SEYMOUR'S CONJECTURE ON 2-CONNECTED GRAPHS OF LARGE PATHWIDTH

TONY HUYNH, GWENAËL JORET, PIOTR MICEK, DAVID R. WOOD

Received February 9, 2018
Revised September 25, 2019

We prove a conjecture of Seymour (1993) stating that for every apex-forest H_{1} and outerplanar graph H_{2} there is an integer p such that every 2 -connected graph of pathwidth at least p contains H_{1} or H_{2} as a minor. An independent proof was recently obtained by Dang and Thomas [3].

1. Introduction

Pathwidth is a graph parameter of fundamental importance, especially in graph structure theory. The pathwidth of a graph G is the minimum integer k for which there is a sequence of sets $B_{1}, \ldots, B_{n} \subseteq V(G)$ such that $\left|B_{i}\right| \leqslant k+1$ for each $i \in[n]$, for every vertex v of G, the set $\left\{i \in[n]: v \in B_{i}\right\}$ is a non-empty interval, and for each edge $v w$ of G, some B_{i} contains both v and w.

In the first paper of their graph minors series, Robertson and Seymour [7] proved the following theorem.
1.1. For every forest F, there exists a constant p such that every graph with pathwidth at least p contains F as a minor.

[^0]The constant p was later improved to $|V(F)|-1$ (which is best possible) by Bienstock, Robertson, Seymour, and Thomas [1]. A simpler proof of this result was later found by Diestel [5].

Since forests have unbounded pathwidth, 1.1 implies that a minor-closed class of graphs has unbounded pathwidth if and only if it includes all forests. However, these certificates of large pathwidth are not 2-connected, so it is natural to ask for which minor-closed classes \mathcal{C}, does every 2-connected graph in \mathcal{C} have bounded pathwidth?

In 1993, Paul Seymour proposed the following answer (see [4]). A graph H is an apex-forest if $H-v$ is a forest for some $v \in V(H)$. A graph H is outerplanar if it has an embedding in the plane with all the vertices on the outerface. These classes are relevant since they both contain 2-connected graphs with arbitrarily large pathwidth. Seymour conjectured the following converse holds.
1.2. For every apex-forest H_{1} and outerplanar graph H_{2} there is an integer p such that every 2-connected graph of pathwidth at least p contains H_{1} or H_{2} as a minor.

Equivalently, 1.2 says that for a minor-closed class \mathcal{C}, every 2-connected graph in \mathcal{C} has bounded pathwidth if and only if some apex-forest and some outerplanar graph are not in \mathcal{C}.

The original motivation for conjecturing 1.2 was to seek a version of 1.1 for matroids (see [3]). Observe that apex-forests and outerplanar graphs are planar duals (see 2.1). Since a matroid and its dual have the same pathwidth (see [6] for the definition of matroid pathwidth), 1.2 provides some evidence for a matroid version of 1.1.

In this paper we prove 1.2 . An independent proof was recently obtained by Dang and Thomas [3].

We actually prove a slightly different, but equivalent version of 1.2. Namely, we prove that there are two unavoidable families of minors for 2connected graphs of large pathwidth. We now describe our two unavoidable families.

A binary tree is a rooted tree such that every vertex has at most two children. For $\ell \geqslant 0$, the complete binary tree of height ℓ, denoted Γ_{ℓ}, is the binary tree with 2^{ℓ} leaves such that each root to leaf path has ℓ edges. It is well known that Γ_{ℓ} has pathwidth $\lceil\ell / 2\rceil$. Let Γ_{ℓ}^{+}be the graph obtained from Γ_{ℓ} by adding a new vertex adjacent to all the leaves of Γ_{ℓ}. See Figure 1. Note that Γ_{ℓ}^{+}is a 2-connected apex-forest, and its pathwidth grows as ℓ grows (since it contains Γ_{ℓ}).

Our second set of unavoidable minors is defined recursively as follows. Let ∇_{1} be a triangle with a root edge e. Let H_{1} and H_{2} be copies of ∇_{ℓ} with

Figure 1. Complete binary trees with an extra vertex adjacent to all the leaves
root edges e_{1} and e_{2}. Let ∇ be a triangle with edges e_{1}, e_{2} and e_{3}. Define $\nabla_{\ell+1}$ by gluing each H_{i} to ∇ along e_{i} and then declaring e_{3} as the new root edge. See Figure 2. Note that ∇_{ℓ} is a 2 -connected outerplanar graph, and its pathwidth grows as ℓ grows (since it contains $\Gamma_{\ell-1}$).

Figure 2. Universal outerplanar graphs. The root edges are dashed

The following is our main theorem.
1.3. For every integer $\ell \geqslant 1$ there is an integer p such that every 2 -connected graph of pathwidth at least p contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor.

In Section 2, we prove that every apex-forest is a minor of a sufficiently large Γ_{ℓ}^{+}and every outerplanar graph is a minor of a sufficiently large ∇_{ℓ}. Thus, Theorem 1.3 implies Seymour's conjecture.

We actually prove the following theorem, which by 1.1, implies 1.3 .
1.4. For all integers $\ell \geqslant 1$, there exists an integer k such that every 2connected graph G with a Γ_{k} minor contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor.

Our approach is different from that of Dang and Thomas [3], who instead observe that by the Grid Minor Theorem [8], one may assume that G has bounded treewidth but large pathwidth. Dang and Thomas then apply their machinery of 'non-branching tree decompositions' to prove 1.2.

The rest of the paper is organized as follows. Section 2 proves the universality of our two families. In Sections 3 and 4, we define 'special' ear
decompositions and prove that special ear decompositions always yield Γ_{ℓ}^{+} or ∇_{ℓ} minors. In Section 5, we prove that a minimal counterexample to 1.4 always contains a special ear decomposition. Section 6 concludes with short derivations of our main results.

2. Universality

This section proves some elementary (and possibly well-known) results. We include the proofs for completeness.
2.1. Outerplanar graphs and apex-forests are planar duals.

Proof. Let G be an apex-forest, where $G-v$ is a forest. Consider an arbitrary planar embedding of G. Note that every face of G includes v (otherwise $G-v$ would contain a cycle). Let G^{*} be the planar dual of G. Let f be the face of G^{*} corresponding to v. Since every face of G includes v, every vertex of G^{*} is on f. So G^{*} is outerplanar.

Conversely, let G be an outerplanar graph. Consider a planar embedding of G, in which every vertex is on the outerface f. Let G^{*} be the planar dual of G. Let v be the vertex of G^{*} corresponding to f. If $G^{*}-v$ contained a cycle C, then a face of $G^{*}-v$ 'inside' C would correspond to a vertex of G that is not on f. Thus $G^{*}-v$ is a forest, and G^{*} is an apex-forest.

We now show that Theorem 1.3 implies Seymour's conjecture, by proving two universality results.

2.2. Every apex-forest on $n \geqslant 2$ vertices is a minor of Γ_{n-1}^{+}.

If H is a minor of G and $v \in V(H)$, the branch set of v is the set of vertices of G that are contracted to $v .2 .2$ is a corollary of the following.
2.3. Every tree with $n \geqslant 1$ vertices is a minor of Γ_{n-1}, such that each branch set includes a leaf of Γ_{n-1}.

Proof. We proceed by induction on n. The base case $n=1$ is trivial. Let T be a tree with $n \geqslant 2$ vertices. Let v be a leaf of T. Let w be the neighbour of v in T. By induction, $T-v$ is a minor of Γ_{n-2}, such that each branch set includes a leaf of Γ_{n-2}. In particular, the branch set for w includes some leaf x of Γ_{n-2}. Note that Γ_{n-1} is obtained from Γ_{n} by adding two new leaf vertices adjacent to each leaf of Γ_{n-2}. Let y and z be the leaf vertices of Γ_{n-1} adjacent to x. Extend the branch set for w to include y and let $\{z\}$ be the branch set of v. For each leaf $u \neq x$ of Γ_{n-2}, if u is in the branch set
of some vertex of $T-v$, then extend this branch set to include one of the new leaves in Γ_{n-1} adjacent to u. Now T is a minor of Γ_{n-1}, such that each branch set includes a leaf of Γ_{n-1}.

Our second universality result is for outerplanar graphs.
2.4. Every outerplanar graph on $n \geqslant 2$ vertices is a minor of ∇_{n-1}.
2.4 is a corollary of the following.
2.5. Every outerplanar triangulation G on $n \geqslant 3$ vertices is a minor of ∇_{n-1}, such that for every edge $v w$ on the outerface of G, there is a non-root edge on the outerface of ∇_{n-1} joining the branch sets of v and w.

Proof. We proceed by induction on n. The base case, $G=K_{3}$, is easily handled as illustrated in Figure 3. Let G be an outerplanar triangulation

Figure 3. Proof of 2.5 in the base case
with $n \geqslant 4$ vertices. Every such graph has a vertex u of degree 2, such that if α and β are the neighbours of u, then $G-u$ is an outerplanar triangulation and $\alpha \beta$ is an edge on the outerface of $G-u$. By induction, $G-u$ is a minor of ∇_{n-2}, such that for every edge $v w$ on the outerface of $G-u$, there is a non-root edge $v^{\prime} w^{\prime}$ on the outerface of ∇_{n-2} joining the branch sets of v and w. In particular, there is a non-root edge $\alpha^{\prime} \beta^{\prime}$ of ∇_{n-2} joining the branch sets of α and β. Note that ∇_{n-1} is obtained from ∇_{n-2} by adding, for each non-root edge $p q$ on the outerface of ∇_{n-2}, a new vertex adjacent to p and q. Let the branch set of u be the vertex u^{\prime} of $\nabla_{n-1}-V\left(\nabla_{n-2}\right)$ adjacent to α^{\prime} and β^{\prime}. Thus ∇_{n-1} contains G as a minor. Every edge on the outerface of G is one of $u \alpha$ or $u \beta$, or is on the outerface of $G-u$. By construction, $u^{\prime} \alpha^{\prime}$ is a non-root edge on the outerface of ∇_{n-1} joining the branch sets of u and α. Similarly, $u^{\prime} \beta^{\prime}$ is a non-root edge on the outerface of ∇_{n-1} joining the branch sets of u and β. For every edge $v w$ on the outerface of G, where $v w \notin\{u \alpha, u \beta\}$, if z is the vertex in $\nabla_{n-1}-V\left(\nabla_{n-2}\right)$ adjacent to v^{\prime} and w^{\prime}, extend the branch set of v to include z. Now $z w^{\prime}$ is an edge on the outerface of ∇_{n-1} joining the branch sets for v and w. Thus for every edge $v w$ on the outerface of G, there is a non-root edge of ∇_{n-1} joining the branch sets of v and w.

3. Binary ear trees

Henceforth, all graphs in this paper are finite and simple. In particular, after contracting an edge, we suppress parallel edges and loops. Let H and G be graphs. We write $H \simeq G$ if H and G are isomorphic. Let $H \cup G$ be the graph with $V(H \cup G)=V(H) \cup V(G)$ and $E(H \cup G)=E(H) \cup E(G)$. If H is a subgraph of G, then an H-ear is a path in G with its two ends in $V(H)$ but with no internal vertex in $V(H)$. The length of a path is its number of edges.

For a vertex v in a rooted tree T, let T_{v} be the subtree of T rooted at v. A vertex v of T is said to be branching if v has at least two children.

A binary ear tree in a graph G is a pair (T, \mathcal{P}), where T is a binary tree, and $\mathcal{P}=\left\{P_{x}: x \in V(T)\right\}$ is a collection of paths in G of length at least 2 such that, for every non-root vertex x of T the following holds:
(i) P_{x} is a P_{y}-ear, where y is the parent of x in T, and
(ii) no internal vertex of P_{x} is in $\bigcup_{z \in V(T) \backslash V\left(T_{x}\right)} V\left(P_{z}\right)$.

A binary ear tree (T, \mathcal{P}) is clean if for every non-leaf vertex y of T, there is an end of P_{y} that is not contained in any P_{x} where x is a child of y.

