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V. Dujmović1, M. Fellows2, M. Hallett1, M. Kitching1,
G. Liotta3, C. McCartin4, N. Nishimura5, P. Ragde5,

F. Rosamond2, M. Suderman1, S. Whitesides1, and D.R. Wood6

1 McGill University, Canada.
2 University of Victoria, Canada.
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Abstract. We consider graph drawings in which vertices are assigned
to layers and edges are drawn as straight line-segments between vertices
on adjacent layers. We prove that graphs admitting crossing-free h-layer
drawings (for fixed h) have bounded pathwidth. We then use a path
decomposition as the basis for a linear-time algorithm to decide if a
graph has a crossing-free h-layer drawing (for fixed h). This algorithm is
extended to solve a large number of related problems, including allowing
at most k crossings, or removing at most r edges to leave a crossing-free
drawing (for fixed k or r). If the number of crossings or deleted edges is
a non-fixed parameter then these problems are NP-complete. For each
setting, we can also permit downward drawings of directed graphs and
drawings in which edges may span multiple layers, in which case the total
span or the maximum span of edges can be minimized. In contrast to the
so-called Sugiyama method for layered graph drawing, our algorithms do
not assume a preassignment of the vertices to layers.

1 Introduction

Layered graph drawing [28,5,26] is a popular paradigm for drawing graphs, and
has applications in visualization [6], in DNA mapping [29], and in VLSI lay-
out [21]. In a layered drawing of a graph, vertices are arranged in horizontal lay-
ers, and edges are routed as polygonal lines between distinct layers. For acyclic
digraphs, it may be required that edges point downward.
? Research initiated at the International Workshop on Fixed Parameter Tractability

in Graph Drawing, Bellairs Research Institute of McGill University, Holetown, Bar-
bados, Feb. 9-16, 2001, organized by S. Whitesides. Contact author: P. Ragde, Dept.
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 2P9,
e-mail plragde@uwaterloo.ca. Research of Canada-based authors is supported by
NSERC. Research of D. R. Wood supported by ARC and completed while visiting
McGill University. Research of G. Liotta supported by CNR and MURST.

F. Meyer auf der Heide (Ed.): ESA 2001, LNCS 2161, pp. 488–499, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



On the Parameterized Complexity of Layered Graph Drawing 489

The quality of layered drawings is assessed in terms of criteria to be mini-
mized, such as the number of edge crossings; the number of edges whose removal
eliminates all crossings; the number of layers; the maximum span of an edge, i.e.,
the number of layers it crosses; the total span of the edges; and the maximum
number of vertices in one layer. Unfortunately, the question of whether a graph
G can be drawn in two layers with at most k crossings, where k is part of the
input, is NP-complete [11,12], as is the question of whether r or fewer edges can
be removed from G so that the remaining graph has a crossing-free drawing on
two layers [27,10]. Both problems remain NP-complete when the permutation of
vertices in one of the layers is given [11,10].

When, say, the maximum number of allowed crossings is small, an algorithm
whose running time is exponential in this parameter but polynomial in the size
of the graph may be useful. The theory of parameterized complexity (surveyed
in [7]) addresses complexity issues of this nature, in which a problem is specified
in terms of one or more parameters. A parameterized problem with input size n
and parameter size k is fixed parameter tractable, or in the class FPT, if there
is an algorithm to solve the problem in f(k) · nα time, for some function f and
constant α.

In this paper we present fixed parameter tractability results for a variety of
layered graph drawing problems. To our knowledge, these problems have not
been previously studied from this point of view. In particular, we give a linear
time algorithm to decide if a graph has a drawing in h layers (for fixed h) with
no crossings, and if so, to produce such a drawing. We then modify this basic
algorithm to handle many variations, including the k-crossings problem (for fixed
k, can G be drawn with at most k crossings?), and the r-planarization problem
(for fixed r, can G be drawn so that the deletion of at most r edges removes all
crossings?). The exact solution of the r-planarization problem for h ≥ 3 layers is
stated as an open problem in a recent survey [23], even with vertices preassigned
to layers. Our algorithm can be modified to handle acyclic directed graphs whose
edges must be drawn pointing downward. We also consider drawings whose edges
are allowed to span multiple layers. In this case, our algorithm can minimize the
total span of the edges, or alternatively, minimize the maximum span of an edge.

