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Problem Definition

A three-dimensional straight-line grid drawing of a graph, henceforth called a 3D drawing,
represents the vertices by distinct grid-points in Z

3 and represents each edge by the line segment
between its end vertices, such that no two edges cross. In contrast to the case in the plane, it is
folklore that every graph has a 3D drawing. For example, the “moment curve” algorithm places
the i th vertex at .i; i 2; i 3/. It is easily seen that no four vertices are coplanar, and thus no two edges
cross. Since every graph has a 3D drawing, we are interested in optimizing certain measures of
their aesthetic quality. If a 3D drawing is contained in an axis-aligned box with side lengths X � 1,
Y � 1, and Z � 1, then we speak of an X � Y � Z drawing with volume X � Y � Z. This entry
considers the problem of producing a 3D drawing of a given graph with small volume.

Key Results

Observe that the drawings produced by the moment curve algorithm have O.n6/ volume, where n

is the number of vertices. Cohen et al. [2] improved this bound, by proving that if p is a prime with
n < p � 2n, and the i th vertex is at .i; i 2 mod p; i3 mod p/, then there is still no crossing. The
resulting O.n3/ volume bound is optimal for the complete graph Kn since each grid plane may
contain at most four vertices. It is therefore of interest to identify fixed graph parameters that allow
for 3D drawings with small volume, as summarized in the following table.
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Graph family Min. volume Reference
Arbitrary �.n3/ [2]
Bounded chromatic number �.n2/ [19]
Bounded maximum degree O.n3=2/ [7]
Bounded degeneracy O.n3=2/ [9]
H -minor-free (H fixed) n logO.1/ n [12]
Bounded genus O.n log n/ [12]
Apex-minor-free O.n log n/ [12]
Planar O.n log n/ [6]
Bounded treewidth �.n/ [11]

The first such parameter to be studied was the chromatic number. Pach et al. [19] proved that
graphs of bounded chromatic number have 3D drawings with O.n2/ volume. If p is a suitably
chosen prime, the main step of their algorithm represents the vertices in the i th color class by
grid-points in the set f.i; t; i t / W t � i 2 .mod p/g. It follows that the volume bound is O.k2n2/ for
k-colorable graphs.

Pach et al. [19] also proved an ˝.n2/ lower bound for the volume of 3D drawings of
the complete bipartite graph Kn;n. This lower bound was generalized for all graphs by Bose
et al. [1], who proved that every 3D drawing of an n-vertex m-edge graph has volume at least
1
8
.n C m/. In particular, the maximum number of edges in an X � Y � Z drawing is exactly

.2X � 1/.2Y � 1/.2Z � 1/ � XYZ.
Graphs with bounded maximum degree have bounded chromatic number and, thus, by the result

of Pach et al. [19], have 3D drawings with O.n2/ volume. Pach et al. [19] conjectured that such
graphs have 3D drawings with o.n2/ volume, which was verified by Dujmović and Wood [7], who
proved a O.n3=2/ bound. The best lower bound is ˝.n/. Determining the optimal volume for 3D
drawings of bounded degree graphs is a challenging open problem; see [13]. The O.n3=2/ upper
bound for bounded degree graphs was generalized for graphs with bounded degeneracy [9].

The first nontrivial O.n/ volume bound was established by Felsner et al. [15] for outerplanar
graphs. Their elegant algorithm “wraps” a 2D drawing around a triangular prism to obtain a 3D
drawing. This result naturally led to the following open problem due to Felsner et al. [15], which
motivated much subsequent research: does every planar graph have a 3D drawing with O.n/

volume?
For some time, the O.n2/ bound for 2D drawings was the best known bound in 3D. Then

Dujmović and Wood [7] proved that every planar graph has a 3D drawing with O.n3=2/ volume.
A breakthrough came with the O.n log8 n/ bound of Di Battista et al. [4], which was improved to
O.n log n/ by Dujmović [6] (with a much simpler proof). The most recent work in this direction,
by Dujmović et al. [12], extended this O.n log n/ bound to all graphs of bounded Euler genus and
more generally proved that every graph excluding a fixed minor has a 3D drawing with n logO.1/ n

volume.
The O.n/ volume bound for outerplanar graphs mentioned above was generalized by Dujmović

et al. [11] as follows:

Theorem 1 ([11]). Graphs with bounded treewidth have 3D drawings with O.n/ volume.

