A linear-time algorithm for finding a complete graph minor in a dense graph

Vida Dujmović ${ }^{\S}$ Daniel J. Harvey \ddagger Gwenaël Joret ${ }^{\dagger}$
Bruce Reed ${ }^{\text {(David R. Wood }}{ }^{\ddagger}$

February 14, 2012

Abstract

Let $g(t)$ be the minimum number such that every graph G with average degree $d(G) \geq$ $g(t)$ contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that $g(t) \in \Theta(t \sqrt{\log t})$. This article shows that for all fixed $\epsilon>0$ and fixed sufficiently large $t \geq t(\epsilon)$, if $d(G) \geq(2+\epsilon) g(t)$ then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when $d(G) \geq 2^{t-2}$.

1 Introduction

A major result in the theory of graph minors is that every graph G with sufficiently large average degree $d(G)$ contains a complete graph K_{t} as a minor. That is, a K_{t} can be constructed from G using vertex deletion, edge deletion and edge contraction. Let

$$
g(t):=\min \left\{D: \text { every graph G with } d(G) \geq D \text { contains a } K_{t} \text {-minor }\right\} .
$$

[^0]Mader [3] showed that $g(t)$ is well-defined, and that $g(t) \leq 2^{t-2}$. Subsequently, Mader [4] improved this bound to $g(t) \leq 16 t \log _{2} t$, and later this was improved to $g(t) \in \Theta(t \sqrt{\log t})$ by Thomason [8] and Kostochka [1, 2], which is best possible. Thomason [9] later determined the asymptotic constant for this bound.

This paper considers linear-time algorithms for finding a K_{t}-minor in a graph with high average degree. This question was first considered by Reed and Wood [5] who gave a $O(n)$ time algorithm to find a K_{t}-minor in an n-vertex graph G with $d(G) \geq 2^{t-2}$. We improve on this result by lowering the required bound on the average degree to within a constant factor of optimal:

Theorem 1. For all fixed $\epsilon>0$ and fixed sufficiently large $t \geq t(\epsilon)$, there is a $O(n)$-time algorithm that, given an n-vertex graph G with average degree $d(G) \geq(2+\epsilon) g(t)$, finds a K_{t}-minor in G.

Reed and Wood used their algorithm mentioned above as a subroutine for finding separators in a graph excluding a fixed minor (also see [11] for a related separator result). This result has subsequently been used by Tazari and Müller-Hannemann [7] to find shortest paths in linear time on proper minor-closed graph classes, by Yuster and Zwick [12] to find maximum matchings in a graph with an excluded minor, and by Wulff-Nilsen [10] in a faster shortest path algorithm for H-minor free graphs with negative edge weights. The algorithm given here speeds up all these results (in terms of the dependence on t).

Finally, note that Robertson and Seymour [6] describe a $O\left(n^{3}\right)$-time algorithm that tests whether a given n-vertex graph contains a fixed graph H as a minor, and that Reed and Kawarabayashi have announced a $O(n \log n)$-time algorithm for this problem.

2 Algorithm

Given a vertex v of a graph G, we denote by $\operatorname{deg}_{G}(v)$ and $N_{G}(v)$ the degree and neighbourhood of v in G, respectively. We drop the subscript when G is clear from context. Define a matching $M \subseteq E(G)$ to be a set of edges such that no two edges in M share an endpoint. Let $V(M)$ be the set of endpoints of the edges in M. An induced matching in G is a matching such that any two vertices x, y of $V(M)$ are only adjacent in G when $x y \in M$. Given a matching M in G, let G / M be the graph formed by contracting each edge of M in G.