We do not assume a preassignment of vertices to layers. In this regard, our
approach is markedly different from the traditional method for producing lay-
ered drawings, commonly called the Sugiyama algorithm, which operates in three
phases. In the first phase, the graph is layered ; that is, the vertices are assigned
to layers to meet some objective, such as to minimize the number of layers or
the number of vertices within a layer [6, Chapter 9.1]. In the second phase the
vertices within each layer are permuted to reduce crossings among edges, typi-
cally using a layer-by-layer sweep algorithm [26]. In this method, for successive
pairs of neighbouring layers, the permutation of one layer is fixed, and a good
permutation of the other layer is determined. The third phase of the method
assigns coordinates to the vertices [2].

A disadvantage of the Sugiyama approach is that after the vertices have been
assigned to layers in the first phase, these layer assignments are not changed
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during the crossing minimization process in the second phase. In contrast, our
algorithms do not assume a preassignment of vertices to layers. For example, in
linear time we can determine whether a graph can be drawn in h layers with
at most k edge crossings (for fixed h and k), taking into account all possible
assignments of vertices to the layers.

The second phase of the Sugiyama algorithm has received much attention
in the graph drawing literature. Notable are polynomial time algorithms to test
if a layered graph admits a crossing-free drawing [15,17], and if so, to produce
such a drawing with straight line-segments [16], even for edges which span mul-
tiple layers [9]. Integer linear programming formulations have been developed
for crossing minimization in layered graphs [15,18,19], and for 2-layer planariza-
tion [22,24]. The special case of two layers is important for the layer-by-layer
sweep approach. Junger and Mutzel [19] summarize the many heuristics for 2-
layer crossing minimization. Our companion paper [8] addresses the 2-layer case.

The remainder of this paper is organized as follows. Section 2 gives definitions
and discusses pathwidth, a key concept for our algorithms. The overall framework
for our algorithms is presented in Section 3, where we consider the problem of
producing layered drawings with no crossings. The r-planarization problem, the
k-crossings problem, and further variants are considered in Section 4. Section 5
concludes with some open problems. Many proofs are omitted or sketched due
to space limitations.

2 Preliminaries

We denote the vertex and edge sets of a graph G by V (G) and E(G), respec-
tively; we use n to denote |V (G)|. Unless stated otherwise, the graphs considered
are simple and without self-loops. For a subset S ⊆ V (G), we use G[S] to denote
the subgraph of G induced by the vertices in S. In order to structure our dy-
namic programming algorithms, we make use of the well-known graph-theoretic
concepts of path decomposition and pathwidth.

A path decomposition P of a graph G is a sequence P1, . . . , Pp of subsets of
V (G) that satisfies the following three properties: (1) for every u ∈ V (G), there
is an i such that u ∈ Pi; (2) for every edge uv ∈ E(G), there is an i such that
both u, v ∈ Pi; and (3) for all 1 ≤ i < j < k ≤ p, Pi ∩ Pk ⊆ Pj . The width of
a path decomposition is defined to be max{|Pi| − 1 : 1 ≤ i ≤ p}. The pathwidth
of a graph G is the minimum width w of a path decomposition of G. Each Pi is
called a bag of P . It is easily seen that the set of vertices in a bag is a separator
of the graph G. For fixed w, path decompositions of graphs of pathwidth w can
be found in linear time [4].

A path decomposition P = P1, . . . , Pp, of a graph G of pathwidth w is a
normalized path decomposition if (1) |Pi| = w + 1 for i odd; (2) |Pi| = w for
i even; and (3) Pi−1 ∩ Pi+1 = Pi for even i. Given a path decomposition, a
normalized path decomposition of the same width (and Θ(n) bags) can be found
in linear time [13].
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A proper h-layer drawing of a (directed or undirected) graph G consists of
a partition of the vertices V (G) into h layers L1, L2, . . . Lh such that for each
edge uv ∈ E(G), u ∈ Li and v ∈ Lj implies |i − j| = 1; vertices in layer Li,
1 ≤ i ≤ h, are positioned at distinct points in the plane with a Y -coordinate of
i, and edges are represented by straight line-segments.