The main result of this section is the following.
3.1. For every integer $\ell \geqslant 1$, if G has a clean binary ear tree (T, \mathcal{P}) such that $T \simeq \Gamma_{3 \ell-2}$, then G contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor.

Before starting the proof, we first set up notation for a Ramsey-type result that we will need.

If p and q are vertices of a tree T, then let $p T q$ denote the unique $p q$ path in T. If T^{\prime} is a subdivision of a tree T, the vertices of T^{\prime} coming from T are called original vertices and the other vertices of T^{\prime} are called subdivision vertices. Given a colouring of the vertices of $T=\Gamma_{n}$ with colours \{red, blue\}, we say that T contains a red subdivision of Γ_{k}, if it contains a subdivision T^{\prime} of Γ_{k} such that all the original vertices of T^{\prime} are red, and for all $a, b \in V\left(T^{\prime}\right)$ with b a descendant of a, the path $a T b$ is descending. (Here a path is descending if it is contained in a path that starts at the root.) Define $R(k, \ell)$ to be the minimum integer n such that every colouring of Γ_{n} with colours \{red, blue $\}$ contains a red subdivision of Γ_{k} or a blue subdivision of Γ_{ℓ}. We will use the following easy result.

3.2. $R(k, \ell) \leqslant k+\ell$ for all integers $k, \ell \geqslant 0$.

Proof. We proceed by induction on $k+\ell$. As base cases, it is clear that $R(k, 0)=k$ and $R(0, \ell)=\ell$ for all k, ℓ. For the inductive step, assume $k, \ell \geqslant 1$ and let T be a $\{$ red, blue $\}$-coloured copy of $\Gamma_{k+\ell}$. By symmetry, we may assume that the root r of T is coloured red. Let T_{1} and T_{2} be the components
of $T-r$, both of which are copies of $\Gamma_{k+\ell-1}$. If T_{1} or T_{2} contains a blue subdivision of Γ_{ℓ}, then so does T and we are done. By induction, $R(k-1, \ell) \leqslant$ $k-1+\ell$, so both T_{1} and T_{2} contain a red subdivision of Γ_{k-1}. Add the paths from r to the roots of these red subdivisions. We obtain a red subdivision of Γ_{k}, as desired.

The following observation will be helpful when considering subdivision vertices.
3.3. Let G be a graph having a clean binary ear tree (T, \mathcal{P}) with $\mathcal{P}=$ $\left\{P_{v}: v \in V(T)\right\}$. Suppose that y is a degree-2 vertex in T with parent x and child z. Then there is a clean binary ear tree $\left(T / y z, \mathcal{P}^{\prime}\right)$ of G, with $\mathcal{P}^{\prime}=\left\{P_{v}^{\prime}: v \in V(T / y z)\right\}$ where $P_{v}^{\prime}=P_{v}$ for all $v \in V(T) \backslash\{y, z\}$, and $P_{y z}^{\prime}$ is the unique P_{x}-ear contained in $P_{y} \cup P_{z}$ that contains P_{z}, where the vertex resulting from the contraction of edge $y z$ is denoted $y z$ as well.

Proof. Property (i) of the definition of binary ear trees holds for vertex $y z$ of $T / y z$ by our choice of $P_{y z}^{\prime}$. Property (ii) holds for $y z$ because it held for y and for z in (T, \mathcal{P}). Also, these two properties hold for children of $y z$ in $T / y z$ (if any) because they held for z before. Thus, $\left(T / y z, \mathcal{P}^{\prime}\right)$ is a binary ear tree. Finally, note that cleanliness of the binary ear tree ($T / y z, \mathcal{P}^{\prime}$) follows from that of (T, \mathcal{P}), and the fact that the ends of $P_{y z}^{\prime}$ are the same as the ones of P_{y}.

We now prove 3.1.
Proof of 3.1. Let t be a non-leaf vertex of T. Let u and v be the children of t. Let u_{1} and u_{2} be the ends of P_{u}. Let v_{1} and v_{2} be the ends of P_{v}. We say that t is nested if $u_{1} P_{t} u_{2} \subseteq v_{1} P_{t} v_{2}$ or $v_{1} P_{t} v_{2} \subseteq u_{1} P_{t} u_{2}$. If t is not nested, then t is split. See Figures 4 and 5 . Regarding split and nested as colours, we apply 3.2 to the tree T with the leaves removed, and obtain a tree T^{*} which is a split subdivision of $\Gamma_{\ell-1}$ or a nested subdivision of $\Gamma_{2 \ell-2}$. For each leaf of T^{*}, add back its two children in T. This way, we deduce that T contains either a subdivision of Γ_{ℓ} with all branching vertices split, or a subdivision of $\Gamma_{2 \ell-1}$ with all branching vertices nested. In the first case, we will find a ∇_{ℓ} minor, while in the second we will find a Γ_{ℓ}^{+}minor. The two cases are covered by 3.4 and 3.5 .
3.4. If T contains a subdivision T^{1} of Γ_{ℓ} such that every branching vertex is split, then $\bigcup_{t \in V\left(T^{1}\right)} P_{t}$ contains ∇_{ℓ} as a minor.
Subproof. Consider the clean binary ear tree 'induced by' the subtree T^{1}, that is, the pair $\left(T^{1}, \mathcal{P}^{1}\right)$ where $\mathcal{P}^{1}=\left\{P_{t}: t \in V\left(T^{1}\right)\right\}$. First, for every subdivision vertex y of T^{1} with child z, we apply 3.3 to $\left(T^{1}, \mathcal{P}^{1}\right)$ in order to

Figure 4. Examples of a nested vertex t with a path P_{t} in a clean binary ear tree

Figure 5. Examples of a split vertex t with a path P_{t} in a clean binary ear tree
suppress vertex y. Note that every branching vertex of T^{1} stays split. In particular, this is true if z is branching. Hence, we may assume from now on that T^{1} has no subdivision vertices.

Let P be a path in a graph G. Let ∇_{ℓ}^{-}be the graph obtained from ∇_{ℓ} by deleting its root edge $x y$. We say that a ∇_{ℓ}^{-}minor in G is rooted on P if the two roots of the ∇_{ℓ}^{-}minor are the ends of P. (By 'roots' we mean the ends of the root edge.)

We prove the following technical statement. Let $m \geqslant 0$ be an integer, and let T^{\prime} be a subtree of T^{1} isomorphic to Γ_{m} such that all branching vertices of T^{\prime} are split, then $\bigcup_{t \in V\left(T^{\prime}\right)} P_{t}$ contains a ∇_{m+1}^{-}minor rooted on P_{r}, where r is the root of T^{\prime}.

This proves 3.4 for $\ell \geqslant 2$, since $\nabla_{\ell+1}^{-}$contains a ∇_{ℓ} minor. For $\ell=1,3.4$ is straightforward.

We prove the above technical statement by induction on m. The case $m=0$ is clear since then T^{\prime} is a single vertex v and ∇_{1}^{-}is just a path with three vertices. (Here we use that $\left|V\left(P_{v}\right)\right| \geqslant 3$.)

For the inductive step, let a and b be the children of r. By induction, $G_{a}:=$ $\bigcup_{t \in V\left(T_{a}^{\prime}\right)} P_{t}$ contains a ∇_{m}^{-}minor H_{a} rooted on P_{a}, and $G_{b}:=\bigcup_{t \in V\left(T_{b}^{\prime}\right)} P_{t}$ contains a ∇_{m}^{-}minor H_{b} rooted on P_{b}.

We prove that G_{a} and G_{b} are vertex-disjoint, except possibly at a vertex of $V\left(P_{a}\right) \cap V\left(P_{b}\right)$ (there is at most one such vertex since r is split). Suppose v is a vertex appearing in both G_{a} and G_{b}. Let x be the vertex in T_{a}^{\prime} closest to the root such that $v \in V\left(P_{x}\right)$ and let y be the vertex in T_{b}^{\prime} closest to the
root such that $v \in V\left(P_{y}\right)$. By property (ii) of binary ear trees we know that no internal vertex of P_{x} lies in $\bigcup_{z \in V\left(T^{1}\right) \backslash V\left(T_{x}^{\prime}\right)} V\left(P_{z}\right)$. Since $y \in V\left(T^{1}\right) \backslash V\left(T_{x}^{\prime}\right)$ and $v \in V\left(P_{y}\right)$, we conclude that v is an end of P_{x}. This means that v lies in T_{p}^{\prime} where p is the parent of x in T^{\prime}. By the choice of x this is only possible when $x=a$. Thus, v is an end of P_{a} and lies in P_{r}. By a symmetric argument we conclude that v is an end of P_{b} as well, as desired.

Let a_{1} and a_{2} be the ends of P_{a}, b_{1} and b_{2} be the ends of P_{b}, and r_{1} and r_{2} be the ends of P_{r}. By symmetry, we may assume that the ordering of these points along P_{r} is either $r_{1}, a_{1}, b_{1}, a_{2}, b_{2}, r_{2}$ or $r_{1}, a_{1}, a_{2}, b_{1}, b_{2}, r_{2}$. (Note that some vertices may coincide.) Using the observation from the previous paragraph, we obtain a ∇_{m+1}^{-}minor rooted on P_{r} by considering the union of the ∇_{m}^{-}minor rooted on P_{a} and the ∇_{m}^{-}minor rooted on P_{b} that we were given, and contracting the following three subpaths of $P_{r}: r_{1} P_{r} a_{1}, a_{2} P_{r} b_{1}$, and $b_{2} P_{r} r_{2}$. Notice that if G_{a} and G_{b} have a vertex v in common, then $v=a_{2}=b_{1}$. See Figure 6 for an illustration of the construction.

Figure 6. Inductively constructing a ∇_{3}^{-}minor
3.5. If T contains a subdivision T^{2} of $\Gamma_{2 \ell-1}$ such that every branching vertex is nested, then $\bigcup_{t \in V\left(T^{2}\right)} P_{t}$ contains Γ_{ℓ}^{+}as a minor.

Subproof. Consider the clean binary ear tree $\left(T^{2}, \mathcal{P}^{2}\right)$ where $\mathcal{P}^{2}=\left\{P_{t}: t \in\right.$ $\left.V\left(T^{2}\right)\right\}$. First, for every subdivision vertex y of T^{2} with child z, we apply 3.3
to $\left(T^{2}, \mathcal{P}^{2}\right)$ in order to suppress vertex y. Note that every branching vertex of T^{2} stays nested. In particular, this is true if z is branching. Hence, we may assume from now on that T^{2} has no subdivision vertices.

Orient each path in \mathcal{P}^{2} inductively as follows. Let r be the root of T^{2} and orient P_{r} arbitrarily. If P_{s} has already been oriented and t is a child of s in T^{2}, then orient P_{t} so that $P_{s} \cup P_{t}$ does not contain a directed cycle. Consider each path in \mathcal{P}^{2} to be oriented from left to right, and thus with left and right ends.

Let t be a non-leaf vertex of T^{2} and let u and v be the children of t. Define t to be left-good if the left end of P_{t} is not in P_{u} nor P_{v}. Define t to be right-good if the right end of P_{t} is not in P_{u} nor P_{v}. Since $\left(T^{2}, \mathcal{P}^{2}\right)$ is clean we know that every non-leaf vertex t of T^{2} is left-good or rightgood. We colour the non-leaf vertices of T^{2} with left and right in such a way that when a vertex is coloured left (right), then it is left-good (right-good). Applying 3.2 on the tree T^{2} with branching vertices coloured this way in which we remove all the leaves, we obtain a subdivision T^{*} of $\Gamma_{\ell-1}$ such that all original vertices are coloured left, or all are coloured right, say without loss of generality left. For every leaf of T^{*}, add back to T^{*} its two children in T^{2}, and denote by T^{3} the resulting tree. Note that T^{3} is a subdivision of Γ_{ℓ} and all branching vertices of T^{3} are left-good.