We fix $\epsilon>0$ and $t \geq 3$ such that $g(t) \geq \max \left\{t, \frac{2 t}{\epsilon}\right\}$. We may assume $t \geq 3$ since finding a K_{1} - or K_{2}-minor is trivial, and that $g(t) \geq \max \left\{t, \frac{2 t}{\epsilon}\right\}$ for sufficiently large t, since $g(t) \in \Theta(t \sqrt{\log t})$. Consider the following algorithm that takes as input a graph given as a list of vertices and a list of edges. The implicit output of the algorithm is the sequence of contractions and deletions that produce a K_{t}-minor.

```
Algorithm 1 FindMinor (input: \(n\)-vertex graph \(G\) with \(d(G) \geq(2+\epsilon) g(t))\)
    1: Delete edges of \(G\) so that \((2+\epsilon) g(t) \leq d(G) \leq(2+\epsilon) g(t)+1\).
    2: Delete vertices of low degree so that the minimum degree \(\delta(G)>\frac{1}{2} d(G)\).
    3: Let \(S:=\left\{v \in V(G): \operatorname{deg}(v) \leq d(G)^{2}\right\}\), and let \(B:=\left\{v \in V(G): \operatorname{deg}(v)>d(G)^{2}\right\}\).
    4: Say an edge \(v w \in E(G)\) is good if \(v, w \in S\) and \(|N(v) \cap N(w)| \leq \frac{d(G)-2}{2}\). Greedily
    construct a maximal matching \(M\) of good edges.
    5: If \(|M|>\frac{1}{8 d(G)} n\), then greedily construct a maximal induced submatching \(M^{\prime}\) of \(M\). Let
    \(G^{\prime}:=G / M^{\prime}\). Run FindMinor \(\left(G^{\prime}\right)\) and stop.
6: Now assume \(|M| \leq \frac{1}{8 d(G)} n\). Let \(B^{\prime}:=B \cup V(M)\) and \(S^{\prime}:=S-V(M)\).
7: Greedily compute a maximal subset \(A\) of \(S^{\prime}\) such that each vertex \(u \in A\) is assigned to a pair of vertices in \(N(u) \cap B^{\prime}\), and each pair of vertices in \(B^{\prime}\) has at most one vertex in \(A\) assigned to it.
8: If \(2|A| \geq d(G)\left|B^{\prime}\right|\) and \(B^{\prime} \neq \emptyset\), then let \(G^{\prime}\) be the graph obtained from \(G\) as follows: For each pair of distinct vertices \(x, y \in B^{\prime}\) with an assigned vertex \(z \in A\), contract the edge \(x z\). Run FindMinor \(\left(G^{\prime}\left[B^{\prime}\right]\right)\) and stop.
9: Now assume \(2|A|<d(G)\left|B^{\prime}\right|\) or \(B^{\prime}=\emptyset\). Choose \(v \in S^{\prime}-A\).
10: If \(\left|N(v) \cap B^{\prime}\right| \geq t\), then let \(G^{\prime}\) be the graph obtained from \(G\) as follows: For each pair of distinct vertices \(x, y \in N(v) \cap B^{\prime}\), if \(z\) is the vertex in \(A\) assigned to \(x\) and \(y\), then contract \(x z\) into \(x\) (so that the new vertex is in \(B^{\prime}\) ). Then \(G^{\prime}\left[N(v) \cap B^{\prime}\right] \supseteq K_{t}\). Stop.
11: Otherwise let \(G^{\prime}:=G\left[\{v\} \cup\left(N_{G}(v) \cap S^{\prime}\right)\right]\) and run an exhaustive search to find a \(K_{t}\)-minor in \(G^{\prime}\).
```


3 Correctness of Algorithm

First, we prove that $\operatorname{FindMinor}(G)$ does output a K_{t}-minor. Define $m:=|E(G)|$. We must ensure the following: that FindMinor finds a K_{t}-minor in Steps 5 and 8; that $S^{\prime}-A \neq \emptyset$ in Step 9; that the graph constructed in Step 10 contains a K_{t} subgraph; and that our exhaustive search in Step 11 finds a K_{t}-minor of G.

Consider Step 5. Assume that FindMinor finds a K_{t}-minor in any graph G^{\prime} with $\left|V\left(G^{\prime}\right)\right|<n$ where $d\left(G^{\prime}\right) \geq(2+\epsilon) g(t)$. Consider the induced matching M^{\prime}. Contracting any single edge $v w$ of M^{\prime} does not lower the average degree, as we only lose $|N(v) \cap N(w)|+1 \leq \frac{d(G)}{2}$ edges and one vertex. Since the matching is induced, contracting every edge in M^{\prime} does not lower the average degree. Since $|M|>\frac{1}{8 d(G)} n, M^{\prime}$ is not empty. Thus $d\left(G^{\prime}\right) \geq d(G) \geq(2+\epsilon) g(t)$ and $\left|V\left(G^{\prime}\right)\right|<|V(G)|=n$. Thus, by induction, running the algorithm on G^{\prime} finds a K_{t}-minor, and as such we find one for G.

