G ′′ is greater than the excess of G,
which contradicts the choice of G. Now assume that every facial walk induces a clique
in G.

Suppose that some facial walk F has at least four distinct vertices. Let G ′ be the
embedded graph obtained from G by adding one new vertex ‘inside’ the face adjacent to
four distinct vertices of F . Thus G ′ is embeddable in Σ, has |V (G)|+ 1 vertices, has at
least C(K4, G) +

(
4
3

)
= C(K4, G) + 4 triangles, and thus has excess at least the excess

of G plus 3. This contradicts the choice of G. Now assume that every facial walk in G
has at most three distinct vertices.
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Suppose that some facial walk F is not a triangle. By Lemma 6.2, F = (u, v , w, u, v , w).
Let G ′ be the graph obtained from G by adding two new adjacent vertices p and q, where
p is adjacent to the first u, v , w sequence in F , and q is adjacent to the second u, v , w
sequence in F . So G ′ is embeddable in Σ and has |V (G)| + 2 vertices. If S is a non-
empty subset of {p, q} and T ⊆ {u, v , w} with |S|+ |T | = 4, then S∪T induces a copy
of K4 in G ′ but not in G. There are

(
2
2

)(
3
2

)
+
(
2
1

)(
3
3

)
= 3 + 2 = 5 such copies. Thus

C(K4, G
′) > C(K4, G) + 5 and the excess of G ′ is at least the excess of G plus 3, which

contradicts the choice of G. Therefore G is a triangulation of Σ. �

Theorem 6.6. Let φ be the maximum excess of an irreducible triangulation of Σ. Let
X be the set of irreducible triangulations of Σ with excess φ. Then the excess of every
graph G embeddable in Σ is at most φ. Moreover, the excess of G equals φ if and only
if G is obtained from some graph in X by repeatedly splitting triangles.

Proof. We proceed by induction on |V (G)|. By Lemma 6.5, we may assume that G is
a triangulation of Σ. If G is irreducible, then the claim follows from the definition of X
and φ. Otherwise, some edge vw of G is in exactly two triangles vwx and vwy . By
induction, the excess of G/vw is at most φ. Moreover, the excess of G/vw equals φ if
and only if G is obtained from some graph H ∈ X by repeatedly splitting triangles.

Observe that every clique of G that is not in G/vw is in {A ∪ {w} : A ⊆ {x, v , y}}.
Thus C(K4, G) 6 C(K4, G/vw) + 1. Moreover, equality holds if and only if xvy is a
triangle. It follows from the definition of excess that the excess of G is at most φ. If
the excess of G equals φ, then the excess of G/vw equals φ, and xvy is a triangle, and
G is obtained from H by repeatedly splitting triangles.

Conversely, if G is obtained from some H ∈ X by repeatedly splitting triangles, then
xvy is a triangle and G/vw is obtained from H by repeatedly splitting triangles. By
induction, the excess of G/vw equals φ, implying the excess of G equals φ. �

Since every irreducible triangulation of a surface Σ with Euler genus g has O(g) ver-
tices [38, 50], Theorem 6.6 implies that C(K4,Σ, n) 6 n + O(g4). We now show that
C(K4,Σ, n) = n + Θ(g2).

Theorem 6.7. For every surface Σ of Euler genus g,

n +
3

2
g2 6 C(K4,Σ, n) 6 n +

283

24
g2 +O(g3/2),

where the lower bound holds for g > 1 and n >
√

6g, and the upper bound holds for all
n.

Proof. First we prove the lower bound. If Σ = N2 then let p := 6. Otherwise, let
p := b1

2
(7 +

√
24g + 1)c. Since g > 1 we have p > 6. The Map Colour Theorem [58]

says that Kp embeds in Σ. To obtain a graph with n vertices embedded in Σ repeat the
following step n− p times: choose a face f and add a new vertex ‘inside’ f adjacent to
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all the vertices on the boundary of f . Each new vertex creates at least one new copy of
K4 (since the boundary of each face is always a clique on at least three vertices). Thus
C(K4,Σ, n) > n − p +

(
p
4

)
for n > p. Since

(
p
4

)
− p > 1

24
(p − 5

2
)4 and p − 5

2
>
√

6g we
have C(K4,Σ, n) > n + 1

24
(
√

6g)4 = n + 3
2
g2.

Now we prove the upper bound. The claim is trivial for g = 0, so now assume that
g > 1. By Lemma 6.5, it suffices to consider an irreducible triangulation G. Joret and
Wood [38] proved that n := |V (G)| 6 13g. Let v1, . . . , vn be a vertex ordering of G,
where vi has minimum degree in Gi := G[{v1, . . . , vi}]. By Euler’s formula,

i · degGi (vi) 6 2|E(Gi)| 6 6(i + g),

and
degGi (vi) 6 6

(
1 +

g

i

)
.