We focus on the clean binary ear tree $\left(T^{3}, \mathcal{P}^{3}\right)$ induced by T^{3}, where $\mathcal{P}^{3}=\left\{P_{t}: t \in V\left(T^{3}\right)\right\}$. Then, for every subdivision vertex y of T^{3} with child z, we apply 3.3 to $\left(T^{3}, \mathcal{P}^{3}\right)$ in order to suppress vertex y, as before. Note that every branching vertex of T^{3} stays nested and left-good. Hence, we may assume from now on that T^{3} has no subdivision vertices.

Let t be a non-leaf vertex of T^{3} and u and v be the children of t in T^{3}. Let $f(t)$ be the first vertex of P_{t} that is a left end of either P_{u} or of P_{v}. Note that $f(t)$ is not the left end of P_{t}, since t is left-good. Let $e(t)$ be the last edge of P_{t} incident to a left end of either P_{u} or P_{v}. If t is a leaf of T^{3}, we define $f(t)$ to be any internal vertex of P_{t} and $e(t)$ to be the last edge of P_{t} incident to $f(t)$.

Let $H:=\bigcup_{t \in V\left(T^{3}\right)} P_{t}$ and $M:=\left\{e(t): t \in V\left(T^{3}\right)\right\}$. Since every branching vertex of T^{3} is nested, $H \backslash M$ contains two components $H_{\text {left }}$ and $H_{\text {right }}$ such that $H_{\text {left }}$ contains all left ends of $\left\{P_{t}: t \in V\left(T^{3}\right)\right\}$ and $H_{\text {right }}$ contains all right ends of $\left\{P_{t}: t \in V\left(T^{3}\right)\right\}$. Using that every branching vertex of T^{3} is left-good, it is easy to see that $H_{\text {left }}$ contains a subdivision T^{4} of Γ_{ℓ} whose set of original vertices is $\left\{f(t): t \in V\left(T^{3}\right)\right\}$; see Figure 7. By construction, each leaf of T^{4} is incident to an edge in M. Also, $H_{\text {right }}$ is clearly connected. Therefore, after contracting all edges of $H_{\text {right }}, T^{4} \cup M \cup H_{\text {right }}$ contains a Γ_{ℓ}^{+} minor.

Figure 7. A Γ_{3} minor in $H_{\text {left }}$

This ends the proof of 3.1.

4. Binary pear trees

In order to prove our main theorem, we need something slightly more general than binary ear trees, which we now define. A binary pear tree in a graph G is a pair (T, \mathcal{B}), where T is a binary tree, and $\mathcal{B}=\left\{\left(P_{x}, Q_{x}\right): x \in V(T)\right\}$ is a collection of pairs of paths of G of length at least 2 such that $P_{x} \subseteq Q_{x}$ for all $x \in V(T)$, and the following properties are satisfied for each non-root vertex $x \in V(T)$.
(i) Q_{x} is a P_{y}-ear, where y is the parent of x in T;
(ii) if x has no sibling, then no internal vertex of Q_{x} is in

$$
\bigcup_{z \in V(T) \backslash V\left(T_{x}\right)} V\left(Q_{z}\right)
$$

(iii) if x has a sibling x^{\prime}, then

- no internal vertex of Q_{x} is in $\bigcup_{z \in V(T) \backslash\left(V\left(T_{x}\right) \cup V\left(T_{x^{\prime}}\right)\right)} V\left(Q_{z}\right)$, and
- no internal vertex of P_{x} is in $Q_{x^{\prime}}$.

Furthermore, the binary pear tree is clean if for every non-leaf vertex y of T, there is an end of P_{y} that is not contained in any Q_{x} where x is a child of y.

Note that if $\left(T,\left\{P_{x}: x \in V(T)\right\}\right)$ is a clean binary ear tree, then $\left(T,\left\{\left(P_{x}, P_{x}\right): x \in V(T)\right\}\right)$ is a clean binary pear tree. We now prove the following converse.
4.1. If G has a clean binary pear tree (T, \mathcal{B}), then G has a minor H such that H has a clean binary ear tree (T, \mathcal{P}).

Proof. Say $\mathcal{B}=\left\{\left(P_{v}, Q_{v}\right): v \in V(T)\right\}$. We prove the stronger result that there exist H and $\left(T,\left\{P_{v}^{\prime}: v \in V(T)\right\}\right)$ such that H is a minor of G, $\left(T,\left\{P_{v}^{\prime}: v \in V(T)\right\}\right)$ is a clean binary ear tree in H, and $P_{v} \subseteq P_{v}^{\prime}$ for all leaves v of T. This last property will be referred to as the leaf property; note that this is a property of $\left(T,\left\{P_{v}^{\prime}: v \in V(T)\right\}\right)$ w.r.t. the pair (T, \mathcal{B}) (which is fixed). Arguing by contradiction, suppose that this result is not true. Among all counterexamples, choose $(G,(T, \mathcal{B}))$ such that $|E(G)|$ is minimum. This clearly implies that $|V(T)|>1$.

Let y be a deepest leaf in T. If y has a sibling, let z denote this sibling, which is also a leaf of T. Let x be the parent of y in T. Delete from G the internal vertices of Q_{y} and Q_{z} (if z exists), and denote by G^{-}the resulting graph. Note that $\left|E\left(G^{-}\right)\right|<|E(G)|$ since Q_{y} has length at least 2. Let T^{-}be the tree obtained from T by removing y and z (if z exists). Notice that no internal vertex of Q_{y} or Q_{z} appears in a path Q_{v} with $v \in$ $V\left(T^{-}\right)$, by properties (ii) and (iii) of the definition of binary pear trees. Thus $\left(T^{-},\left\{\left(P_{v}, Q_{v}\right): v \in V\left(T^{-}\right)\right\}\right)$is a clean binary pear tree. By minimality, G^{-} has a minor H^{-}such that H^{-}has a clean binary ear tree $\left(T^{-},\left\{P_{v}^{-}: v \in\right.\right.$ $\left.\left.V\left(T^{-}\right)\right\}\right)$such that $P_{v} \subseteq P_{v}^{-}$for all leaves v of T^{-}. Since x is a leaf of T^{-}, we have $P_{x} \subseteq P_{x}^{-}$.

Notice that Q_{y} and Q_{z} (if z exists) are P_{x}^{-}-ears. If z does not exist, then let $P_{y}^{-}:=Q_{y}$ and observe that $\left(T,\left\{P_{v}^{-}: v \in V(T)\right\}\right)$ is a clean binary ear tree satisfying the leaf property, contradicting the fact that $(G,(T, \mathcal{B}))$ is a counterexample. Thus, z must exist.

Consider an internal vertex v of Q_{y}. If v is included in Q_{z}, then v cannot be an end of Q_{z}, because ends of Q_{z} are in P_{x}, which would imply that v is an end of Q_{y} as well. Thus, if Q_{y} and Q_{z} have a vertex in common, either this vertex is a common end of both paths, or it is internal to both paths.

If Q_{y} and Q_{z} have no internal vertex in common, let $P_{y}^{-}:=Q_{y}$ and $P_{z}^{-}:=Q_{z}$. Note that $\left(T,\left\{P_{v}^{-}: v \in V(T)\right\}\right)$ is a clean binary ear tree satisfying
the leaf property, a contradiction. Hence, Q_{y} and Q_{z} must have at least one internal vertex in common.

Next, given an edge $e \in E(G)$ and a path P in G, define $P / / e$ to be P if $e \notin E(P)$ and P / e if $e \in E(P)$, and let $\mathcal{B} / e:=\left\{\left(P_{v} / / e, Q_{v} / / e\right): v \in V(T)\right\}$. Suppose that there is an edge $e \in E\left(Q_{y}\right) \cap E\left(Q_{z}\right)$. Since $\left|E\left(P_{y}\right)\right| \geqslant 2$ and $\left|E\left(P_{z}\right)\right| \geqslant 2$, property (iii) of the definition of binary pear trees implies that $e \notin E\left(P_{y}\right) \cup E\left(P_{z}\right)$. Thus $P_{y} / / e=P_{y}$ and $P_{z} / / e=P_{z}$. It follows that $(T, \mathcal{B} / e)$ is a clean binary pear tree of G / e, which contradicts the minimality of the counterexample. Hence, no such edge e exists.

So far we established that the two paths Q_{y} and Q_{z} have at least one internal vertex in common and are edge-disjoint. The rest of the proof is split into a number of cases. In each case, we show that either there is an edge e of G such that $G \backslash e$ still has a clean binary pear tree which is indexed by the same tree T, or that there is a way to modify (T, \mathcal{B}) so that it remains a clean binary pear tree of G, and after the modification the two paths Q_{y} and Q_{z} have at least one edge in common. Note that each outcome contradicts the minimality of our counterexample; in the latter case, this is because we can then apply the argument of the previous paragraph and obtain a smaller counterexample.

Let us now proceed with the case analysis, see Figure 8 for an illustration of the different cases. Choose an orientation of P_{x} from left to right, let x_{1} denote its left end and x_{2} denote its right end, and let y_{1}, y_{2} and z_{1}, z_{2} be the two ends of respectively Q_{y} and Q_{z} on P_{x}, ordered from left to right. Given two vertices u, v of P_{x}, let us simply write $u \leqslant v$ if $u=v$ or u is to the left of v on P_{x}. Without loss of generality, we may assume that $y_{1} \leqslant z_{1}$.

Recalling that Q_{y} and Q_{z} have an internal vertex in common, let v_{1} be the first such vertex on the path Q_{y} starting from y_{1}. Note that either $P_{y} \subseteq y_{1} Q_{y} v_{1}$ or $P_{y} \subseteq v_{1} Q_{y} y_{2}$, and similarly either $P_{z} \subseteq z_{1} Q_{z} v_{1}$ or $P_{z} \subseteq v_{1} Q_{z} z_{2}$, by property (iii) of the definition of binary pear trees.

First suppose that $P_{y} \subseteq y_{1} Q_{y} v_{1}$ and $P_{z} \subseteq z_{1} Q_{z} v_{1}$. Let $Q_{y}^{1}:=y_{1} Q_{y} v_{1} Q_{z} z_{2}$. (The superscript denotes the case number.) It is easily checked that replacing Q_{y} with Q_{y}^{1} in (T, \mathcal{B}) gives another clean binary pear tree of G. Moreover, Q_{y}^{1} and Q_{z} have the path $v_{1} Q_{z} z_{2}$ in common, which contains at least one edge, as desired.

Next suppose that $P_{y} \subseteq y_{1} Q_{y} v_{1}$ and $P_{z} \subseteq v_{1} Q_{z} z_{2}$. We consider whether some internal vertex of the path $v_{1} Q_{z} z_{1}$ is in Q_{y}. If there is one, let v_{2} be the last such vertex that is met when going along Q_{y} from y_{1} to y_{2}. Let $Q_{y}^{2}:=y_{1} Q_{y} v_{1} Q_{z} v_{2} Q_{y} y_{2}$, and replace Q_{y} with Q_{y}^{2} in (T, \mathcal{B}) as in the previous paragraph. Note that Q_{y}^{2} and Q_{z} have the path $v_{1} Q_{z} v_{2}$ in common, and thus at least one edge in common, as desired.

Figure 8. Cases in the proof of 4.1. P_{x} is drawn in black, Q_{y} in red, and Q_{z} in blue. The bold subpaths of Q_{y} and Q_{z} denote respectively P_{y} and P_{z}. The dotted lines illustrate the modifications of the paths P_{x}, Q_{y}, Q_{z}.

If no internal vertex of $v_{1} Q_{z} z_{1}$ is in Q_{y}, we consider whether $y_{1}<z_{1}$ or $y_{1}=z_{1}$. If $y_{1}<z_{1}$, let $Q_{y}^{3}:=y_{1} Q_{y} v_{1} Q_{z} z_{1}$, and replace Q_{y} with Q_{y}^{3} in (T, \mathcal{B}). In particular, Q_{y}^{3} and Q_{z} now have the path $v_{1} Q_{z} z_{1}$ in common, and thus at least one edge in common, as desired.