Edge crossings in layered drawings do not depend on the actual assignment
of X-coordinates to the vertices, and we shall not be concerned with the de-
termination of such assignments. For our purposes, a layered drawing can be
represented by the partition of the vertices into layers and linear orderings of
the vertices within each layer. In a layered drawing, we say a vertex u is to the
left of a vertex v and v is to the right of u, if u and v are in the same layer and
u < v in the corresponding linear ordering.

An (a, b)-stretched h-layer drawing of a graph G is a proper h-layer drawing
of a graph G′ obtained from G by replacing each edge of G by a path of length
at most a + 1 such that the total number of “dummy” vertices is at most b,
and all edges have monotonically increasing or decreasing Y -coordinates. Of
course, proper h-layer drawings are (0, 0)-stretched. A graph is said to be an
(a, b)-stretchable h-layer graph if it admits an (a, b)-stretched h′-layer drawing
for some h′ ≤ h.

A layered drawing with at most k crossings is said to be k-crossing, where a
crossing is counted every time a pair of edges cross. A 0-crossing h-layer drawing
is called an h-layer plane drawing. A graph is ((a, b)-stretchable) h-layer planar if
it admits an ((a, b)-stretched) plane h′-layer drawing for some h′ ≤ h. A layered
drawing in which r edges can be deleted to remove all crossings is said to be
r-planarizable, and a graph which admits an ((a, b)-stretched) r-planarizable h-
layer drawing is said to be an ((a, b)-stretchable) r-planarizable h-layer graph.

For an acyclic digraph G, an ((a, b)-stretched) h-layer drawing if G is called
downward if for each edge (u, v) ∈ E(G), u ∈ Li and v ∈ Lj implies i > j.

3 Proper h-Layer Plane Drawings

In this section we present an algorithm for recognizing proper h-layer planar
graphs. Our algorithm, which performs dynamic programming on a path decom-
position, relies on the fact that an h-layer planar graph has bounded pathwidth.

Lemma 1. If G is an h-layer planar graph, then G has pathwidth at most h.

Proof Sketch. First consider a proper h-layer planar graph G. Given an h′-layer
plane drawing of G for some h′ ≤ h, we form a normalized path decomposition
of G in which each bag of size h′ contains exactly one vertex from each layer.
Let S be the set of leftmost vertices on each layer, where si ∈ S is the vertex
on layer i. Initialize the path decomposition to consist of the single bag S, and
repeat the following step until S consists of the rightmost vertices on each layer:
find a vertex v ∈ S such that all neighbours of v are either in S or to the left
of vertices in S. Let u be the vertex immediately to the right of v. Append
the bag S ∪ {u}, followed by S ∪ {u} \ {v} to the path decomposition, and set
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the current bag S ← S ∪ {u} \ {v}. It is not hard to show that this yields
the required decomposition. To handle stretchable h-layer planar graphs, insert
dummy nodes, apply the above algorithm, replace dummy vertices on an edge
uv by u, and remove all but one of a sequence of duplicate bags. ut

As stated in Section 2, we can obtain a normalized width-h path decomposi-
tion of any graph for which one exists in time O(n) (for fixed h) [4,13]. Applying
this algorithm to an h-layer planar graph will in general not result in a “nice”
decomposition like that in Lemma 1 (where bags of size h contain exactly one
vertex from each layer), but we can use the fact that each bag is a separator
in order to obtain a dynamic programming algorithm. In the remainder of this
section we prove the following result.

Theorem 1. There is an f(h) · n time algorithm that decides whether a given
graph G on n vertices is proper h-layer planar, and if so, produces a drawing.

By applying the algorithm of Bodlaender [4], we can test if G has a path
decomposition of width at most h. If G does not have such a path decomposition,
by Lemma 1, G is not h-layer planar. Otherwise, let P = P1, . . . , Pp be the
normalized path decomposition of G given by the algorithm of Gupta et al. [13].
Let w ≤ h be the width of this path decomposition. (Our algorithm, in fact,
works on any path decomposition of fixed width w, and in subsequent sections
we present modifications of this procedure where the path decomposition has
width w > h.)