Define m := d4√ge. The number of copies vavbvcvi with a < b < c < i 6 m is at most(
m
4

)
6
(
4
√
g+1
4

)
6 32

3
g2. Charge each copy vavbvcvi with a < b < c < i and i > m+ 1 to

vertex vi . For m + 1 6 i 6 n, the number of copies charged to vi is at most(
degGi (vi)

3

)
< 36

(
1 +

g

i

)3
= 36

((g
i

)3
+ 3

(g
i

)2
+ 3

(g
i

)
+ 1

)
.

In total,

C(K4, G) 6
32

3
g2 + 36

n∑
i=m+1

(g
i

)3
+ 3

(g
i

)2
+ 3

(g
i

)
+ 1.

By (1) with s = 2 and s = 3,

C(K4, G) 6
32

3
g2 + 36

(
g3

2m2
+

3g2

m
+ 3g(ln n + 1) + n

)
.

Since m > 4
√
g and n 6 13g,

C(K4, G) 6
32

3
g2 + 36

(
g2

32
+

3g3/2

4
+ 3g(ln(13g) + 1) + 13g

)
=

283

24
g2 + 27g3/2 + 108g(ln(13g) + 1) + 468g. �

6.3. General Complete Graph. Now consider the case when H = Ks for some s > 5.
Theorem 1.2 shows that C(Ks ,Σ, n) is bounded for fixed s and Σ. We now show how
to determine C(Ks ,Σ, n) more precisely.

Theorem 6.8. For every integer s > 5 and surface Σ there is an irreducible triangulation
G such that C(Ks , G) = maxn C(Ks ,Σ, n).

Proof. Let q := maxn C(Ks ,Σ, n). Let G0 be a graph embedded in Σ with C(Ks , G0) =

q. As described in the proof of Lemma 6.1 we can add edges and vertices to G0 to create
a triangulation G of Σ. Adding edges and vertices does not remove copies of Ks . Thus
C(Ks , G) = q. If G is irreducible, then we are done. Otherwise, some edge vw of G is in
exactly two triangles vwx and vwy . Let G ′ := G/vw . Then G ′ is another triangulation
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of Σ. Observe that every clique of G that is not in G ′ is in {A ∪ {w} : A ⊆ {x, v , y}}.
Each such clique has at most four vertices. Thus C(Ks , G

′) = C(Ks , G) = q. Repeat
this step to G ′ until we obtain an irreducible triangulation G ′′ with C(Ks , G

′′) = q. �

We now prove a precise bound on C(Ks ,Σ, n), making no effort to optimise the constant
300.

Theorem 6.9. For every integer s > 5 and surface Σ of Euler genus g and for all n,(√
6g

s

)s
6 C(Ks ,Σ, n) 6

(
300
√
g

s

)s
,

where the lower bound holds for all n >
√

6g > s and the upper bound holds for all n.

Proof. For the lower bound, it follows from the Map Colour Theorem [58] that Kp
embeds in Σ where p := d

√
6ge. Thus, for n > p > s,

C(Ks ,Σ, n) >

(√
6g

s

)
>

(√
6g

s

)s
.

Now we prove the upper bound. The claim is trivial for g = 0, so assume that g > 1.
By Theorem 6.8, it suffices to consider an irreducible triangulation G of Σ. Joret and
Wood [38] proved that n := |V (G)| 6 13g. Let v1, . . . , vn be a vertex ordering of G,
where vi has minimum degree in Gi := G[{v1, . . . , vi}]. By Euler’s formula,

i · degGi (vi) 6 2|E(Gi)| 6 6(i + g) 6 6(n + g) 6 84g.

Define m := d√ge. The number of copies of Ks in G[{v1, . . . , vm}] is at most(
m

s

)
6

(
2e
√
g

s

)s
6

(
2e

s

)s
gs/2.

Charge every other copy X ofKs to the rightmost vertex in X (with respect to v1, . . . , vn).
For m + 1 6 i 6 n, the number of copies of Ks charged to vi is at most(

degGi (vi)

s − 1

)
6

(
e degGi (vi)

s − 1

)s−1
6

(
84eg

i(s − 1)

)s−1
.

In total,

C(Ks , G) 6

(
2e

s

)s
gs/2 +

(
84eg

s − 1

)s−1 ∑
i>m+1

1

i s−1
.

By (1),

C(Ks , G) 6

(
2e

s

)s
gs/2 +

(
84eg

s − 1

)s−1
1

(s − 2)ms−2 .