If we recurse at Step 8, then $2|A| \geq d(G)\left|B^{\prime}\right|$ and $B^{\prime} \neq \emptyset$. Now $\left|V\left(G^{\prime}\left[B^{\prime}\right]\right)\right|=\left|B^{\prime}\right|$ and $\left|E\left(G^{\prime}\left[B^{\prime}\right]\right)\right| \geq|A|$, since every assigned vertex corresponds to an edge. Thus $d\left(G^{\prime}\left[B^{\prime}\right]\right)=$ $\frac{2\left|E\left(G^{\prime}\left[B^{\prime}\right]\right)\right|}{\left|V\left(G^{\prime}\left[B^{\prime}\right]\right)\right|} \geq \frac{2|A|}{\left|B^{\prime}\right|} \geq d(G)$. Also, $\left|V\left(G^{\prime}\left[B^{\prime}\right]\right)\right|=\left|B^{\prime}\right|<n$, since otherwise $A=S^{\prime}=\emptyset$, contradicting $2|A| \geq d(G)\left|B^{\prime}\right|>0$. Hence, by assumption, the algorithm will find a K_{t}-minor
in $G^{\prime}\left[B^{\prime}\right]$. Thus the algorithm finds a K_{t}-minor for G.
Now we show that $\left|S^{\prime}\right|>|A|$ in Step 9. First consider the case when $2|A|<d(G)\left|B^{\prime}\right|$. Note that $2 m=d(G) n$, and that $d(G)^{2}|B|<\sum_{v \in B} \operatorname{deg}(v) \leq 2 m$, and so $|B|<\frac{2 m}{d(G)^{2}}$. Now $\left|S^{\prime}\right|=|S|-2|M| \geq|S|-\frac{1}{4 d(G)} n$ by Step 6. Since $|S|-\frac{1}{4 d(G)} n=(n-|B|)-\frac{1}{4 d(G)} n$, substituting the above results for $|B|$, we get that $\left|S^{\prime}\right| \geq \frac{4 d(G)-5}{4 d(G)} n$. By Step 9 and Step $6,|A|<\frac{d(G)}{2}\left|B^{\prime}\right|=\frac{d(G)}{2}(|B|+2|M|)$. Substituting the above results gives that $|A|<\frac{5}{8} n$. Thus, if $\left|S^{\prime}\right| \leq|A|$ then $\frac{4 d(G)-5}{4 d(G)} n<\frac{5}{8} n$, so $3 d(G)<10$, which is a contradiction since $d(G) \geq(2+\epsilon) g(t)>2 g(3)=4 . \quad(g(t) \geq g(3)=2$, since $g(t)$ is non-decreasing.) Hence, $\left|S^{\prime}\right|>|A|$. Alternatively, $B^{\prime}=\emptyset$. Then $\left|S^{\prime}\right|=n$ and $A=\emptyset$, since the vertices of A are assigned to pairs of vertices in B^{\prime}. Hence $\left|S^{\prime}\right|>|A|$.

Now consider Step 10. $G^{\prime}\left[N(v) \cap B^{\prime}\right]$ has at least t vertices by assumption. Each pair of distinct vertices x, y in $N(v) \cap B^{\prime}$ has an assigned vertex in A, as otherwise v would have been assigned to x and y. Hence the vertex z exists, and x and y are adjacent after contracting $x z$. Therefore all pairs of vertices in $N(v) \cap B^{\prime}$ become adjacent, and $G^{\prime}\left[N(v) \cap B^{\prime}\right]$ is a complete graph, and we have found our K_{t}-minor in G.

Finally consider Step 11. G^{\prime} is an induced subgraph of G, and so if we can find K_{t} as a minor in G^{\prime}, we have a K_{t}-minor in G. We use an exhaustive search, so all we need to ensure is that G^{\prime} really does have a K_{t}-minor. Thus, we simply need to ensure that $d\left(G^{\prime}\right) \geq g(t)$. By Step 1 and Step $2, \operatorname{deg}_{G}(v)>\frac{1}{2} d(G) \geq \frac{\epsilon}{2} g(t) \geq t$, so by Step $10, v$ has some neighbour in S^{\prime}. Let w be a vertex of $G^{\prime}-v$. Thus $v w$ is an edge and $v, w \in S^{\prime}$. Since neither v nor w was matched by M, and since M is maximal, $v w$ is not good. Since $v, w \in S^{\prime} \subseteq S$, this means that $|N(v) \cap N(w)|>\frac{d(G)-2}{2}$. From Step 10, we now know that v has at most $t-1$ neighbours in B^{\prime}, so $\left|N(v) \cap N(w) \cap S^{\prime}\right|>\frac{d(G)-2}{2}-(t-1)$. Every common neighbour of v and w in S^{\prime} is a neighbour of w in G^{\prime}, by definition, so $\operatorname{deg}_{G^{\prime}}(w)>\frac{d(G)-2}{2}-(t-1)$. Since v is dominant in G^{\prime}, we have $d\left(G^{\prime}\right) \geq \frac{d(G)-2}{2}-(t-1)$, which is at least $g(t)$ as required since $d(G) \geq(2+\epsilon) g(t)$ and $\epsilon g(t) \geq 2 t$.