Our dynamic programming is structured on the path decomposition, where
for each bag Pi in turn, we determine all possible assignments of the vertices of
Pi to layers and, for each assignment, all possible orderings of the vertices on a
particular layer such that G[∪j≤iPj ] is proper h-layer planar.

The key to the complexity of the algorithm is the fact that the number
of proper h-layer plane drawings of G[∪j≤iPj ] can be bounded as a function
only of the parameters h and w. In order to ensure this bound, we need a way
of representing not only edges between vertices in Pi but also edges with one
or more endpoints in

⋃
j<i Pj \ Pi. Since representing each edge will require a

prohibitively large amount of information, we instead label horizontal “intervals”
between vertices in Pi on the same layer.

More formally, for a subset S of vertices in a proper h-layer drawing of a
graph, we add a set S′ of 2h boundary vertices to the extreme left and extreme
right of each layer, and use the term interval, denoted by int(u, v), to refer to
the horizontal line-segment between any pair of consecutive vertices u and v in
S ∪ S′ on the same layer. The set of all intervals for S ∪ S′ is denoted by int(S).
It is not difficult to see that the number of intervals is linear in h + |S|.

A crucial observation is that, for the purposes of deciding where vertices and
edges can be inserted into a partial drawing of G, the edges with endpoints in
int(u, v) can be represented by the sets of vertices in the layers above and below
that can “see” a particular “subinterval” of int(u, v).

In a proper h-layer plane drawing, let u and v be a pair of vertices appearing
at layer `, 1 < ` < h, (where other vertices may appear between u and v on
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layer `), T be any subsequence of the vertices at layer `+1, and B be any subse-
quence of the vertices at layer `− 1, where the vertices in a particular layer are
ordered from left to right. A point x in int(u, v) is visible to a subsequence T ′ of
T and a subsequence B′ of B if it is possible to draw line-segments between x
and every point in T ′ and B′ without creating any crossings. A subinterval I of
int(u, v) is a sequence of points in int(u, v) visible to the same subsequences T ′

of T and B′ of B. We say I is visible to these subsequences, and we label I by
the pair (T ′, B′), its visibility label with respect to T and B, or more succinctly,
its visibility label (see Fig. 1). By extension, a sequence of visibility labels for
subintervals of int(u, v), with each consecutive sequence of identical labels re-
placed by a single copy, forms a visibility label of int(u, v), and for any subset S
of vertices in a layered graph, the visibility labels of all subintervals of intervals
in int(S) forms a visibility label of int(S).

u v

(a;A) (a;AB) (bc; AB) (c; ) (c; C)

a b c

A B C

Fig. 1. An example of visibility labelling. Solid vertices are in the set S, and edges
with both ends in S are bold. The interval int(u, v) is divided into five subintervals
of differing visibility, each with visibility labels shown. The label of each subinterval
indicates how a vertex added to that subinterval could be connected to vertices in S.

This definition can be extended to label intervals on layers 1 (where B is
empty) and h (where T is empty). The following lemmas are direct consequences
of the definition of visibility.

Lemma 2. Given vertices x and y on consecutive layers,

1. if there is an edge xy then no vertex to the left (resp. right) of x is visible to
any vertex to the right (resp. left) of y, and

2. if x is not visible to y, then there must exist an edge x′y′ such that either x′

is to the right of x and and y′ is to the left of y, or x′ is to the left of x and
y′ is to the right of y. ut

Lemma 3. For each visibility label (T ′, B′), T ′ is a consecutive subsequence of
T and B′ is a consecutive subsequence of B. ut

In a proper h-layer plane drawing, the visibility labels satisfy the following
lexicographic ordering. For a sequence X = (x1, x2, . . . , x|X|) and two consec-
utive subsequences y1 and y2 of members of X, where y1 contains xa through
xb and y2 contains xa′ through xb′ , y1 ≺ y2 if one of the following three cases
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holds: a < a′, a = a′ and b < b′, or exactly one of y1 and y2 is empty. Similarly,
y1 � y2 if either y1 ≺ y2 or a = a′ and b = b′.