Since m >
√
g,

C(Ks , G) 6

(
2e

s

)s
gs/2 +

(
84eg

s − 1

)s−1
1

(s − 2) g(s−2)/2
6

(
300
√
g

s

)s
. �
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6.4. Computational Results. For Σ ∈ {S0,S1,S2,N1,N2,N3,N4}, we use Lemmas 6.1
and 6.5 and Theorem 6.8, the lists of all irreducible triangulations [39, 40, 59, 61],
and an elementary computer program to count cliques to obtain the exact results for
C(Ks ,Σ, n) shown in Table 1.

Table 1. The maximum number of copies of Ks in an n-vertex graph
embeddable in surface Σ.

Σ s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 total
S0 1 n 3n − 6 3n − 8 n − 3 8n − 16

S1 1 n 3n 3n + 14 n + 28 21 7 1 8n + 72

S2 1 n 3n + 6 3n + 38 n + 68 58 28 8 1 8n + 208

N1 1 n 3n − 3 3n + 2 n + 9 6 1 8n + 16

N2 1 n 3n 3n + 12 n + 21 12 2 8n + 48

N3 1 n 3n + 3 3n + 24 n + 40 27 8 1 8n + 104

N4 1 n 3n + 6 3n + 39 n + 71 61 29 8 1 8n + 216

Let C(G) be the total number of complete subgraphs in a graph G; that is C(G) =∑
s>0 C(Ks , G). For a surface Σ, let C(Σ, n) be the maximum of C(G) taken over all

n-vertex graphs G embeddable in Σ. Dujmović et al. [16] proved that C(Σ, n) − 8n

is bounded for fixed Σ, which is implied by Theorems 6.4, 6.7 and 6.9. The following
conjectures have been verified for each of S0, S1, S2, N1, N2, N3, N4.

Conjecture 6.10. For every surface Σ and integer n,

C(Σ, n) =
∑
s>0

C(Ks ,Σ, n).

Conjecture 6.11. If C(G) = C(Σ, n) for some n-vertex graph G embeddable in a surface
Σ, then for s > 0,

C(Ks , G) = C(Ks ,Σ, n).

Conversely, we conjecture that maximising the number of triangles is equivalent to max-
imising the total number of complete subgraphs. More precisely:

Conjecture 6.12. If C(K3, G) = C(K3,Σ, n) for some n-vertex graph G embeddable in
a surface Σ, then

C(G) = C(Σ, n).

Note that K3 cannot be replaced by some arbitrary complete graph in Conjecture 6.12.
For example, every graph embeddable in N3 contains at most one copy of K7, but there
are irreducible triangulations G of N3 that contain K7 and do not maximise the total
number of cliques (that is, C(G) < 8|V (G)|+ 104). Similarly, every graph embeddable
in N4 contains at most 8 copies of K7, but there are irreducible triangulations G of N4
for which C(K7, G) = 8 and C(G) < 8|V (G)|+ 216.
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7. Minor-Closed Classes

Consider the following natural open problem extending our results for graphs on surfaces:
For graphs H and X and an integer n, what is the maximum number of copies of H
in an n-vertex X-minor-free graph? This problem has been extensively studied when H
and X are complete graphs [21, 22, 41, 54, 56, 65]. Eppstein [17] proved the following
result when X is a complete bipartite graph and H is highly connected.

Theorem 7.1 ([17]). Fix positive integers s 6 t and a Ks,t-minor-free graph H with no
(6 s − 1)-separation. Then every n-vertex Ks,t-minor-free graph contains O(n) copies
of H.

What happens when H is not highly connected? We have the following lower bound. Fix
positive integers s 6 t and a Ks,t-minor-free graph H. If H has no (6 s −1)-separation,
then let k := 1; otherwise, let k be the maximum number of pairwise independent
(6 s − 1)-separations in H. The construction in Section 2 generalises to give n-vertex
Ks,t-minor-free graphs containing Θ(nk) copies of H.

The following question naturally arises: Does every n-vertex Ks,t-minor-free graph con-
tain O(nk) copies of H? By Theorem 7.1, the answer is ‘yes’ if k = 1. The methods
presented in this paper show the answer is ‘yes’ if s 6 3. We omit the proof, since it is
essentially the same as for graphs embedded on a surface, except that in the k = 1 case
we use Theorem 7.1 instead of the additivity of Euler genus (Theorem 3.3).