If $y_{1}=z_{1}$, we adopt a different strategy. Let $P_{x}^{4}:=x_{1} P_{x} y_{1} Q_{z} v_{1} Q_{y} y_{2} P_{x} x_{2}$ and let Q_{x}^{4} be the path obtained from Q_{x} by replacing the P_{x} section with P_{x}^{4}. Let $Q_{y}^{4}:=y_{1} Q_{y} v_{1}$. Let w_{1} be the first vertex of Q_{y} that is met when starting in P_{z} and walking along Q_{z} toward z_{1}. (Note that possibly $w_{1}=v_{1}$.)

Let w_{2} be the first vertex of Q_{y} that is met when starting in P_{z} and walking along Q_{z} toward z_{2}, if there is one. Let $Q_{z}^{4}:=w_{1} Q_{z} w_{2}$ if w_{2} exists, otherwise let $Q_{z}^{4}:=w_{1} Q_{z} z_{2} P_{x} y_{2}$. Finally, let e be the edge of P_{x} incident to z_{1} that is to the right of z_{1}. Observe that e is not included in any of the three paths $Q_{x}^{4}, Q_{y}^{4}, Q_{z}^{4}$. Now, it can be checked that replacing $P_{x}, Q_{x}, Q_{y}, Q_{z}$ in (T, \mathcal{B}) with their newly defined counterparts produces a clean binary pear tree of $G \backslash e$, giving the desired contradiction. This concludes the case that $P_{y} \subseteq y_{1} Q_{y} v_{1}$ and $P_{z} \subseteq v_{1} Q_{z} z_{2}$.

Next suppose that $P_{y} \subseteq v_{1} Q_{y} y_{2}$ and $P_{z} \subseteq v_{1} Q_{z} z_{2}$. Let $Q_{z}^{5}:=y_{1} Q_{y} v_{1} Q_{z} z_{2}$. Replacing Q_{z} with Q_{z}^{5} in (T, \mathcal{B}) gives another clean binary pear tree of G. Moreover, Q_{y} and Q_{z}^{5} have the path $y_{1} Q_{y} v_{1}$ in common, which contains at least one edge, as desired.

Finally, suppose that $P_{y} \subseteq v_{1} Q_{y} y_{2}$ and $P_{z} \subseteq z_{1} Q_{z} v_{1}$. Let v_{2} be the first common internal vertex of Q_{y} and Q_{z} that is met when starting in z_{2} and walking along Q_{z} toward v_{1}. (Note that possibly $v_{2}=v_{1}$.) If $P_{y} \subseteq v_{1} Q_{y} v_{2}$, then let $Q_{y}^{6}:=y_{1} Q_{y} v_{2} Q_{z} z_{2}$. Replacing Q_{y} with Q_{y}^{6} in (T, \mathcal{B}) gives another clean binary pear tree of G. Moreover, Q_{y}^{6} and Q_{z} have the path $v_{2} Q_{z} z_{2}$ in common, which contains at least one edge, as desired.

If $P_{y} \subseteq v_{2} Q_{y} y_{2}$, then consider whether $y_{2}=z_{2}$. If $y_{2} \neq z_{2}$ then let $Q_{y}^{7}:=$ $y_{2} Q_{y} v_{2} Q_{z} z_{2}$. Replacing Q_{y} with Q_{y}^{7} in (T, \mathcal{B}) gives another clean binary pear tree of G. Moreover, Q_{y}^{7} and Q_{z} have the path $v_{2} Q_{z} z_{2}$ in common, which contains at least one edge, as desired.

If $y_{2}=z_{2}$, then let $P_{x}^{8}:=x_{1} P_{x} y_{1} Q_{y} v_{2} Q_{z} z_{2} P_{x} x_{2}$ and let Q_{x}^{8} be the path obtained from Q_{x} by replacing the P_{x} section with P_{x}^{8}. Let $Q_{y}^{8}:=v_{2} Q_{y} y_{2}$. Let w_{1} be the first vertex of Q_{y} that is met when starting in P_{z} and walking along Q_{z} toward z_{1}, if there is one. Let w_{2} be the first vertex of Q_{y} that is met when starting in P_{z} and walking along Q_{z} toward z_{2}. (Note that possibly $w_{2}=v_{1}$.) Let $Q_{z}^{8}:=w_{1} Q_{z} w_{2}$ if w_{1} exists, otherwise let $Q_{z}^{8}:=y_{1} P_{x} z_{1} Q_{z} w_{2}$. Let e be the edge of P_{x} incident to z_{1} that is to the right of z_{1}. Observe that e is not included in any of the three paths $Q_{x}^{8}, Q_{y}^{8}, Q_{z}^{8}$. Now, it can be checked that replacing $P_{x}, Q_{x}, Q_{y}, Q_{z}$ in (T, \mathcal{B}) with their newly defined counterparts produces a clean binary pear tree of $G \backslash e$, giving the desired contradiction. This concludes the proof.

5. Finding binary pear trees

A binary tree is full if every internal vertex has exactly two children. The main result of this section is the following.
5.1. For all integers $\ell \geqslant 1$ and $k \geqslant 9 \ell^{2}-3 \ell+1$, if G is a minor-minimal 2 connected graph containing a subdivision of Γ_{k} and T^{1} is a full binary tree of height at most $3 \ell-2$, then either G contains Γ_{ℓ}^{+}as a minor, or G contains a clean binary pear tree $\left(T^{1}, \mathcal{B}\right)$.

We proceed via a sequence of lemmas.
5.2. If G is a minor-minimal 2-connected graph containing a subdivision of Γ_{k}, then every subdivision of Γ_{k} in G is a spanning tree.

Proof. Let T be a subdivision of Γ_{k} in G. We use the well-known fact that for all $e \in E(G)$, at least one of $G \backslash e$ or G / e is 2-connected. Therefore, if some edge e of G has an end not in $V(T)$, then $G \backslash e$ or G / e is a 2 connected graph containing a subdivision of Γ_{k}, which contradicts the minorminimality of G.
5.3. Let $1 \leqslant \ell \leqslant k$ and let T be a tree isomorphic to Γ_{k} with root r. Suppose that a non-empty subset of vertices of T are marked. Then
(i) T contains a subdivision of Γ_{ℓ}, all of whose leaves are marked, or
(ii) there exist a vertex $v \in V(T)$ and a child w of v such that T_{v} has at least one marked vertex but T_{w} has none, and w is at distance at most ℓ from r.

Proof. A vertex v in T is good if there is a marked vertex in T_{v}, and is bad otherwise. Let T^{\prime} be the subtree of T induced by vertices at distance at most ℓ from r in T. If each leaf of T^{\prime} is good, then for each such leaf u we can find a marked vertex m_{u} in T_{u}, and $T^{\prime} \cup \bigcup\left\{u T m_{u}: u\right.$ leaf of $\left.T^{\prime}\right\}$ is a Γ_{ℓ} subdivision with all leaves marked, as required by (i). Now assume that some leaf u of T^{\prime} is bad. Let w be the bad vertex closest to r on the $r T u$ path. Since some vertex in T is marked, r is good. Thus $w \neq r$. Moreover, the parent v of w is good, by our choice of w. Also, w is at distance at most ℓ from r. Therefore, v and w satisfy (ii).

Our main technical tools are 5.4 and 5.5 below, which are lemmas about 2-connected graphs G containing a subdivision T of Γ_{k} as a spanning tree. In order to state them, we need to introduce some definitions and notation.

For the next two paragraphs, let G be a 2 -connected graph containing a subdivision T of Γ_{k} as a spanning tree. For each vertex $v \in V(G)$, let $\mathrm{h}(v)$ be the number of original non-leaf vertices on the path $v T w$, where w is any leaf of T_{v}. We stress the fact that subdivision vertices are not counted when computing $\mathrm{h}(v)$. Since the length of a path in Γ_{k} from a fixed vertex to any leaf is the same, $\mathrm{h}(v)$ is independent of the choice of w. We also use the shorthand notation $\operatorname{Out}(v):=V(G) \backslash V\left(T_{v}\right)$ when G and T are clear from
the context. For $X, Y \subseteq V(G)$, we say that X sees Y if $x y \in E(G)$ for some $x \in X$ and $y \in Y$. If P is a path with ends x and y, and Q is a path with ends y and z, then let $P Q$ be the walk that follows P from x to y and then follows Q from y to z.

A path P of G is (x, a, y)-special if $|V(P)| \geqslant 3$, and x, y are the ends of P, and a is a child of x such that $V(P) \backslash\{x, y\} \subseteq V\left(T_{a}\right)$ and $y \notin V\left(T_{a}\right)$. A vertex w is safe for an (x, a, y)-special path P if w satisfies the following properties:

- the parent v of w is in $V(P) \backslash\{x, y\}$;
- $\mathrm{h}(v) \geqslant \mathrm{h}(x)-2 \ell$;
- $V(P) \cap V\left(T_{w}\right)=\emptyset$;
- $V\left(T_{w}\right)$ does not see $\operatorname{Out}(a) \backslash\{x\}$, and
- if v is an original vertex and u is its child distinct from w, then either $V(P) \cap V\left(T_{u}\right) \neq \emptyset$ or $V\left(T_{u}\right)$ does not see $\operatorname{Out}(a) \backslash\{x\}$.
5.4. Let $1 \leqslant \ell \leqslant k$. Let G be a minor-minimal 2 -connected graph containing a subdivision of Γ_{k}. Let T be a subdivision of Γ_{k} in $G, v \in V(T)$ with $\mathrm{h}(v) \geqslant 3 \ell+1$, and w be a child of v. Then, either G contains a Γ_{ℓ}^{+}minor, or there is a $\left(v_{0}, w_{0}, v_{0}^{\prime}\right)$-special path P and two distinct safe vertices for P such that:
- $V(P) \subseteq V\left(T_{w}\right)$,
- $\mathrm{h}\left(v_{0}\right) \geqslant \mathrm{h}(v)-\ell$,
- $V\left(T_{v_{0}}\right)$ sees $\operatorname{Out}(w) \backslash\{v\}$,
- $V\left(T_{w_{0}}\right)$ does not see $\operatorname{Out}(w) \backslash\{v\}$, and
- $V\left(T_{u_{0}}\right)$ sees Out $\left(v_{0}\right)$ if v_{0} is an original vertex and u_{0} is its child distinct from w_{0}.

Proof. By 5.2, T is a spanning tree of G. Colour red each vertex of T_{w} that sees a vertex in $\operatorname{Out}(w) \backslash\{v\}$. Observe that there is at least one red vertex. Indeed, $V\left(T_{w}\right)$ must see $\operatorname{Out}(w) \backslash\{v\}$, for otherwise v would be a cut vertex separating $V\left(T_{w}\right)$ from $\operatorname{Out}(w) \backslash\{v\}$ in G.

Let \tilde{T}_{w} be the complete binary tree obtained from T_{w} by iteratively contracting each edge of the form $p q$ with p a subdivision vertex and q the child of p into vertex q. Declare q to be coloured red after the edge contraction if at least one of p, q was coloured red beforehand. Since $\mathrm{h}(w) \geqslant \mathrm{h}(v)-1 \geqslant 3 \ell$, the tree \tilde{T}_{w} has height at least 3ℓ.

If \tilde{T}_{w} contains a subdivision of Γ_{ℓ} with all leaves coloured red, then so does T_{w}. Therefore, G contains Γ_{ℓ}^{+}as a minor, because $\operatorname{Out}(w)$ induces a connected subgraph of G which is vertex-disjoint from $V\left(T_{w}\right)$ and which sees all the leaves of T_{w}. Thus, by 5.3 , we may assume there is a vertex \tilde{v}_{0} of \tilde{T}_{w} and a child \tilde{w}_{0} of \tilde{v}_{0} with $\mathrm{h}\left(\tilde{w}_{0}\right) \geqslant \mathrm{h}(w)-\ell$ such that $T_{\tilde{v}_{0}}$ has at least one red
vertex but $T_{\tilde{w}_{0}}$ has none. Going back to T_{w}, we deduce that there is a vertex v_{0} of T_{w} and a child w_{0} of v_{0} with $\mathrm{h}\left(w_{0}\right) \geqslant \mathrm{h}(w)-\ell$ such that $T_{v_{0}}$ has at least one red vertex but $T_{w_{0}}$ has none. To see this, choose v_{0} as the deepest red vertex in the preimage of \tilde{v}_{0}. Note that v_{0} or w_{0} could be subdivision vertices.