Based on the above definition and Lemma 2, it is straightforward to prove
the following lemma.
Lemma 4. For any vertices u and v in a proper h-layer plane drawing, the
number j of visibility labels of subintervals of int(u, v) with respect to T and
B is O(|T ||B|). Moreover, the labels (T1, B1), (T2, B2), . . . , (Tj , Bj) satisfy the
following conditions:

1. for any 1 ≤ i < j, Ti � Ti+1, Bi � Bi+1;
2. for any 1 ≤ i < j, either Ti ≺ Ti+1, Bi ≺ Bi+1, or both hold; and
3. for any w to the right of v, if (Tj , Bj) is the last label for int(u, v) and

(T ′
1, B

′
1) is the first label for int(v, w), then Tj � T ′

1 and Bj � B′
1. ut

We define an ordered layer assignment A of Pi to be an assignment of the
vertices in Pi to layers such that there is an ordering imposed on the vertices of
Pi in each layer. The drawing of G[Pi] obtained by placing vertices according to
A and including all edges in E(G[Pi]) is called the drawing of G[Pi] induced by
A. As a consequence of Lemma 3, the number of ordered layer assignments and
visibility labels for these assignments are functions of h and w.

In our dynamic programming table, the entry TABLE〈i, A, L〉 indicates
whether or not it is possible to obtain a proper h-layer plane drawing of
G[∪j≤iPj ] with ordered layer assignment A of Pi and visibility label L of int(Pi).
The notation TABLE〈i, A, ∗〉 is used to denote entries for i, A, and any L. The
order of evaluation is by increasing i. For a bag Pi, ordered layer assignment A
of Pi, and visibility label L, a necessary condition for TABLE〈i, A, ∗〉 to be YES
is that no edges in G[Pi] violate the conditions of a proper h-layer plane drawing
or of part 1 of Lemma 2. In this case, we call Pi, A, and L consistent.

For i = 1, the base case of our dynamic programming recurrence, we consider
all possible ordered layer assignments of the vertices in P1. If P1, A, and L are
inconsistent, we set TABLE〈1, A, L〉 to NO. In general, a labeling L represents
visibility due to edges not only in G[Pi] but also with endpoints in G[∪j<iPj ];
since for i = 1 the latter graph is empty, we impose the additional constraint
that L corresponds to exactly the edges in G[Pi]. That is, for a given P1 and
A, there is exactly one labeling L such that P1, A, and L are consistent and
such that part 2 of Lemma 2 is satisfied for edges in G[P1]; for this L, we set
TABLE〈1, A, L〉 to YES, and set TABLE〈1, A, L′〉 to NO for each L′ 6= L.

To define the general recurrence, we need to consider two different cases,
namely for |Pi| = w + 1 (i odd) and |Pi| = w (i even). In the first case, Pi−1
is missing exactly one vertex that is in Pi, and the algorithm checks the single
table entry defined by removing that vertex. In the second case, Pi−1 has exactly
one vertex x that is not in Pi, and we consider all possible placements of x. Both
of these tasks can be done in constant time (for fixed h and w). In each case,
we first check if Pi, A, and L are consistent, and if not, enter NO. Details of the
remaining steps are given below.

To compute TABLE〈i, A, L〉 for odd i, we note that |Pi| = w+1 and |Pi−1| =
w. Let x be the single vertex in Pi \ Pi−1. The algorithm computes A′ and
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L′, the ordered layer assignment and visibility label of int(Pi−1) that would
result by removing x from a drawing corresponding to A and L, and then sets
TABLE〈i, A, L〉←TABLE〈i− 1, A′, L′〉.

To compute A′, we simply remove x from A. The computation of L′ is only
slightly more complicated. Observe that for `, the layer containing x, the only
visibility labels that will be altered are those in layers ` + 1, `, and `− 1. Part 3
of Lemma 4 shows that for t and t′, the vertices appearing immediately before
and after x in layer ` in A, there is an order imposed on the last label of int(t, x)
and the first label of int(x, t′). Since parts 1 and 2 establish orderings within
the intervals, the sequence formed by concatenating these labels and removing
x forms a labeling of int(t, t′) that satisfies Lemma 4, parts 1 and 2.

Next, for each visibility label at layer `+1, the algorithm removes x from all
Bj ’s, and then removes any adjacent duplicate pairs of subinterval labels that
result. Explicit adjustments will only occur when x appears as an endpoint of a
subinterval. The Tj ’s at layer `− 1 are adjusted in the same fashion.