When H is a tree, this problem specialises as follows: Fix a tree T and positive integers
s 6 t. Let β(T ) be the size of the largest stable set of vertices in T , each with degree
at most s−1. The construction in Corollary 1.3 generalises to give n-vertex Ks,t-minor-
free graphs containing Ω(nβ(T )) copies of T . Does every n-vertex Ks,t-minor-free graph
contain O(nβ(T )) copies of T?

8. Homomorphism Inequalities

This section reinterprets the results of this paper in terms of homomorphism inequalities,
and presents some open problems that arise from this viewpoint.

For two graphs H and G, a homomorphism from H to G is a function φ : V (H)→ V (G)

that preserves adjacency; that is, φ(v)φ(w) is an edge of G for each edge vw of H. Let
hom(H,G) be the number of homomorphisms from H to G. For example, hom(H,Kt) >

0 if and only if H is t-colourable. In the other direction, hom(K1, G) is the number of
vertices in G, and hom(K2, G) is twice the number of edges in G, and hom(K3, G) is 6
times the number of triangles in G.

Homomorphism inequalities encode bounds on the number of copies of given graphs in
a host graph. Much of extremal graph theory can be written in terms of homomorphism
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inequalities, and a beautiful theory has recently developed that greatly simplifies the task
of proving such inequalities; see [42].

Consider the following concrete example. Mantel [47] proved that every n-vertex graph
with more than n2

4
edges has a triangle, which is tight for the complete bipartite graph

Kn/2,n/2. Goodman [27] strengthened Mantel’s Theorem by providing a lower bound of
m
3

(4m
n
−n) on the number of triangles in an n-vertex m-edge graph. Goodman’s Theorem

can be rewritten as the following homomorphism inequality:

(2) hom(K1, G) hom(K3, G) > hom(K2, G)(2 hom(K2, G)− hom(K1, G)2).

In a celebrated application of the flag algebra method, Razborov [55] generalised (2)
by determining the minimum number of triangles in an n-vertex m-edge graph. The
minimum number of copies of Kr in an n-vertex m-edge graph (the natural extension of
Turan’s Theorem) was a notoriously difficult question [43, 44], recently solved for r = 4

by Nikiforov [53] and in general by Reiher [57]. All of these results can be written in
terms of homomorphism inequalities.

The results of this paper show that for every fixed graph H with flap-number k , and for
every graph G that embeds in a fixed surface Σ,

hom(H,G) 6 c1 hom(K1, G)k ;

and if H embeds in Σ, then hom(H,G) > c2 hom(K1, G)k for infinitely many graphs G
that also embed in Σ.

Here is another example of a homomorphism inequality for graphs on surfaces. Euler’s
Formula implies3 that the number of triangles in an n-vertex m-edge graph with Euler
genus g is at least 2(m−2n+4−2g). This result is an analogue of Goodman’s Theorem
for graphs G of Euler genus g, and can be written as the following homomorphism
inequality:

hom(K3, G) > 6 hom(K2, G)− 24 hom(K1, G) + 48− 24g.

We consider it an interesting line of research to prove similar homomorphism inequalities
in other minor-closed classes. The following open problems naturally arise.

• Is there a method (akin to flag algebras [55] or graph algebras [42]) for system-
atically proving homomorphism inequalities in minor-closed classes?
• Hatami and Norine [37] proved that it is undecidable to test the validity of a
linear homomorphism inequality. In which minor-closed classes is it decidable to
test the validity of a linear homomorphism inequality?

These questions are open even for forests; see [12, 13, 15] for related results.

3Let G be a graph with n vertices, m edges and c components. Let Σ be a surface with Euler genus
g. Assume that G embeds in Σ with t triangular faces and f non-triangular faces. By Euler’s formula,
n−m+t+f = 1+c−g. Double-counting edges, 3t+4f 6 2m. Thus 4(m−n−t+1+c−g) = 4f 6 2m−3t

and t > 2m − 4n + 4 + 4c − 4g > 2(m − 2n + 4− 2g), as claimed.
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Closely related to the study of graph homomorphisms is the theory of graph limits and
graphons [42]. While this theory focuses on dense graphs, a theory of graph limits
for sparse graphs is emerging. For example, results are known for bounded degree
graphs [11, 36], planar graphs [10, 28], and bounded tree-depth graphs [52]. The above
questions regarding graph homomorphisms parallel the theory of graph limits in sparse
classes.

Acknowledgement. We would like to thank Kevin Hendrey for alerting us to an error
in the proof of Theorem 5.9 in an earlier version of this paper. We also thank Casey
Tompkins for pointing out reference [31]. Győri et al. [31] prove Corollary 1.3 in the case
Σ = S0, and conjecture that C(H,Σ0, n) = Θ(nk) for some integer k = k(H), which is
implied by Theorem 1.2.
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