If v_{0} is an original vertex, let u_{0} denote the child of v_{0} distinct from w_{0}. Since v_{0} is not a cut vertex of G, one of the two subtrees $T_{u_{0}}$ and $T_{w_{0}}$ sees $\operatorname{Out}\left(v_{0}\right)$. If $T_{u_{0}}$ does not see $\operatorname{Out}\left(v_{0}\right)$, then $T_{u_{0}}$ has no red vertex and $T_{w_{0}}$ sees Out $\left(v_{0}\right)$. Therefore, by exchanging u_{0} and w_{0} if necessary, we guarantee that the following two properties hold when u_{0} exists.

$$
\begin{equation*}
T_{u_{0}} \text { sees } \operatorname{Out}\left(v_{0}\right) \quad \text { and } \quad T_{w_{0}} \text { has no red vertex. } \tag{1}
\end{equation*}
$$

We iterate this process in $T_{w_{0}}$. Colour blue each vertex of $T_{w_{0}}$ that sees a vertex in $\operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$. There is at least one blue vertex, since otherwise v_{0} would be a cut vertex of G separating $V\left(T_{w_{0}}\right)$ from $\operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$. Defining $\tilde{T}_{w_{0}}$ similarly as above, if $\tilde{T}_{w_{0}}$ contains a subdivision of Γ_{ℓ} with all leaves coloured blue, then G has a Γ_{ℓ}^{+}minor. Applying 5.3 and going back to $T_{w_{0}}$, we may assume there is a vertex v_{1} of $T_{w_{0}}$ and a child w_{1} of v_{1} with $\mathrm{h}\left(w_{1}\right) \geqslant \mathrm{h}\left(w_{0}\right)-\ell$ such that $T_{v_{1}}$ has at least one blue vertex but $T_{w_{1}}$ has none.

We now define the ($v_{0}, w_{0}, v_{0}^{\prime}$)-special path P, and identify two distinct safe vertices for P. To do so, we will need to consider different cases. In all cases, the end v_{0}^{\prime} will be a vertex of $\operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$ seen by a (carefully chosen) blue vertex in $T_{v_{1}}$, thus $v_{0}^{\prime} \notin V\left(T_{w_{0}}\right)$, and the path P will be such that $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$. Note that the end v_{0} of P satisfies $\mathbf{h}\left(v_{0}\right) \geqslant \mathrm{h}(v)-\ell$, as desired.

Before proceeding with the case analysis, we point out the following property of G. If $s t$ is an edge of G such that $G / s t$ contains a subdivision of Γ_{k}, then $G / s t$ is not 2 -connected by the minor-minimality of G, and it follows that $\{s, t\}$ is a cutset of G. Note that this applies if st is an edge of T such that at least one of s, t is a subdivision vertex, or if st is an edge of $E(G) \backslash E(T)$ linking two subdivision vertices of T that are on the same subdivided path of T. This will be used below.
Case 1. v_{1} is a subdivision vertex:
In this case, v_{1} is the unique blue vertex in $T_{v_{1}}$. Let v_{0}^{\prime} be a vertex of Out $\left(w_{0}\right) \backslash\left\{v_{0}\right\}$ seen by the blue vertex v_{1}. Since v_{1} is not a cut vertex of G, there is an edge $s t$ with $s \in V\left(T_{w_{1}}\right)$ and $t \in \operatorname{Out}\left(v_{1}\right)$. Note that $t \in$ $V\left(T_{w_{0}}\right) \cup\left\{v_{0}\right\}$, since $T_{w_{1}}$ has no blue vertex.
Case 1.1. There is at least one original vertex on the path $v_{1} T s$:
Let q be the first original vertex on the path $v_{1} T s$. Let s_{1} denote a child of q not on the $q T s$ path. Let q^{\prime} be the first original vertex distinct from q on
the $q T s$ path if any, and otherwise let $q^{\prime}:=s$ (note that possibly $q^{\prime}=q=s$). Let s_{2} be a child of q^{\prime} not on the $q T s$ path, and distinct from s_{1} if $q^{\prime}=q$. As illustrated in Figure 9, define

$$
P:=v_{0} T t s T v_{1} v_{0}^{\prime} .
$$

Observe that $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$, by construction. Observe also that the parent q^{\prime} of s_{2} satisfies $\mathrm{h}\left(q^{\prime}\right) \geqslant \mathrm{h}(q)-1=\mathrm{h}\left(v_{1}\right)-1 \geqslant \mathrm{~h}\left(v_{0}\right)-\ell-1 \geqslant \mathrm{~h}\left(v_{0}\right)-2 \ell$. It can be checked that s_{1}, s_{2} are two distinct safe vertices for P, as desired.

Figure 9. Path P and the safe vertices s_{1}, s_{2}. Cases 1.1 and 1.2.

Case 1.2. All vertices of the path $v_{1} T s$ are subdivision vertices:
In particular, w_{1} is a subdivision vertex. We show that the unique child q of w_{1} is an original vertex, and therefore $s=w_{1}$. Indeed, assume not, and let q^{\prime} denote the child of q. Since v_{1} is not a cut vertex of G but $\left\{v_{1}, w_{1}\right\}$ is a cutset of G, we deduce that w_{1} sees a vertex $w_{1}^{\prime} \operatorname{in} \operatorname{Out}\left(v_{1}\right)$ and that $V\left(T_{q}\right)$ does not see $\operatorname{Out}\left(v_{1}\right)$. Similarly, because w_{1} is not a cut vertex of G but $\left\{w_{1}, q\right\}$ is a cutset of G, we deduce that $q v_{1} \in E(G)$ and that $V\left(T_{q^{\prime}}\right)$ does not see $\operatorname{Out}\left(w_{1}\right)$. Since q is not a cut vertex, some vertex $q^{\prime \prime} \in V\left(T_{q^{\prime}}\right)$ sees $\operatorname{Out}(q)$, and hence sees w_{1} (since $V\left(T_{q^{\prime}}\right)$ does not see Out $\left.\left(v_{1}\right)\right)$. But then, because of the edges $q^{\prime \prime} w_{1}$ and $w_{1} w_{1}^{\prime}$, we see that $\left\{v_{1}, q\right\}$ cannot be a cutset of G. It follows that $G / v_{1} q$ is 2 -connected and contains a Γ_{k} minor, contradicting our assumption on G.

Hence, q is an original vertex, and $s=w_{1}$. Since w_{1} is not a cut vertex of G, there is an edge linking $V\left(T_{q}\right)$ to Out $\left(w_{1}\right)$. Since $\left\{v_{1}, w_{1}\right\}$ is a cutset of G, this edge links some vertex $s^{\prime} \in V\left(T_{q}\right)$ to v_{1}.

Let s_{1} denote a child of q not on the $q T s^{\prime}$ path. Let q^{\prime} be the first original vertex distinct from q on the $q T s^{\prime}$ path if any, and otherwise let $q^{\prime}:=s^{\prime}$ (note that possibly $q^{\prime}=s^{\prime}=q$). Let s_{2} be a child of q^{\prime} not on the $q T s^{\prime}$ path, and distinct from s_{1} if $q^{\prime}=q$. As illustrated in Figure 9, define

$$
P:=v_{0} T t w_{1} T s^{\prime} v_{1} v_{0}^{\prime}
$$

Again, note that $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$ by construction. Observe also that the parent q^{\prime} of s_{2} satisfies $\mathrm{h}\left(q^{\prime}\right) \geqslant \mathrm{h}(q)-1=\mathrm{h}\left(v_{1}\right)-1 \geqslant \mathrm{~h}\left(v_{0}\right)-\ell-1 \geqslant \mathrm{~h}\left(v_{0}\right)-2 \ell$. It is easy to see that s_{1}, s_{2} are two distinct safe vertices for P, as desired.

Case 2. v_{1} is an original vertex:
Let u_{1} denote the child of v_{1} distinct from w_{1}. If $T_{u_{1}}$ has no blue vertex, then v_{1} is the unique blue vertex in $T_{v_{1}}$. Let v_{0}^{\prime} be a vertex of $\operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$ seen by the blue vertex v_{1}. Define

$$
P:=v_{0} T v_{1} v_{0}^{\prime}
$$

Clearly, $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$, and u_{1}, w_{1} are two distinct safe vertices for P.

Next, assume that $T_{u_{1}}$ has a blue vertex. In this case, we need to define an extra pair v_{2}, w_{2} of vertices. Observe that $\mathrm{h}\left(u_{1}\right) \geqslant \mathrm{h}\left(w_{0}\right)-\ell \geqslant \mathrm{h}(w)-2 \ell=$ $\mathrm{h}(v)-2 \ell-1 \geqslant \ell$. Let $\tilde{T}_{u_{1}}$ be the tree obtained from $T_{u_{1}}$, as before. Again, if $\tilde{T}_{u_{1}}$ contains a subdivision of Γ_{ℓ} all of whose leaves are blue, then G contains an Γ_{ℓ}^{+}minor. Thus, by 5.3 , we may assume there is a vertex v_{2} of $T_{u_{1}}$ and a child w_{2} of v_{2} with $\mathrm{h}\left(w_{2}\right) \geqslant \mathrm{h}\left(u_{1}\right)-\ell=\mathrm{h}\left(w_{1}\right)-\ell$ such that $T_{v_{2}}$ has at least one blue vertex, but $T_{w_{2}}$ has none.
Case 2.1. v_{2} is a subdivision vertex:
Here, v_{2} is the unique blue vertex in $T_{v_{2}}$. Let v_{0}^{\prime} be a vertex of Out $\left(w_{0}\right) \backslash\left\{v_{0}\right\}$ seen by v_{2}. As illustrated in Figure 10, define

$$
P:=v_{0} T v_{2} v_{0}^{\prime}
$$

Observe that $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$ by construction, and that w_{1}, w_{2} are two distinct safe vertices for P.

Case 2.2. v_{2} is an original vertex:
Let u_{2} be the child of v_{2} distinct from w_{2}. Let b_{2} denote a blue vertex in $V\left(T_{u_{2}}\right) \cup\left\{v_{2}\right\}$, distinct from v_{2} if possible. Let v_{0}^{\prime} be a vertex of Out $\left(w_{0}\right) \backslash\left\{v_{0}\right\}$ seen by the blue vertex b_{2}. Define

$$
P:=v_{0} T b_{2} v_{0}^{\prime}
$$

Figure 10. Path P and the safe vertices w_{1}, w_{2}. Cases 2.1 and 2.2.