This result is the focus of the remainder of this entry. Treewidth is a measure of the similarity
of a graph to a tree. It can be defined as follows. A graph is chordal if every induced cycle is a
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triangle. The treewidth of a graph G is the minimum integer k such that G is a spanning subgraph
of a chordal graph with no .k C 2/-clique. Many graphs arising in applications of graph drawing
have small treewidth. Trees have treewidth 1, while outerplanar and series-parallel graphs have
treewidth 2. Another example arises in software engineering applications. Thorup [20] proved that
the control-flow graphs of go-to free programs in many programming languages have treewidth
bounded by a small constant, in particular, 3 for Pascal and 6 for C.

Reference [11] is also important because it discovered the connection between 3D drawings,
track layouts, and queue layouts; also see [10, 16].

Track Layouts: Track layouts are a combinatorial tool that effectively eliminates the geometry
from 3D drawings and exposes the underlying combinatorial structure. They were introduced in
[11] although they are implicit in some previous work [15, 16].

Let V1; : : : ; Vt be the color classes in a (proper) vertex t -coloring of a graph G. Suppose that
each color class Vi is equipped with a total order, denoted by �. Call Vi a track and V1; : : : ; Vt a
t -track assignment. An X-crossing in V1; : : : ; Vt consists of two edges vw and xy such that v � x

in some track Vi and y � w in some other track Vj . A t -track assignment with no X-crossing is
called a t -track layout.

One can produce a track layout from an A � B � C drawing of a graph G as follows. Let Vx;y

be the set of vertices of G with an X-coordinate of x and a Y -coordinate of y. Order each set Vx;y

by the corresponding Z-coordinates. We obtain an AB-track layout of G, except that consecutive
vertices in each track might be adjacent. Doubling each track and putting alternate vertices in Vx;y

on distinct tracks gives a 2AB-track layout of G. Most interestingly, a converse result is also true.

Theorem 2 ([11]). If an n-vertex graph has a t -track layout, then G has a O.t/ � O.t/ � O.n/

drawing with O.t 2n/ volume.

The proof of Theorem 2 is inspired by the generalizations of the moment curve algorithm
by Cohen et al. [2] and Pach et al. [19]. Loosely speaking, Cohen et al. [2] allow three “free”
dimensions, whereas Pach et al. [19] use a coloring to “fix” one dimension with two dimensions
free. Theorem 2 uses a track layout to fix two dimensions with one dimension free; see Fig. 1. In
particular, say .V1; : : : ; Vt/ is the given t -track layout. Let p be the smallest prime such that p > k.
Then p � 2k by Bertrand’s postulate. For 1 � i � k, represent the vertices in Vi by the grid-points
f.i; i 2 mod p; t/ W 1 � t � p � jVi j; t � i 3 .mod p/g, such that the Z-coordinates respect the given
total order of Vi .

Note that Dujmović and Wood [7] combined the method of Pach et al. [19] with the proof of
Theorem 2 to conclude a O.tn/ volume bound of 3D drawings of t -track graphs with bounded
chromatic number.

As an example of how to construct a track layout, we now show that every tree T has a 3-track
layout (which is implicitly proved in [15]). Let r be a vertex of T . Let Vi be the vertices at distance
i from r . Note that .V0; V1; : : : / is a coloring of T . Clearly, each color class Vi can be ordered so
that there is no X-crossing; see Fig. 2a. Hence .V0; V1; : : : / is a track layout. Note that, working
from the root down, the child nodes of each node can be ordered arbitrarily. This will be important
later. Now, imagine wrapping this track layout around a prism; see Fig. 2b. That is, for 0 � i � 2,
group tracks Vi � V3Ci � V6Ci � : : : to obtain a 3-track layout of T .