To compute TABLE〈i, A, L〉 for even i, we note that |Pi| = w and |Pi−1| =
w + 1. Let x be the single vertex in Pi−1 \ Pi. The algorithm computes the set
S of pairs (A′, L′) representing the ordered layer assignment and visibility label
of int(Pi−1) that would result from adding x to a drawing corresponding to A
and L in all possible subintervals I, and then sets TABLE〈i, A, L〉 to YES if and
only if TABLE〈i− 1, A′, L′〉 is YES for some (A′, L′) ∈ S.

To add the new vertex x to a particular subinterval I, we first add x to A in
the appropriate position, along with all its edges. If the neighbours of x in Pi do
not form a subset of the visibility label of I, TABLE〈i, A, L〉 is set to NO.

If instead the neighbours form a subset of the visibility label of I, to form
L′, define mt = min{i′|ti′x is an edge}, Mt = max{i′|ti′x is an edge}, mb =
min{i′|x, bi′ is an edge}, and Mb = max{i′|xbi′ is an edge}, where t1, . . . t|T | is
the sequence of vertices of Pi−1 at layer ` + 1 and b1, . . . , b|B| is the sequence of
vertices of Pi−1 at layer `− 1.

Split I into two identical subintervals, one on each side of x. Then, for all
visibility labels of subintervals to the left of x, remove ti for all i > mt, and
remove bj for all j > mb. Similarly, for all visibility labels to the right of x,
remove ti for all i < Mt and remove bj for all j < Mb.

A straightforward induction on i proves the following statement and therefore
the correctness of the algorithm: the entry TABLE〈i, A, L〉 is YES if and only if
it is possible to obtain a proper h-layer plane drawing of G[∪j≤iPj ] with ordered
layer assignment A of Pi and visibility label L of int(Pi).

Obviously, G has a proper h-layer plane drawing if and only if some entry
TABLE〈p, ∗, ∗〉 is YES. To determine the complexity of the algorithm, we recall
that the number of bags is in O(n) and thus the number of table entries is
g(h, w) ·n for some function g. Each table entry can be computed in time e(h, w)
for some function e, and w = h. Thus the total running time is f(h) · n. (The
precise nature of the functions of the parameters is discussed in Section 5.) An
actual drawing can be obtained by tracing back through the table in standard
dynamic programming fashion. This concludes the proof of Theorem 1.
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4 Edge Removals, Crossings, and Other Variants

Consider a proper r-planarizable h-layer graph. The h-layer planar subgraph
obtained by removing the appropriate r edges has a path decomposition of width
at most h by Lemma 1. By placing both endpoints of each of the r removed
edges in each bag of the path decomposition, we form a path decomposition of
the original graph of width at most h+2r. In a proper k-crossing h-layer drawing
we can delete at most k edges to remove all crossings. By the same argument as
above we obtain the following lemma.
Lemma 5. If G is a k-crossing h-layer graph (r-planarizable h-layer graph),
then G has pathwidth at most h + 2k (h + 2r). ut
Theorem 2. There is a f(h, r) ·n time algorithm to determine whether a given
graph on n vertices is a proper r-planarizable h-layer graph, and if so, produces
a drawing.
Proof Sketch. The main change to the dynamic programming algorithm described
in Section 3 is an additional dimension to the table representing an edge removal
budget of size at most r. The entry TABLE〈i, A, L, c〉 indicates whether or not it
is possible to obtain a proper h-layer plane drawing of G[∪j≤iPj ] with ordered
layer assignment A of Pi and visibility label L of int(Pi) by removing at most
r − c edges. ut
Theorem 3. There is a f(h, k) ·n time algorithm to determine whether a given
graph on n vertices is a proper k-crossing h-layer graph, and if so, produces a
drawing.
Proof Sketch. We proceed in a fashion similar to Theorem 2. We modify the
graph representation of the previous section to include two different types of
edges, black edges not involved in crossings, and up to 2k red edges which may
be involved in crossings. Since we can obtain more than k crossings using 2k
edges, we also need to keep a budget of crossings. In our algorithm, the entry
TABLE〈i, A, L, R, c〉 indicates whether or not it is possible to obtain a proper
h-layer drawing of G[∪j≤iPj ] with ordered layer assignment A of Pi, visibility
label L of int(Pi) such that a subset of edges map to red edges in the set R, the
only crossings in the graph involve red edges, and the total number of crossings
is k − c. ut