Again, $V(P) \backslash\left\{v_{0}, v_{0}^{\prime}\right\} \subseteq V\left(T_{w_{0}}\right)$ by construction.
If $b_{2} \neq v_{2}$, then P intersects $V\left(T_{u_{2}}\right)$. If $b_{2}=v_{2}$, then P avoids $V\left(T_{u_{2}}\right)$, and $V\left(T_{u_{2}}\right)$ has no blue vertex. That is, $V\left(T_{u_{2}}\right)$ does not see $\operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$. Using these observations, one can check that w_{1}, w_{2} are two distinct safe vertices for P in both cases; see Figure 10.
5.5. Let $1 \leqslant \ell \leqslant k$. Let G be a minor-minimal 2-connected graph containing a subdivision of Γ_{k} and let T be a subdivision of Γ_{k} in G. Let S be an (x, a, y)-special path with $\mathrm{h}(x) \geqslant 5 \ell+1$. Let w be a safe vertex for S and let $v \in V(S)$ denote the parent of w in T. Then, either G contains a Γ_{ℓ}^{+}minor, or there is a $\left(v_{0}, w_{0}, v_{0}^{\prime}\right)$-special path P, two distinct safe vertices w_{1}, w_{2} for P, and an S-ear Q such that:
(a) $V(P) \subseteq V\left(T_{w}\right)$,
(b) $\mathrm{h}\left(v_{0}\right) \geqslant \mathrm{h}(x)-3 \ell$,
(c) $V\left(T_{w_{0}}\right)$ does not see $\operatorname{Out}(w) \backslash\{v\}$,
(d) $P \subseteq Q$,
(e) $V(Q) \backslash V(P) \subseteq \operatorname{Out}\left(w_{0}\right) \backslash\left\{v_{0}\right\}$,
(f) $V(Q) \subseteq V\left(T_{a}\right) \cup\{x\}$,
(g) $V(Q) \cap V\left(T_{w_{i}}\right)=\emptyset$ for $i=1,2$, and
(h) if $e \in E(Q) \backslash E(T)$ and no end of e is in $V\left(T_{w}\right)$, then v is an original vertex with children u, w, the path S is disjoint from $V\left(T_{u}\right)$, and e links $V\left(T_{u}\right)$ to $\operatorname{Out}(v)$.

Proof. By 5.2, T is a spanning tree. Also, G does not contain Γ_{ℓ}^{+}as a minor (otherwise, we are done). Applying 5.4 on vertex v and its child w, we obtain a $\left(v_{0}, w_{0}, v_{0}^{\prime}\right)$-special path P and two distinct safe vertices w_{1}, w_{2} for P such that $V(P) \subseteq V\left(T_{w}\right) ; \mathrm{h}\left(v_{0}\right) \geqslant \mathrm{h}(v)-\ell \geqslant \mathrm{h}(x)-3 \ell ; V\left(T_{v_{0}}\right)$ sees Out $(w) \backslash\{v\}$; $V\left(T_{w_{0}}\right)$ does not see $\operatorname{Out}(w) \backslash\{v\}$; and if v_{0} is an original vertex and u_{0} is the child of v_{0} distinct from w_{0}, then $V\left(T_{u_{0}}\right)$ sees Out $\left(v_{0}\right)$. It remains to extend P into an S-ear Q satisfying properties (d)-(h). The proof is split into twelve cases, all of which are illustrated in Figure 11.

If v is an original vertex, let u denote the child of v distinct from w. In order to simplify the arguments below, we let $V\left(T_{u}\right)$ be the empty set if u is not defined (same for u_{0}).

First assume that $v_{0}^{\prime} \notin V\left(T_{u_{0}}\right)$. Then $v_{0}^{\prime} \in \operatorname{Out}\left(v_{0}\right) \cap V\left(T_{w}\right)$. Recall that $V\left(T_{v_{0}}\right) \backslash V\left(T_{w_{0}}\right)=V\left(T_{u_{0}}\right) \cup\left\{v_{0}\right\}$ sees Out $(w) \backslash\{v\}=V\left(T_{u}\right) \cup$ Out (v). Suppose that there is an edge $s t \in E(G)$ with $s \in V\left(T_{u_{0}}\right) \cup\left\{v_{0}\right\}$ and $t \in \operatorname{Out}(v)$. Note that $t \in V\left(T_{a}\right) \cup\{x\}$, since w is a safe vertex for S. Let v^{\prime} be the closest ancestor of t in T that lies on S. Note that $v^{\prime} \in V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{1}:=v T v_{0}^{\prime} P v_{0} T s t T v^{\prime} .
$$

Next, suppose that there is no such edge st. Then, there must be an edge st with $s \in V\left(T_{u_{0}}\right) \cup\left\{v_{0}\right\}$ and $t \in V\left(T_{u}\right)$. In particular, u exists. If the path S intersects $V\left(T_{u}\right)$, then let v^{\prime} be a vertex in $V(S) \cap V\left(T_{u}\right)$ that is closest to t in T. Define

$$
Q_{2}:=v T v_{0}^{\prime} P v_{0} T s t T v^{\prime}
$$

Otherwise, we have $V(S) \cap V\left(T_{u}\right)=\emptyset$. Since w is a safe vertex for $S, V\left(T_{u}\right)$ does not see Out $(a) \backslash\{x\}$ in this case. If $V\left(T_{u}\right)$ sees Out (v), then let $s^{\prime} t^{\prime}$ be an edge with $s^{\prime} \in V\left(T_{u}\right)$ and $t^{\prime} \in \operatorname{Out}(v)$, and let v^{\prime} be the closest ancestor of t^{\prime} in T that lies on S. Note that both t^{\prime} and v^{\prime} lie in $V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{3}:=v T v_{0}^{\prime} P v_{0} T s t T s^{\prime} t^{\prime} T v^{\prime}
$$

Otherwise, $V\left(T_{u}\right)$ does not see Out (v). Since v is not a cut vertex in G, we deduce that $V\left(T_{w}\right)$ sees Out (v). As we already know that neither $V\left(T_{w_{0}}\right)$ nor $V\left(T_{u_{0}}\right) \cup\left\{v_{0}\right\}$ sees Out (v), there is an edge $s^{\prime \prime} t^{\prime \prime} \in E(G)$ with $s^{\prime \prime} \in V\left(T_{w}\right) \backslash V\left(T_{v_{0}}\right)$ and $t^{\prime \prime} \in \operatorname{Out}(v)$. Again, since w is safe for S, we know that $t^{\prime \prime} \in V\left(T_{a}\right) \cup\{x\}$. Let v^{\prime} be the closest ancestor of $t^{\prime \prime}$ in T that lies on S. Note that $v^{\prime} \in V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{4}:=v T t s T v_{0} P v_{0}^{\prime} T s^{\prime \prime} t^{\prime \prime} T v^{\prime}
$$

Next, assume that $v_{0}^{\prime} \in V\left(T_{u_{0}}\right)$. In particular, u_{0} exists. Recall that $V\left(T_{u_{0}}\right)$ sees Out $\left(v_{0}\right)$. If $V\left(T_{u_{0}}\right)$ sees Out (v), then let st be an edge with $s \in V\left(T_{u_{0}}\right)$

Figure 11. Definition of S-ears Q_{1}, \ldots, Q_{12}
and $t \in \operatorname{Out}(v)$. Observe that $t \in V\left(T_{a}\right) \cup\{x\}$ since w is safe for S. Let v^{\prime} be the closest ancestor of t in T that lies on S. Note that $v^{\prime} \in V\left(T_{a}\right) \cup\{x\}$ as
well. Define

$$
Q_{5}:=v T v_{0} P v_{0}^{\prime} T s t T v^{\prime}
$$

Next, suppose that $V\left(T_{u_{0}}\right)$ does not see Out (v). If $V\left(T_{u_{0}}\right)$ sees $V\left(T_{u}\right)$, then let $s t$ be an edge with $s \in V\left(T_{u_{0}}\right)$ and $t \in V\left(T_{u}\right)$. In particular, u exists. If S intersects $V\left(T_{u}\right)$, then let v^{\prime} be a vertex in $V(S) \cap V\left(T_{u}\right)$ that is closest to t in T. Define

$$
Q_{6}:=v T v_{0} P v_{0}^{\prime} T s t T v^{\prime}
$$

Otherwise, we have $V(S) \cap V\left(T_{u}\right)=\emptyset$. Since w is a safe vertex for $S, V\left(T_{u}\right)$ does not see Out $(a) \backslash\{x\}$ in this case. If $V\left(T_{u}\right)$ sees Out (v), then let $s^{\prime} t^{\prime}$ be an edge with $s^{\prime} \in V\left(T_{u}\right)$ and $t^{\prime} \in \operatorname{Out}(v)$ and let v^{\prime} be the closest ancestor of t^{\prime} in T that lies on S. Note that both t^{\prime} and v^{\prime} lie in $V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{7}:=v T v_{0} P v_{0}^{\prime} T s t T s^{\prime} t^{\prime} T v^{\prime}
$$

Next, suppose that $V\left(T_{u}\right)$ does not see $\operatorname{Out}(v)$. Since v is not a cut vertex in G, we deduce that $V\left(T_{w}\right)$ sees Out (v). As we already know that neither $V\left(T_{w_{0}}\right)$ nor $V\left(T_{u_{0}}\right)$ sees $\operatorname{Out}(v)$, there is an edge $s^{\prime \prime} t^{\prime \prime} \in E(G)$ with $s^{\prime \prime} \in$ $\left(V\left(T_{w}\right) \backslash V\left(T_{v_{0}}\right)\right) \cup\left\{v_{0}\right\}$ and $t^{\prime \prime} \in \operatorname{Out}(v)$. Again, since w is safe for $S, t^{\prime \prime} \in$ $V\left(T_{a}\right) \cup\{x\}$. Let v^{\prime} be the closest ancestor of $t^{\prime \prime}$ in T that lies on S. Note that $v^{\prime} \in V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{8}:=v T t s T v_{0}^{\prime} P v_{0} T s^{\prime \prime} t^{\prime \prime} T v^{\prime}
$$

We are done with the cases where $V\left(T_{u_{0}}\right)$ sees $\operatorname{Out}(v)$ or $V\left(T_{u}\right)$. Next, assume that $V\left(T_{u_{0}}\right)$ sees neither of these two sets. Since $V\left(T_{u_{0}}\right)$ sees Out $\left(v_{0}\right)$, there is an edge st with $s \in V\left(T_{u_{0}}\right)$ and $t \in V\left(T_{w}\right) \backslash V\left(T_{v_{0}}\right)$. Recall that $V\left(T_{v_{0}}\right)$ sees $\operatorname{Out}(w) \backslash\{v\}$. Since neither $V\left(T_{u_{0}}\right)$ nor $V\left(T_{w_{0}}\right)$ sees Out $(w) \backslash\{v\}$, we conclude that v_{0} sees $\operatorname{Out}(w) \backslash\{v\}$. If v_{0} sees $\operatorname{Out}(v)$, then let $v_{0} t^{\prime}$ be an edge with $t^{\prime} \in \operatorname{Out}(v)$. Let v^{\prime} be the closest ancestor of t^{\prime} in T. As before, $\left\{t^{\prime}, v^{\prime}\right\} \subseteq V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{9}:=v T t s T v_{0}^{\prime} P v_{0} t^{\prime} T v^{\prime}
$$

Otherwise, v_{0} sees $V\left(T_{u}\right)$. Let $v_{0} t^{\prime}$ be an edge with $t^{\prime} \in V\left(T_{u}\right)$. If S intersects $V\left(T_{u}\right)$, then let v^{\prime} be a vertex in $V(S) \cap V\left(T_{u}\right)$ that is closest to t^{\prime} in T. Define

$$
Q_{10}:=v T t s T v_{0}^{\prime} P v_{0} t^{\prime} T v^{\prime}
$$

Otherwise, $V(S) \cap V\left(T_{u}\right)=\emptyset$. Since w is a safe vertex for S, we know that $V\left(T_{u}\right)$ does not see Out $(a) \backslash\{x\}$ in this case. If $V\left(T_{u}\right)$ sees Out (v), then let $s^{\prime \prime} t^{\prime \prime}$ be an edge with $s^{\prime \prime} \in V\left(T_{u}\right)$ and $t^{\prime \prime} \in \operatorname{Out}(v)$ and let v^{\prime} be the closest
ancestor of $t^{\prime \prime}$ in T that lies on S. Note that both $t^{\prime \prime}$ and v^{\prime} lie in $V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{11}:=v T t s T v_{0}^{\prime} P v_{0} t^{\prime} T s^{\prime \prime} t^{\prime \prime} T v^{\prime}
$$

Otherwise, $V\left(T_{u}\right)$ does not see $\operatorname{Out}(v)$. Since v is not a cut vertex in G, we deduce that $V\left(T_{w}\right)$ sees $\operatorname{Out}(v)$. As we already know that neither $V\left(T_{w_{0}}\right)$ nor $V\left(T_{u_{0}}\right) \cup\left\{v_{0}\right\}$ sees Out (v), there is an edge $s^{\prime \prime} t^{\prime \prime} \in E(G)$ with $s^{\prime \prime} \in V\left(T_{w}\right) \backslash V\left(T_{v_{0}}\right)$ and $t^{\prime \prime} \in \operatorname{Out}(v)$. Again, since w is safe for S, $t^{\prime \prime} \in V\left(T_{a}\right) \cup\{x\}$. Let v^{\prime} be the closest ancestor of $t^{\prime \prime}$ in T that lies on S. Note that $v^{\prime} \in V\left(T_{a}\right) \cup\{x\}$. Define

$$
Q_{12}:=v T t^{\prime} v_{0} P v_{0}^{\prime} T s t T s^{\prime \prime} t^{\prime \prime} T v^{\prime} .
$$

One can check that for all $i \in[12]$, if we set $Q=Q_{i}$, then Q is an S-ear satisfying properties (d)-(h).