An Algorithm for Graphs of Bounded Treewidth: Theorem 1 is an immediate consequence of
Theorem 2 and the following claim, which we prove by induction on k 	 0: for each integer k 	 0,
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Fig. 1 A 3D drawing produced from a track layout
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Fig. 2 A 3-track layout of a tree

there is an integer tk such that every k-tree has a tk-track layout. A 0-tree has no edges and thus
has a 1-track layout. A 1-tree is a tree which has a 3-track layout. Thus the result holds with t0 D 1

and t1 D 3. Let G be a k-tree. Various authors have proved that G can be decomposed as follows
[11,18]. There is a tree T rooted at some node r and a partition fBx W x 2 V.T /g of V.G/ indexed
by the nodes of T with the following properties:

• For each edge vw of G, there is a node x of T such that v; w 2 Bx , or there is an edge xy of T

such that v 2 Bx and w 2 By .
• For each node x of T , the induced subgraph GŒBx� is a .k � 1/-tree.
• For each non-root node y of T , if x is the parent node of y, and Cy is the set of vertices in Bx

adjacent to some vertex in By , then Cy is a clique in G called the parent clique of y.

By induction, for each node x of T , there is a tk�1-track layout of GŒBx�. Each clique C in
GŒBx� has size at most k. Define the signature of C to be the set of (at most k) tracks that contain
C . Since there is no X-crossing, the set of cliques of GŒBx� with the same signature can be linearly
ordered C1 � � � � � Cp , such that if v and w are vertices in the same track, and in distinct cliques
Ci and Cj with i < j , then v � w in that track. Call this a clique ordering.

Let T0; T1; T2 be a 3-track layout of T described above. Replace each track Ti by tk�1 sub-
tracks, and replace each node x 2 Ti by the tk�1-track layout of GŒBx�. This defines a 3 � tk�1

track assignment for G. Clearly an edge in some GŒBx� is in no X-crossing with any other edge.

Page 4 of 7



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_656-1
© Springer Science+Business Media New York 2014

Fig. 3 Final track layout with 3.tk�1/
k groups of tk�1 tracks

There is no X-crossing between two edges between a parent bag Bx and some same child bag By ,
since the end points in Bx of such edges form a clique (the parent clique of y) and therefore are
in distinct tracks. The only possible X-crossing is between edges ab and cd , where a and c are in
some parent bag Bx and b and d are in distinct child bags By and Bz, respectively.

To solve this problem, when determining the 3-track layout of T , the child nodes of each node
x are ordered in their track so that y � z whenever the parent cliques Cy and Cz have the same
signature and Cy � Cz in the clique ordering. Then group the child nodes of x according to the
signatures of their parent cliques, and for each signature � , use a distinct set of tk�1 tracks for the
child bags whose parent cliques have signature � . Now the ordering of the child bags with the
same signature agrees with the clique ordering of their parent cliques and therefore agrees with the
ordering of any neighbors in the parent bag. It follows that there is no X-crossing, as illustrated
in Fig. 3. The number of tracks is at most 3tk�1 times the number of signatures, which is at most
Pk

iD1

�
tk�1

i

� � .tk�1/
k . This completes the proof with tk WD 3.tk�1/

kC1.
This proof makes no effort to reduce the bound on tk . The recurrence roughly solves to 3.kC2/Š.

The original proof by Dujmović et al. [11] reduces this bound to a doubly exponential function
in k. Further improvements were made by Di Giacomo et al. [5], but the bound is still doubly
exponential. The best lower bound, due to Dujmović et al. [11], is ˝.k2/. For k D 2, the best
upper bound is 15, due to Di Giacomo et al. [5].

Other Models for 3D Graph Drawing:

• Polyline grid drawings, where bends in the edges are allowed (at grid-points) [3, 8]
• Orthogonal 3D drawings, where the edges are routed along the grid-lines [14, 21]
• Upward 3D drawings of directed acyclic graphs [5, 9]
• Symmetrical 3D drawings with vertices in R

3 [17]
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