4 Time Complexity

Now that we have shown that FindMinor will output a K_{t}-minor, we must ensure it does so in $O(n)$-time (for fixed t and ϵ).

First, suppose FindMinor runs without recursing. Recall that our input graph G is given as a list of vertices and a list of edges, from which we will construct adjacency lists as it is read in. Since our goal in Step 1 is to ensure that $m \leq \frac{1}{2}((2+\epsilon) g(t)+1) n$, we can do this by taking, at most, the first $\frac{1}{2}((2+\epsilon) g(t)+1) n$ edges, and ignoring the rest. This can be done in $O(n)$-time, and from now on we may assume that $m \in O(n)$. In Step 2, since we are only deleting vertices of bounded degree, this can be done in $O(n)$-time. Clearly, Steps 3, 6 and

9 can be implemented in $O(n)$-time. By definition, the degree of any vertex in S or S^{\prime} is at most $((2+\epsilon) g(t)+1)^{2}$. Hence Steps 4, 5, 7, 8 and 10 take $O(n)$-time. Finally, for Step 11 note that $\left|V\left(G^{\prime}\right)\right| \leq d(G)^{2}+1$, so exhaustive search runs in $O(1)$-time for fixed t. Hence the algorithm without recursion runs in $O(n)$-time.

Should FindMinor recurse, we need to ensure that the order of the graph we recurse on is a constant factor less than n. Then the overall time complexity is $O(n)$ (by considering the sum of a geometric series). In Step 5, since $\left|M^{\prime}\right| \geq \frac{1}{2 d(G)^{2}}|M|$, it follows that $\left|M^{\prime}\right| \geq \frac{1}{16 d(G)^{3}} n$. This ensures that $\left|V\left(G^{\prime}\right)\right| \leq\left(1-\frac{1}{16 d(G)^{3}}\right) n$. In Step 8 , the order of $G^{\prime}\left[B^{\prime}\right]$ is at most $\frac{2|A|}{d(G)} \leq \frac{2 n}{d(G)}$. Hence it follows that the overall time complexity is $O(n)$.

References

[1] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., (38):37-58, 1982.
[2] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307-316, 1984.
[3] Wolfgang Mader. Homomorphieeigenschaften und mittlere kantendichte von graphen. Mathematische Annalen, 174:265-268, 1967.
[4] Wolfgang Mader. Homomorphiesätze für Graphen. Math. Ann., 178:154-168, 1968.
[5] Bruce Reed and David R. Wood. A linear-time algorithm to find a separator in a graph excluding a minor. ACM Trans. Algorithms, 5(4):Art. 39, 2009.
[6] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B, 63(1):65-110, 1995.
[7] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear time on minorclosed graph classes, with an application to Steiner tree approximation. Discrete Appl. Math., 157(4):673-684, 2009.
[8] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984.
[9] Andrew Thomason. The extremal function for complete minors. J. Combin. Theory Ser. B, 81(2):318-338, 2001.
[10] Christian Wulff-Nilsen. Faster shortest path algorithm for H-minor free graphs with negative edge weights. CoRR, abs/1008.1048, 2010.
[11] Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with applications. In Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 37-46. IEEE, 2011.
[12] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 108-117, New York, 2007. ACM.

[^0]: ${ }^{\S}$ School of Computer Science, Carleton University, Ottawa, Canada (vida@scs.carleton.ca). Supported by NSERC and an Endeavour Fellowship from the Australian Government.
 ${ }^{\dagger}$ Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium (gjoret@ulb.ac.be). Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.-FNRS). Supported by an Endeavour Fellowship from the Australian Government.
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (d.harvey@pgrad.unimelb.edu.au, woodd@unimelb.edu.au). D.W. is supported by a QEII Fellowship and a Discovery Project from the Australian Research Council. D.J.H. is supported by an Australian Postgraduate Award.
 ${ }^{\top}$ Canada Research Chair in Graph Theory, supported by NSERC. School of Computer Science, McGill University, Montréal, Canada (breed@cs.mcgill.ca); Laboratoire I3S, Centre National de la Recherche Scientifique, Sophia-Antipolis, France.