We now prove 5.1 using 5.4 and 5.5.
Proof of 5.1. Let T be a subdivision of Γ_{k} in G, which is a spanning tree of G by 5.2. Also, G has no Γ_{ℓ}^{+}minor (otherwise, we are done). As before, for $v \in V(G)$, we let $\mathrm{h}(v)$ be the number of original non-leaf vertices on the path $v T w$, where w is any leaf of T_{v}. The depth of $x \in V\left(T^{1}\right)$, denoted $\mathrm{d}(x)$, is the number of edges in $x T^{1} r$, where r is the root of T^{1}.

We prove the stronger statement that G contains a clean binary pear tree ($\left.T^{1},\left\{\left(P_{x}, Q_{x}\right): x \in V\left(T^{1}\right)\right\}\right)$ such that:
(1) for all $x \in V\left(T^{1}\right)$, the path P_{x} is a $\left(v_{x}, w_{x}, v_{x}^{\prime}\right)$-special path for some vertices $v_{x}, w_{x}, v_{x}^{\prime}$ of G such that $\mathrm{h}\left(v_{x}\right) \geqslant k-3 \ell \mathrm{~d}(x)-\ell$, and P_{x} has two distinguished safe vertices; moreover, if x is not a leaf we associate these safe vertices with the two children y, z of x and denote them $s_{x y}$ and $s_{x z}$;
(2) for all $x, y \in V\left(T^{1}\right), v_{x}$ is an ancestor of v_{y} in T if and only if x is an ancestor of y in T^{1};
(3) for all $x, y \in V\left(T^{1}\right)$ such that y is a child of x, the paths P_{y} and Q_{y} are obtained by applying 5.5 on P_{x} with safe vertex $s_{x y}$;
(4) for all $y, z \in V\left(T^{1}\right)$ such that y and z are siblings, no vertex of Q_{z} meets $T_{w_{y}}$, and no vertex of Q_{y} meets $T_{w_{z}}$;
(5) for all leaves x of $T^{1}, V\left(T_{w_{x}}\right)$ and $\bigcup_{p \in V\left(T^{1}\right) \backslash\{x\}} V\left(Q_{p}\right)$ are disjoint.

The proof is by induction on $\left|V\left(T^{1}\right)\right|$. For the base case $\left|V\left(T^{1}\right)\right|=1$, the tree T^{1} is a single vertex x. Applying 5.4 with v the root of T and w a child of v in T, we obtain a $\left(v_{x}, w_{x}, v_{x}^{\prime}\right)$-special path P_{x} and two distinct safe vertices for P_{x}. Let $Q_{x}:=P_{x}$. Then $\left(T^{1},\left\{\left(P_{x}, Q_{x}\right)\right\}\right)$ is a binary pear
tree in G. Observe that $\mathrm{d}(x)=0$ and $\mathrm{h}\left(v_{x}\right) \geqslant \mathrm{h}(v)-\ell=k-\ell$, thus (1) holds. Properties (2)-(5) hold vacuously since x is the only vertex of T^{1}.

Next, for the inductive case, assume $\left|V\left(T^{1}\right)\right|>1$. Let x be a vertex of T^{1} with two children y, z that are leaves of T^{1}. Applying induction on the binary tree $T^{1}-\{y, z\}$, we obtain a binary pear tree $\left(T^{1}-\{y, z\},\left\{\left(P_{p}, Q_{p}\right): p \in\right.\right.$ $\left.\left.V\left(T^{1}-\{y, z\}\right)\right\}\right)$ in G satisfying the claim.

Note that $\mathrm{d}(x) \leqslant 3 \ell-3$, and thus $\mathrm{h}\left(v_{x}\right) \geqslant k-3 \ell \mathrm{~d}(x)-\ell \geqslant$ $\left(9 \ell^{2}-3 \ell+1\right)-3 \ell(3 \ell-3)-\ell \geqslant 5 \ell+1$. By (1), the path P_{x} comes with two distinguished safe vertices. Considering now the two children y, z of x in the tree T, we associate these safe vertices to y and z, as expected, and denote them $s_{x y}$ and $s_{x z}$. Let $v_{x y}$ and $v_{x z}$ denote their respective parents in T. First, apply 5.5 with the path P_{x} and safe vertex $s_{x y}$, giving a $\left(v_{y}, w_{y}, v_{y}^{\prime}\right)$-special path P_{y} with two distinct safe vertices, and a P_{x}-ear Q_{y} satisfying the properties of 5.5 . Next, apply 5.5 with the path P_{x} and safe vertex $s_{x z}$, giving a $\left(v_{z}, w_{z}, v_{z}^{\prime}\right)$-special path P_{z} with two distinct safe vertices, and a P_{x}-ear Q_{z} satisfying the properties of 5.5 .

Observe that, by property (b) of $5.5, \mathrm{~h}\left(v_{y}\right) \geqslant \mathrm{h}\left(v_{x}\right)-3 \ell \geqslant k-3 \ell \mathrm{~d}(x)-4 \ell=$ $k-3 \ell \mathrm{~d}(y)-\ell$, and similarly $\mathrm{h}\left(v_{z}\right) \geqslant k-3 \ell \mathrm{~d}(z)-\ell$. Thus, property (1) is satisfied. Clearly, property (2) and property (3) are satisfied as well. To establish property (4), it only remains to show that no vertex of Q_{z} meets $T_{w_{y}}$, and that no vertex of Q_{y} meets $T_{w_{z}}$. By symmetry it is enough to show the former, which we do now.

Arguing by contradiction, assume that Q_{z} meets $T_{w_{y}}$. Since $V\left(T_{w_{y}}\right) \subseteq$ $V\left(T_{s_{x y}}\right)$ and $V\left(Q_{x}\right) \cap V\left(T_{s_{x y}}\right)=\emptyset$ (by property (g) of 5.5), and since the two ends of Q_{z} are on Q_{x}, we see that the two ends of Q_{z} are outside $V\left(T_{w_{y}}\right)$. Thus, at least two edges of Q_{z} have exactly one end in $V\left(T_{w_{y}}\right)$, and there is an edge st which is not an edge of T (i.e. st $\neq v_{y} w_{y}$). By symmetry, $s \in V\left(T_{w_{y}}\right)$ and $t \notin V\left(T_{w_{y}}\right)$.

Clearly, $s \notin V\left(T_{s_{x z}}\right)$ since $V\left(T_{w_{y}}\right) \subseteq V\left(T_{s_{x y}}\right)$, and $V\left(T_{s_{x y}}\right) \cap V\left(T_{s_{x z}}\right)=\emptyset$. Moreover, $t \notin V\left(T_{s_{x z}}\right)$, since $V\left(T_{s_{x z}}\right) \subseteq$ Out $\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$ and since $V\left(T_{w_{y}}\right)$ does not see Out $\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$ by property (c) of 5.5. Since st is an edge of Q_{z} not in T with neither of its ends in $V\left(T_{s_{x z}}\right)$, it follows from property (h) of 5.5 that $v_{x z}$ is an original vertex with children $u_{x z}$ and $s_{x z}$; the path P_{x} avoids $V\left(T_{u_{x z}}\right)$; and the edge st has one end in $V\left(T_{u_{x z}}\right)$ and the other in Out $\left(v_{x z}\right)$. (We remark that we do not know which end is in which set at this point.)

First, suppose $s_{x y}=u_{x z}$. Then $v_{x y}=v_{x z}$. Since $s \in V\left(T_{w_{y}}\right) \subseteq V\left(T_{s_{x y}}\right)$ and $s_{x y}=u_{x z}$, we deduce that $s \in V\left(T_{u_{x z}}\right)$ and $t \in \operatorname{Out}\left(v_{x z}\right)$ in this case. However, $V\left(T_{w_{y}}\right)$ does not see Out $\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$ (by property (c) of 5.5), and $t \in \operatorname{Out}\left(v_{x z}\right) \subseteq \operatorname{Out}\left(u_{x z}\right) \backslash\left\{v_{x z}\right\}=\operatorname{Out}\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$, a contradiction.

Next, assume that $s_{x y} \neq u_{x z}$. Then $s_{x y} \notin V\left(T_{u_{x z}}\right)$, because the parent $v_{x y}$ of $s_{x y}$ is on the path P_{x}, and P_{x} avoids $V\left(T_{u_{x z}}\right)$. Since $s_{x y} \notin V\left(T_{s_{x z}}\right)$ and $s_{x y} \neq v_{x z}$, it follows that $s_{x y} \in \operatorname{Out}\left(v_{x z}\right)$. Since $s \in V\left(T_{w_{y}}\right) \subseteq V\left(T_{s_{x y}}\right)$ and since $s_{x y}$ is not an ancestor of $v_{x z}$ (otherwise $V\left(T_{s_{x y}}\right)$ would contain $v_{x z}$, which is on the path P_{x}), we deduce that $V\left(T_{s_{x y}}\right) \subseteq \operatorname{Out}\left(v_{x z}\right)$, and thus $s \in \operatorname{Out}\left(v_{x z}\right)$. It then follows that $t \in V\left(T_{u_{x z}}\right)$. Observe that $u_{x z}$ is neither an ancestor of $v_{x y}$ (otherwise $V\left(T_{u_{x z}}\right)$ would contain $v_{x y}$, which is on the path P_{x}) nor a descendant of $s_{x y}$ (otherwise $V\left(T_{s_{x y}}\right)$ would contain $v_{x z}$ since $u_{x z} \neq s_{x y}$, which is a vertex of $\left.P_{x}\right)$. Hence, we deduce that $V\left(T_{u_{x z}}\right) \subseteq \operatorname{Out}\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$. However, the edge st then contradicts the fact that $V\left(T_{w_{y}}\right)$ does not see Out $\left(s_{x y}\right) \backslash\left\{v_{x y}\right\}$ (c.f. property (c) of 5.5). Therefore, $V\left(Q_{z}\right) \cap V\left(T_{w_{y}}\right)=\emptyset$, as claimed. Property (4) follows.

We now verify property (5). First, we show (5) holds for the leaf y of T^{1}. Note that $V\left(T_{w_{y}}\right) \subseteq V\left(T_{s_{x y}}\right) \subseteq V\left(T_{w_{x}}\right)$. Thus, $V\left(T_{w_{y}}\right)$ and $\bigcup_{p \in V\left(T^{1}\right) \backslash\{x, y, z\}} V\left(Q_{p}\right)$ are disjoint by induction and property (5) for the leaf x of $T^{1}-\{y, z\}$. Since $V\left(T_{w_{y}}\right) \subseteq V\left(T_{s_{x y}}\right)$ and $V\left(T_{s_{x y}}\right) \cap V\left(Q_{x}\right)=\emptyset$ (by property (g) of 5.5), we deduce that $V\left(T_{w_{y}}\right) \cap V\left(Q_{x}\right)=\emptyset$. Moreover, $V\left(T_{w_{y}}\right) \cap V\left(Q_{z}\right)=\emptyset$, by property (4) shown above. This proves property (5) for the leaf y of T^{1}, and also for the leaf z by symmetry.