We now describe how the algorithms above can be modified to take into
account the directions of edges and stretch. For a downward drawing of a digraph,
the directions of edges can easily be verified in the consistency check. Suppose
a graph G is stretchable h-layer planar. By Lemma 1, the graph G′ (defined
in Section 2) has pathwidth at most h. Since graphs of bounded pathwidth are
closed under edge contraction, G also has bounded pathwidth. To handle stretch
in the dynamic programming, we consider placements not only of new vertices
but also of dummy vertices. The total number of possibilities to consider at any
step of the dynamic programming is still a function only of h and w (the bag
size). The bound on the total number of dummy vertices, if used, need not be a
parameter, though the running time is multiplied by this bound.
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Theorem 4. For each of the following classes of graphs, there are FPT algo-
rithms that decide whether or not an input graph belongs to the class, and if so,
produces an appropriate drawing, with the parameters as listed:

1. h-layer planar, k-crossing or r-planarizable graphs, (h,∞)-stretched, (a,∞)-
stretched, or (a, b)-stretched, with parameters h, k, and r;

2. radial graphs (drawn on h concentric circles), with k crossings or r edges
removed, (h,∞)-stretched, (a,∞)-stretched, or (a, b)-stretched, with param-
eters h, k, and r;

3. digraph versions of the above classes such that the drawings are downward;
4. multigraph versions of the above classes, where edges can be drawn as curves;

and
5. versions of any of the above classes of graphs where some vertices have been

preassigned to layers and some vertices must respect a given partial order.

Proof Sketch. These classes have bounded pathwidth, and the basic dynamic
programming scheme can be modified to deal with them. ut

5 Conclusions and Open Problems

Mutzel [23] writes “The ultimate goal is to solve these [layered graph drawing]
problems not levelwise but in one step”. In this paper we employ bounded path-
width techniques to solve many layered graph drawing problems in one step and
without the preassignment of vertices to layers.

A straightforward estimation of the constants involved in our linear-time
algorithms shows that if s = h + 2k + 2r is the sum of the parameters, then
the dynamic programming can be completed in time scsn for some small c.
However, the cost of finding the path decomposition on which to perform the
dynamic programming dominates this; it is 232s3

n. Hence our algorithms should
be considered a theoretical start to finding more practical FPT results. In a
companion paper [8] we use other FPT techniques to shed light on the case of
2-layer drawings, obtaining better constants.

Improving the general result might involve finding more efficient ways to
compute the path decomposition (perhaps with a modest increase in the width)
for the classes of graphs under consideration.

Another approach to laying out proper h-layer planar graphs is to use the
observation that such graphs are k-outerplanar, where k = d 12 (h + 1)e. One
could use an algorithm to find such an embedding in O(k3n2) time [3], and then
apply Baker’s approach of dynamic programming on k-outerplanar graphs [1].
However, this approach depends heavily on planarity, and so does not appear to
be amenable to allowing crossings or edge deletions.

If we relax the requirement of using h layers, recent work gives an f(k) · n2

algorithm for recognizing graphs that can be embedded in the plane with at
most k crossings [14]. A very similar approach would work for deleting r edges
to leave a graph planar. Unfortunately, the approach relies on deep structure
theorems from the Robertson-Seymour graph minors project, and so is even
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more impractical. Nevertheless, since the maximum planar subgraph problem is
of considerable interest to the graph drawing community, this should provide
additional incentive to consider FPT approaches.

If we relax the requirement of planarity, we ask only if r edges can be deleted
from a DAG to leave its height at most h. This is easily solved in time O(((h +
1)(r + 1))r + n); find a longest directed path (which cannot have length more
than (h + 1)(r + 1)), and recursively search on each of the graphs formed by
deleting one edge from this path to see if it requires only r − 1 deletions.

There is a linear-time test for h-layer planar graphs when the assignment of
vertices to layers is specified [17]. Is recognizing h-layer planar graphs without
such a specification NP-complete, if h is not fixed?
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