Every other leaf q of T^{1} is also a leaf in $T^{1}-\{y, z\}$. By induction, $V\left(T_{w_{q}}\right)$ and $\bigcup_{p \in V\left(T^{1}\right) \backslash\{q, y, z\}} V\left(Q_{p}\right)$ are disjoint. Moreover, $V\left(T_{v_{q}}\right)$ and $V\left(T_{v_{x}}\right)$ are disjoint, by property (2). Since $V\left(Q_{y}\right)$ and $V\left(Q_{z}\right)$ are contained in $V\left(T_{v_{x}}\right)$ (by property (f) of 5.5) and $V\left(T_{w_{q}}\right) \subseteq V\left(T_{v_{q}}\right)$, it follows that $V\left(T_{w_{q}}\right)$ and $V\left(Q_{y}\right) \cup V\left(Q_{z}\right)$ are also disjoint. Property (5) follows.

To conclude the proof, it only remains to verify that $\left(T^{1},\left\{\left(P_{p}, Q_{p}\right): p \in\right.\right.$ $\left.V\left(T^{1}\right)\right\}$) is a binary pear tree in G, and that it is clean. Recall that $\left(T^{1}-\{y, z\},\left\{\left(P_{p}, Q_{p}\right): p \in V\left(T^{1}-\{y, z\}\right)\right\}\right)$ is a binary pear tree, by induction. By construction, $P_{y} \subseteq Q_{y}$ and $P_{z} \subseteq Q_{z}, P_{y}$ and P_{z} each have length at least 2, and both are P_{x}-ears. Clearly, property (i) of the definition of binary pear trees holds. Property (ii) holds vacuously, since T^{1} is a full binary tree, and thus every non-root vertex of T^{1} has a sibling. Hence, it only remains to show that property (iii) holds.

Let p be a non-root vertex of T^{1}, and let p^{\prime} denote its sibling. First we want to show that no internal vertex of Q_{p} is in $\bigcup_{q \in V\left(T^{1}\right) \backslash\left(V\left(T_{p}^{1}\right) \cup V\left(T_{p^{\prime}}^{1}\right)\right)} V\left(Q_{q}\right)$.

If p is an ancestor of x in T^{1} (including x), then this holds thanks to property (iii) of the binary pear tree $\left(T^{1}-\{y, z\},\left\{\left(P_{q}, Q_{q}\right): q \in V\left(T^{1}-\{y, z\}\right)\right\}\right)$.

Next, suppose p is not an ancestor of x in T^{1} and p is not y nor z. Then we already know that no internal vertex of Q_{p} is in
$\bigcup_{q \in V\left(T^{1}-\{y, z\}\right) \backslash\left(V\left(T_{p}^{1}\right) \cup V\left(T_{p^{\prime}}^{1}\right)\right)} V\left(Q_{q}\right)$, again by property (iii) of the binary pear tree $\left(T^{1}-\{y, z\},\left\{\left(P_{q}, Q_{q}\right): q \in V\left(T^{1}-\{y, z\}\right)\right\}\right)$. Thus it only remains to show that if some internal vertex of Q_{p} is in Q_{y}, then y is a descendant of p or of p^{\prime}, and that the same holds for Q_{z}. By symmetry, it is enough to prove this for Q_{y}. So let us assume that some internal vertex of Q_{p} is in Q_{y}. Note that $V\left(Q_{y}\right) \subseteq V\left(T_{w_{x}}\right) \cup\left\{v_{x}\right\}$, by property (f) of 5.5 . By property (5) of the inductive statement, $V\left(T_{w_{x}}\right)$ is disjoint from $V\left(Q_{p}\right)$. Thus, the only vertex that the paths Q_{p} and Q_{y} can have in common is v_{x}. Since v_{x} is an internal vertex of Q_{p} (by our assumption) and since $v_{x} \in V\left(Q_{x}\right)$, from property (iii) of the binary pear tree $\left(T^{1}-\{y, z\},\left\{\left(P_{q}, Q_{q}\right): q \in V\left(T^{1}-\{y, z\}\right)\right\}\right)$ we deduce that x is a descendant of p or p^{\prime}, and hence so is y, as desired.

Finally, consider the case where p is y or z, say y. Recall that $V\left(Q_{y}\right) \subseteq$ $V\left(T_{w_{x}}\right) \cup\left\{v_{x}\right\}$. Note also that v_{x} cannot be an internal vertex of Q_{y}, since $v_{x} \in V\left(P_{x}\right)$ and Q_{y} is a P_{x}-ear. Hence, all internal vertices of Q_{y} are in $V\left(T_{w_{x}}\right)$. Since $V\left(T_{w_{x}}\right)$ and $V\left(Q_{q}\right)$ are disjoint for all $q \in V\left(T^{1}\right) \backslash\{x, y, z\}$ (by induction, using property (5) on the leaf x of $T^{1}-\{y, z\}$). Thus, it only remains to show that no internal vertex of Q_{y} is in Q_{x}. This is the case, because Q_{y} is a P_{x}-ear, and $V\left(Q_{x}\right) \backslash V\left(P_{x}\right) \subseteq \operatorname{Out}\left(w_{x}\right) \backslash\left\{v_{x}\right\}$ (by property (e) of 5.5).

To establish property (iii), it remains to show that no internal vertex of P_{p} is in $Q_{p^{\prime}}$, for every two siblings p, p^{\prime} of T^{1}. If $\left\{p, p^{\prime}\right\} \neq\{y, z\}$, this is true by property (iii) of the binary pear tree ($T^{1}-\{y, z\},\left\{\left(P_{q}, Q_{q}\right): q \in\right.$ $\left.\left.V\left(T^{1}-\{y, z\}\right)\right\}\right)$. Thus by symmetry, it is enough to show that no internal vertex of P_{y} is in Q_{z}. This holds because all internal vertices of P_{y} are in $V\left(T_{w_{y}}\right)$ (since P_{y} is a $\left(v_{y}, w_{y}, v_{y}^{\prime}\right)$-special path) and $V\left(Q_{z}\right) \cap V\left(T_{w_{y}}\right)=\emptyset$ by (4).

This concludes the proof that $\left(T^{1},\left\{\left(P_{p}, Q_{p}\right): p \in V\left(T^{1}\right)\right\}\right)$ is a binary pear tree. Finally, note that it is clean because the binary pear tree $\left(T^{1}-\{y, z\},\left\{\left(P_{q}, Q_{q}\right): q \in V\left(T^{1}-\{y, z\}\right)\right\}\right)$ is clean (by induction), and the end v_{x}^{\prime} of P_{x} is not in Q_{y}, since $V\left(Q_{y}\right) \subseteq V\left(T_{w_{x}}\right) \cup\left\{v_{x}\right\}$ (by property (f) of 5.5), and since $v_{x}^{\prime} \notin V\left(T_{w_{x}}\right) \cup\left\{v_{x}\right\}$, and similarly v_{x}^{\prime} is not in Q_{z} either.

6. Proof of main theorems

We have the following quantitative version of 1.4.
6.1. For all integers $\ell \geqslant 1$ and $k \geqslant 9 \ell^{2}-3 \ell+1$, every 2 -connected graph G with a Γ_{k} minor contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor.

Proof. Among all 2-connected graphs containing Γ_{k} as a minor, but containing neither Γ_{ℓ}^{+}nor ∇_{ℓ} as a minor, choose G with $|E(G)|$ minimum. Since
Γ_{k} has maximum degree $3, G$ contains a subdivision of Γ_{k}. Therefore, G is a minor-minimal 2-connected graph containing a subdivision of Γ_{k}. By 5.1, G has a clean binary pear tree $\left(T^{1}, \mathcal{B}\right)$, with $T^{1} \simeq \Gamma_{3 \ell-2}$. By 4.1, G has a minor H such that H has a clean binary ear tree $\left(T^{1}, \mathcal{P}\right)$, with $T^{1} \simeq \Gamma_{3 \ell-2}$. By 3.1, H contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor, and hence so does G.

We have the following quantitative version of 1.3.
6.2. For every integer $\ell \geqslant 1$, every 2 -connected graph G of pathwidth at least $2^{9 \ell^{2}-3 \ell+2}-2$ contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor.

Proof. As mentioned in Section 1, Bienstock et al. [1] proved that for every forest F, every graph with pathwidth at least $|V(F)|-1$ contains F as a minor. Let $k:=9 \ell^{2}-3 \ell+1$. Note that $\left|V\left(\Gamma_{k}\right)\right|=2^{k+1}-1$. By assumption, G has pathwidth at least $2^{k+1}-2$. Thus G contains Γ_{k} as a minor. The result follows from 6.1.

Finally, we have the following quantitative version of 1.2.
6.3. For every apex-forest H_{1} and outerplanar graph H_{2}, if $\ell:=$ $\max \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|, 2\right\}-1$, then every 2-connected graph G of pathwidth at least $2^{9 \ell^{2}-3 \ell+2}-2$ contains H_{1} or H_{2} as a minor.

Proof. By $6.2, G$ contains Γ_{ℓ}^{+}or ∇_{ℓ} as a minor. In the first case, by $2.2, H_{1}$ is a minor of $\Gamma_{\left|V\left(H_{1}\right)\right|-1}^{+}$and thus of G (since $\left.\ell \geqslant\left|V\left(H_{1}\right)\right|-1\right)$. In the second case, by $2.4, H_{2}$ is a minor of $\nabla_{\left|V\left(H_{2}\right)\right|-1}$ and thus of $G\left(\right.$ since $\left.\ell \geqslant\left|V\left(H_{2}\right)\right|-1\right)$.

Acknowledgements. We would like to thank Robin Thomas for informing us of the PhD thesis of Thanh N. Dang [2]. We are also grateful to an anonymous referee for several helpful remarks and suggestions.

References

[1] D. Bienstock, N. Robertson, P. Seymour and R. Thomas: Quickly excluding a forest, J. Combin. Theory Ser. B 52 (1991), 274-283.
[2] T. N. Dang: Minors of graphs of large path-width, Ph. D. thesis, Georgia Institute of Technology, 2018. http://www.aco.gatech.edu/sites/default/files/documents/ dang-thesis.pdf.
[3] T. N. Dang and R. Thomas: Minors of two-connected graphs of large path-width, arXiv: 1712.04549, 2017.
[4] N. Dean: Open problems, in: Neil Robertson and Paul Seymour, eds., Graph structure theory. Proc. of AMS-IMS-SIAM Joint Summer Research Conf. on Graph Minors, vol. 147 of Contemporary Mathematics, 677-688. American Mathematical Society, 1993.
[5] R. Diestel: Graph minors I: A short proof of the path-width theorem, Combinatorics, Probability and Computing 4 (1995), 27-30.
[6] N. Kashyap: Matroid pathwidth and code trellis complexity, SIAM J. Discrete Math. 22 (2008), 256-272.
[7] N. Robertson and P. Seymour: Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983), 39-61.
[8] N. Robertson and P. Seymour: Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.

Tony Huynh

School of Mathematics
Monash University
Melbourne, Australia
tony.bourbaki@gmail.com

Piotr Micek

Theoretical Computer Science Department
Faculty of Mathematics and Computer Science
Jagiellonian University
Kraków, Poland
piotr.micek@tcs.uj.edu.pl

Gwenaël Joret

Département d'Informatique
Université Libre de Bruxelles
Brussels, Belgium
gjoret@ulb.ac.be
David R. Wood
School of Mathematics
Monash University
Melbourne, Australia
david.wood@monash.edu

[^0]: Mathematics Subject Classification (2010): 05C83
 G. Joret acknowledges support from the Australian Research Council and from an Action de Recherche Concertée grant from the Wallonia-Brussels Federation in Belgium. P. Micek is partially supported by a Polish National Science Center grant (SONATA BIS 5; UMO-2015/18/E/ST6/00299). T. Huynh is supported by ERC Consolidator Grant 615640-ForEFront. T. Huynh, G. Joret, and P. Micek also acknowledge support from a joint grant funded by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) and the Polish Academy of Sciences (PAN). Research of D. R. Wood is supported by the Australian Research Council.

